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ABSTRACT Genome-wide single nucleotide polymorphism (SNP) variation allows for the capture of
haplotype structure in populations and prediction of unobserved genotypes based on inferred regions of
identity-by-descent (IBD). Here we have used a first-generation wheat haplotype map created by targeted
re-sequencing of low-copy genomic regions in the reference panel of 62 lines to impute marker genotypes
in a diverse panel of winter wheat cultivars from the U.S. Great Plains. The IBD segments between the
reference population and winter wheat cultivars were identified based on SNP genotyped using the 90K
iSelect wheat array and genotyping by sequencing (GBS). A genome-wide association study and genomic
prediction of resistance to stripe rust in winter wheat cultivars showed that an increase in marker density
achieved by imputation improved both the power and precision of trait mapping and prediction. The
majority of the most significant marker-trait associations belonged to imputed genotypes. With the vast
amount of SNP variation data accumulated for wheat in recent years, the presented imputation framework
will greatly improve prediction accuracy in breeding populations and increase resolution of trait mapping
hence, facilitate cross-referencing of genotype datasets available across different wheat populations.
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Chromosomal segments sharing common ancestry in a population,
referred to as segments of identity-by-descent (IBD), may be detected
using high-density marker data and this information may be used for

predicting unobserved genotypes for markers located in the same IBD
segment (Browning and Browning 2012). This genotype imputation
procedure allows the interpolation of diversity data across diverged
populations genotyped using commonmarker platforms. The imputed
genotypes increase the number of SNP available for marker-trait asso-
ciation analyses and genomic prediction, thus increasing the resolution
and power of associationmapping studies andmodel-based predictions
(Howie et al. 2009, Crossa et al. 2014). In humans and maize (Abecasis
et al. 2010; Swarts et al. 2014), the accuracy of imputation correlated
with the frequency of imputed alleles in a population. It was shown that
by increasing the genotyping probability (GP) cutoff value, the accuracy
of imputation can be increased at the cost of increasing the proportion of
missing genotypes in the final dataset. Genotype imputation performed
using the 1,000 human genomes dataset made it possible to test the
majority of common variants in a population for marker-phenotype
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associations (Abecasis et al. 2010). It was demonstrated that more com-
plete ascertainment of SNP variation achieved by imputation helped to
identify previously unidentified candidate SNP (Huang et al. 2012).
Similarly, imputation performed in Arabidopsis using the whole-
genome sequence data generated from a reference panel of 80 strains
(accessions) increased the power and resolution of trait mapping in
genome-wide association studies (GWAS) (Cao et al. 2011). In maize,
GBS markers were effectively used to detect the IBD regions in a
diverse panel of lines and to predict missing genotypes present at
high frequency in this type of genotyping data (Swarts et al. 2014).

Until recently, the complexity of the wheat genome was one of the
main obstacles for obtaining high-density genetic variation data. As a
result, many wheat scientists have relied on low-density PCR-based
markers for disease diagnosis and marker assisted selection (Helguera
et al. 2003; Ullah et al. 2016; Xu et al. 2018). Several PCR-basedmarkers
such as S19M93, S23M41, Xpsp3000, Iag95 and VENTRIUP-LN2 are
commonly used in screening of wheat lines for stripe rust resistance
(Ullah et al. 2016). However, the development of genotyping arrays
(Cavanagh et al. 2013; Wang et al. 2014b) and next-generation
sequencing-based methods of genotyping (Saintenac et al. 2011;
Poland et al. 2012; Saintenac, Zhang, et al. 2013; Jordan et al. 2015)
has enabled the generation of SNP markers covering the entire wheat
genome. Large populations of diverse lines and recombinant inbred
wheat lines have been genotyped using the 9K and 90K SNP arrays,
and used for mapping a number of traits related to disease resistance
(Sela et al. 2014; Maccaferri et al. 2015), yield (Kalous et al. 2015), height
(Zanke et al. 2014a), heading date (Zanke et al. 2014b), and domestica-
tion (Faris et al. 2014). The GBS method has become the technology of
choice for cost-effective genotyping and trait mapping (Saintenac, Jiang,
et al. 2013; Crespo-Herrera et al. 2014; Li et al. 2015). While GBS is
characterized with high missing genotype data, imputations approaches
have enabled the use of these markers for genomic prediction and ge-
nome-wide association studies in various species includingwheat (Crossa
et al. 2016). Finally, a high-density haplotypemap ofwheat was generated
using the whole exome capture and GBS, which provided a detailed
description of the majority of common variants in the genic regions of
the wheat genome at the sequence level (Jordan et al. 2015).

With the development of a first genomic reference sequence
(International Wheat Genome Sequencing Consortium 2014) it has
become possible to use the wheat SNP variation maps for IBD pre-
diction and imputing missing genotypes in diverse collections of lines.
Here, a first-generation wheat SNP haplotype map was used to develop
a resource for imputing marker genotypes in populations previously
genotyped using either the 90K SNP iSelect wheat array (Wang et al.
2014b) or GBS (Poland et al. 2012). The utility of GBS and 90K SNP
datasets for imputing ungenotyped markers was assessed. We used
SNP genotyped by exome capture in the reference panel of 62 wheat
lines (Jordan et al. 2015) to impute ungenotyped markers in a diverse
collection of winter wheat cultivars from the U.S. Great Plains. It was
demonstrated that SNP from the reference panel can be accurately
imputed into the winter wheat population, significantly increasing
marker density to improve the accuracy of genomic prediction and
the number of detected marker-trait associations in GWAS.

MATERIALS AND METHODS

Diversity panel and genotyping
The association mapping panel of hard red winter wheat cultivars
(henceforth, WWAM panel) included 307 accessions from major
breedingprograms across theU.S.Great Plains (Table S1). TheWWAM
panel was genotyped using the custom 90K SNP iSelect wheat array and

GBS according to Saintenac et al. (2013). The GBS data were generated
for the WWAM panel by sequencing the barcoded 96-plex libraries on
a single lane of HiSeq2500 instrument. Raw GBS reads of 100 bp in
length were trimmed to remove low quality bases (quality, 15) from
both ends retaining only reads of. 30 bp. A filter was applied to select
reads with at least 80% of bases having quality.15. Reads passing the
quality control steps were separated based on the barcode sequences
corresponding to individual accessions. GBS data were aligned to the
assemblies of the wheat flow-sorted chromosomes (International
Wheat Genome Sequencing Consortium 2014) using a previously de-
scribed mapping strategy (Jordan et al. 2015). In brief, the strategy uses
the Bowtie program (Langmead and Salzberg 2012) with three sets of
alignment parameters with decreasing mapping stringency. Reads not
aligned at higher stringency levels were re-used at lower stringency
levels.

The read alignment files generated for each accession were sorted
and indexed using SAMtools (Li et al. 2009) prior to variant calling. The
program Picard v. 1.62 (https://sourceforge.net/projects/picard/files/
picard-tools/1.100/) was used to remove duplicated reads. Variant calls
were generated using the UnifiedGenotypermodule of genome analysis
toolkit (GATK) v2.2 with default parameters (McKenna et al. 2010).
Variant calls were filtered to remove sites with. 50%missing genotype
data and minor allele frequency (MAF) of , 0.03.

A cleaved amplified polymorphic sequence (CAPS) marker (Ven-
triup) linked with the Yr17 stripe rust resistance gene was used to
confirm the presence of this gene in the WWAM panel (Helguera
et al. 2003). The Yr17 gene was shown to be present in cultivar Jagger
broadly used in the breeding programs across the U.S. Great Plains
(Fang et al. 2011). PCR products were analyzed on an ABI PRISM
3730 DNA Analyzer (Applied Biosystems, Foster City, CA). Data col-
lected were processed using GeneMarker v1.6 (SoftGenetics LLC, State
College, PA) followed by visual validation of genotype calling accuracy.

Imputation of missing SNP markers using exome
capture SNP from the reference panel
We tested two different genotype imputation scenarios in the WWAM
panel. In the first one, we predicted sporadically missing markers at
genotyped loci in the WWAM panel using both the 90K SNP iSelect
array and GBS SNP (Figure 1A, 1B). In the second scenario, the 90K
SNP array and/or GBS markers shared between the target WWAM
panel and the reference panel of 62 wheat lines (Jordan et al. 2015) were
used to impute ungenotyped SNP sites in the WWAM panel.

To test the accuracy of imputation at genotyped SNP sites with
missing data in the WWAM panel, we generated a subset of genotype
dataset containing 15,686 SNP selected from the 90K SNP iSelect array,
including5,618, 8,210and1,858SNPmapped to theA,BandDgenome,
respectively. These data were used to generate random samples with
differentproportionsofmissinggenotypes.A total of 10datasets foreach
level of missing data were generated. The imputed genotypes were then
compared to the original genotypes to calculate the accuracy of
imputation.

For imputing missing SNP sites in the WWAM panel that were
genotyped in the reference panel of 62 wheat lines, we used three sets of
SNPmarkers: 1)markers genotyped using the 90K SNP iSelect array, 2)
GBS markers, and 3) combined 90K SNP iSelect and GBS markers. A
total of 9,786, 4,876, and 14,662markers overlapping between the target
WWAMpopulation and the reference panel were selected from each of
these three datasets, respectively. These sets of markers for imputation
using the 62 accessions reference panel are available for download from
the wheat HapMap project page (http://wheatgenomics.plantpath.ksu.
edu/hapmap/).
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TheprogramBeagle v4.0 (Browning andBrowning 2013)wasused to
impute missing and ungenotyped SNPmarkers in the target population
of winter wheat cultivars using exome capture SNP from the reference
panel of 62 wheat lines. The imputation parameters included
“nthreads=10 burnin-its=10 phase-its=10 window=5000 overlap=500”,
as previously described by Jordan et al. (2015). The imputed files were
filtered using customizable cut-off values of genotyping probability (GP;
default value = 0.8), proportion of missing genotypes (default value =
0.5) and minor allele frequency (MAF; default value = 0.03). SNP gen-
otyped using the 90K iSelect wheat array or GBS or both were used for
detecting the IBD regions between the reference and target population.

To facilitate imputation, we have developed a set of scripts for
formatting 90K and GBS genotype data generated for any target
population. The imputation workflow is shown on Fig. S1 and scripts
can be downloaded from the following website: http://wheatgenomics.
plantpath.ksu.edu/hapmap/. The input files can be provided in either
the VCF (Variant Call Format) or hapmap format. Perl scripts were
developed to transform data from the hapmap to the VCF format used
by Beagle v4.0. These scripts and some example data to test-run the
scripts can also be downloaded from GitHub website: https://github.
com/wheatgenomics/haplotypeV1_imputation. Currently, the input
SNP should have the coordinates based on the wheat flow-sorted
chromosome survey sequencing (CSS) contigs (International Wheat
Genome Sequencing Consortium 2014). However, to facilitate the
imputation of SNP generated based on the new version of wheat ref-
erence sequence (International Wheat Genome Sequencing Consor-
tium 2018), we updated the SNP positions for the reference panel.
This was achieved using Perl scripts and SAMtools to extract 50 bp
of sequences flanking the SNP on both sides from the contigs of CSS.
For SNP that were located at less than 50 bp from the start of the contig,
the start position of the flanking sequence was adjusted to one. The
extracted sequences were aligned to the CS reference using blastn. The
blastn output file was filtered on percent identity, e-value, mismatches
and unique alignment using a Perl script. Only sequences that had
100% identity with the reference, without any mismatch, evalue $
3.45e-45 and had only one hit in the entire reference sequence were
retained. SNP positions were then calculated by subtracting 50 from
end position of the sequence alignment. The new ordering was then
linked to the vcf files containing the reference panel SNP using a Perl
script. These updated SNP can be accessed from the website: http://
wheatgenomics.plantpath.ksu.edu/hapmap/.

The DNA strand designation and orientation of allele calls provided
for the target population were compared with that of the reference
population. Allele designation and reference allele frequency were used
todeterminewhether the targetandreferencechromosomestrandswere

identical or not. In case there was no match between the reference and
target population, the designation and orientation of alleles were
corrected. A Perl script was developed to check the consistency between
the target and referenceVCFfiles (http://wheatgenomics.plantpath.ksu.
edu/hapmap/). Users may also use the program “conform-gt” for that
purpose (https://faculty.washington.edu/browning/conform-gt.html).

Phenotyping
The WWAM panel was evaluated in the greenhouse and in field
conditions for resistance to Puccinia striiformis f.sp. striiformis (Pst),
a fungal pathogen causing wheat stripe rust. Three field experiments to
evaluate adult plant stripe rust resistance were conducted in 2010 and
2011 in Rossville, KS, and in 2012 in Castroville, Texas (Table S2) using
a completely randomized design (CRD) with three replicates. Approx-
imately 30 seeds were sown per 2 m rows spaced 25 cm apart. To
provide a uniform level of infection, spreader rows of susceptible wheat
line (KS89180B-2-1) were planted every 5th row and infected with the
PST-100 race of Pst. Infection type (IT) was scored using the McNeal
0-9 scale (McNeal et al. 1971), and severity of infection (SV) was
assessed using the modified Cobb 0-100 scale (Peterson et al. 1948),
when the disease severity on a susceptible line reached 60–70%.

Adult plant and seedling stage resistance to stripe rust were also
evaluated in greenhouse conditions using the previously described
procedures (Hulbert et al. 2007). Ten day-old wheat seedlings or anth-
esis-stage adult plants were inoculated with urediniospores of race PST
suspended in Soltrol 170mineral oil (Chevron-Phillips Chemical Com-
pany, TheWoodlands, TX) and then placed in a dew chamber for 16 h
in the dark at 12-15�. Seedlings were then transferred to a growth
chamber with 16 h photoperiod and maintained at 15 6 1� day and
12 6 1� night temperatures. Seedlings were scored for IT at 18 days
after inoculation using the McNeal scale. Adult plants were transferred
to a greenhouse with 16 h photoperiod and maintained at 186 3� day
and 13 6 3� night temperatures. Adult plants were scored for IT and
SV at 21 days after inoculation as described above.

Analysis of variance components and Pearson correlation coeffi-
cients were calculated using the base functions of R. Broad sense
heritability (H2) was estimated as

H2 ¼ VG

VG þ VE

Where VG is genetic variance and VE is environmental variance com-
ponents extracted from ANOVA results.

A linear mixed effect model with restricted maximum likelihood
implemented by R package lme4 was used to fit the phenotype data:

Figure 1 Genotype imputation using the exome capture SNP. Impact of genotype probability cutoff value on the accuracy (A) and the proportion
of missing genotypes (B) in the imputed datasets. NA30, NA40, NA50, NA60 and NA70 correspond to simulated SNP containing 30%, 40%, 50%,
60% and 70% of genotypes missing, respectively. C. The number of imputed SNP in the WWAM panel genotyped using different approaches.
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yij ¼ mþ Gi þ Ej þ GEij þ eij, where yij is the phenotype of the ith

wheat cultivar in jth location, m is the intercept, Gi is the ith cultivar, Ej
is the jth location, GEij is the cultivar by location interaction and eij is
random residual. Cultivars were considered as random variables while
locations were fixed. Best linear unbiased predictions (BLUPs) for cul-
tivars were extracted from the model and used in genomic prediction.

Genome-wide association analysis
In our study, we used the Empirical Normal Quantile transforma-
tion approach implemented as the function “tRank” in the R package
“multic” (Peng et al. 2007) to assess the impact of different normaliza-
tion approaches on the results of genome-wide association tests per-
formed using the R package GAPIT (Lipka et al. 2012). Comparison
of genome-wide association test results performed with the BLUPs
and normalized/transformed phenotypic values gave similar results
in terms of the significance and number of detected marker-trait
associations.

Genome wide association mapping was performed using analysis
routines implemented in GAPIT (Lipka et al. 2012). The method
SUPER (Settlement Under Progressively Exclusive Relationship) was
applied for marker-trait association analyses (Wang et al. 2014a). The
method was shown to retain the computational efficiency of the FaST-
LMM model (Lippert et al. 2011) and significantly increased power
(Wang et al. 2014a). The LD threshold in the SUPERmethod was set to
0.1 (Wang et al. 2014a). The first three principal components inferred
using GAPIT were used to control for population structure. Marker-
trait association was performed for each location. SNP markers that
showed significant association in at least two environments were
reported.

Genomic prediction
The predictive ability (PA) of BayesB and reproducing kernel Hilbert
space (RKHS) models was used to compare between using SNP gen-
otyped by the 90K iSelect array and GBS (SNP set 1) and SNP set 1 plus
imputed SNP (SNP set 2) to predict stripe rust resistance in WWAM
panel. The imputed SNP included in set 2 were those that had trait-
marker association p-values # 0.05 for infection type to stripe rust.
Genotypes were converted to numeric data (0,1 and 2) using a custom
R script called AlleleDosage (Nyine et al. 2018), where 0 is homozygous
major allele, 2 is homozygous minor allele and 1 is the heterozygous
state of the alleles at a SNP locus. The script removes monomorphic
SNP and loci where the minor and major allele cannot be designated.

The population was randomized and divided into five groups
(k = 5) during cross validation. Three independent runs of BayesB
and RKHS models were performed resulting in 15 cross validations
per trait. The average PA plus the standard error of the mean were
calculated for each trait. The effect of increasing SNP markers by
imputation on prediction was reported as percent gain. This was
calculated as the difference between PA of SNP set 2 and SNP set
1 divided by PA of SNP set 1 and the result multiplied by 100. All
models were implemented in the R package BGLR (Pérez and de los
Campos 2014) with 10000 iterations, 5000 burnin and 10 thin as
Markov chain Monte Carlo parameters.

Data availability
Sets of markers for imputation using the 62 accessions reference panel
are available from the wheat HapMap project page http://wheatgenom-
ics.plantpath.ksu.edu/hapmap/. Sequence data are deposited to NCBI
SRA: PRJNA312508.

The Perl scripts used in handling the data and some example data to
test-run the scripts can be accessed fromGitHubwebsite: https://github.

com/wheatgenomics/haplotypeV1_imputation or wheat HapMap proj-
ect page http://wheatgenomics.plantpath.ksu.edu/hapmap/.

The updated version of SNP for the 62 accessions reference panel
based on the new Chinese Spring reference can be access from the
website: http://wheatgenomics.plantpath.ksu.edu/hapmap/.

Figure S1 is the workflow for SNP imputation in wheat. File S1.txt
contains SNP HapMap used in genome-wide association and genomic
prediction. Table S1 contains a summary of GBS data generated for the
winter wheat diversity panel. Table S2 shows the phenotypes collected
for stripe rust resistance. Table S3 contains the pair-wise Pearson’s
correlation coefficient for stripe rust resistance phenotypic values. Table
S4 contains the significant marker-trait associations obtained in the
GWAS of resistance to wheat stripe rust. Table S5 shows the overlap
of identifiedGWAS signals with SNP previously shown to be associated
with resistance to wheat stripe rust. Table S6 shows the association of
the Ventriup marker with stripe rust resistance. Table S7 contains a list
of SNP significantly associated with stripe rust resistance and showing
high LD (r2 . 0.5) with the Ventriup marker. Supplemental material
available at Figshare: https://doi.org/10.25387/g3.7294766.

RESULTS

Population genotyping
High-density genotype data for theWWAMpanel were obtained using
the 90K SNP iSelect array (Wang et al. 2014b) and the GBS approach
(Saintenac, Jiang, et al. 2013). A total of 23,562 polymorphic SNP was
identified using the 90K array (File S1). More than 736 million quality-
filtered reads were generated for the WWAM panel accessions (Table
S1). After quality trimming and filtering, 87% of reads (. 640 million
reads) could be assigned to individual accessions using barcode se-
quences (Table S1). On average, about 2.4million reads with an average
length of 82 bp were generated for each accession. Using the previously
described alignment strategy (Jordan et al. 2015), 640,582,951 reads
(87%) were aligned to the CSS reference with 372,351,242 reads
(51%) aligning uniquely. Multi-sample variant calling in the GBS data-
set using the GATK pipeline (McKenna et al. 2010) generated about
9.4million raw variants. After filtering for sites with amaximumof 50%
missing data, we obtained 27,732 SNP.

Genotype imputation using the wheat exome capture
variation data
Resultsof sporadic imputationofmissinggenotypedata for theWWAM
panel using both the 90K and GBS SNP are summarized in Figure 1A
and 1B. While the accuracy of imputation was strongly influenced by
the proportion of missing genotypes in the datasets, a high accuracy
. 95% was achieved even at the sites with up to 70%missing data. The
value of GP $ 0.8 applied in our study as the lower cutoff value for
imputed genotypes in the GBS dataset resulted in . 98% accuracy
and , 30% of missing data (Figure 1A).

The total number of imputed ungenotyped SNP for the WWAM
population (after filtering with a genotype probability threshold of 0.8,
MAF. 0.03 and proportion of missing data per site less than 50%) was
98,962 for the 90K SNP iSelect set, 27,732 for the GBS set and 114,981
for the combined set (Figure 1C). Only 14,083 imputed markers over-
lapped among all three datasets suggesting that a relatively small frac-
tion of IBD segments could be predicted consistently using markers
from either the 90K SNP iSelect array or the GBS datasets. By combin-
ing both GBS and 90K SNP it was possible to impute 114,981 genotypes
out of which 75% overlapped with those predicted using the 90K SNP
iSelect array and 20.1% overlapped with those predicted using GBS. To
increase the utility of reference diversity panel for genotype imputation
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we have developed scripts (http://wheatgenomics.plantpath.ksu.edu/
hapmap/) that can help to impute SNP from the reference panel using
algorithms implemented in Beagle v4.0 (see Materials andMethods for
detailed description).

Genome-wide association mapping using imputed
SNP markers
Overall, phenotypic data collected for resistance to stripe rust showed
good correlation across different locations and years with the mean
Pearson’s correlation coefficient of 0.47 (Figure 2) (Table S3). Broad
sense heritability estimates for infection type and severity were 0.76 and
0.77, respectively, consistent with the previous estimates obtained for a
diverse panel of wheat landraces (Maccaferri et al. 2015).

Resistance to stripe rust measured at the seedling stage showed
correlationwiththeadultplantresistancemeasuredas infection typeand
severity with correlation coefficients ranging from 0.28 to 0.52
(p-value , 0.05) with the average of 0.39. One exception was the low
correlation (r2 = 0.07) observed between seedling resistance (GH_
2010_Yr_SD) and adult plant resistance phenotypes collected during
the second round of scoring in year 2011 season at Rossville, KS (ROS_
2011_YR_IT).

A total of 146,198 markers (File S1) including both directly geno-
typed and imputed SNP were tested for association with adult and
seedling stage resistance to stripe rust. Neighboring SNP showing
significantmarker-trait associations at FDR, 0.05were grouped based
on LD (r2. 0.3) to estimate the total number of unique loci controlling
trait variation in the population. Only those marker-trait associations
that were consistent in two different experiments were included into the
subsequent analyses. For each region the single most statistically sig-
nificant SNPwas chosen. Comparison of GWAS signals obtained using
genotyped and imputed SNP showed that an increase inmarker density
achieved through imputation can significantly improve the resolution
and power of the association tests (Figure 3). The fraction of imputed
markers showing significant GWAS signals increased with the decrease
of the FDR cutoff value (Pearson’s product moment correlation -0.71,
p-value = 0.006) suggesting that the substantial number of imputed
SNP are more strongly associated with a trait than directly genotyped
SNP.

A total of 17 genomic regions distributed across 13 wheat chromo-
somes showed significant association with infection type in at least two
environments at FDR# 0.05 (Table S4). Five genomic regions on five
different wheat chromosomes showed significant association with se-
verity of infection in at least two environments. A total of 12 genomic
loci located on 8 chromosomes were associated with disease resistance
at the seedling stage. Four genomic regions located on chromosomes
1BL, 2DL, 3B, and 7BL showed marker-trait associations with both
severity and infection type suggesting that the same genetic loci may
control both traits. Only three genomic regions located on chromo-
somes 3B, 5AL and 7BL associated with resistance at the seedling stage
were associated with severity and infection type at the adult stage
suggesting that the majority of identified disease resistance loci confer
resistance at the adult stage.

Genomic regionsdetected for resistance to stripe rustwerecompared
with marker-trait associations mapped in other GWAS. Significant
genomic intervals were defined based on the LD blocks around the
most strongly associated alleles (Figure 3 and Table S4) and were tested
for overlap with previously mapped stripe rust resistance loci. We used
the 90K consensus genetic map (Wang et al. 2014b) to define intervals
harboring GWAS signals considering that LD in the HRWW popula-
tion decays to r2 = 0.3, approximately to half of its initial value, at about
2 cM (Chao et al. 2010). Out of the 34 genomic intervals, ten overlapped
with regions known to harbor SNP contributing to adult and seedling
stage resistance to wheat pathogens (Table S5). Among the most sig-
nificantly associated SNP in each genomic interval, 24 (71%) were
imputed SNP. In addition, the Ventriup marker linked with the Yr17
stripe rust resistance gene was used in marker-trait association analysis.
The Yr17 gene is located on chromosome 2AS and was present in
cultivar Jagger, one of the historic cultivars from Kansas broadly used
in the breeding programs across the U.S. Great Plains. As expected, the
Ventriup marker was significantly associated (FDR , 0.1) with infec-
tion type and severity at the adult stage and resistance at the seedling
stage (Table S6). The Ventriup marker showed high LD (r2. 0.5) with
three SNP significantly associated with stripe rust resistance (Table S7).
The genotypes of the two of these markers were imputed.

The number of alleles showing a significant positive effect on
resistance to stripe rust in at least two experiments with FDR # 0.05
was estimated for each line in the population. The proportion of pos-
itive alleles among SNP associated with infection type was correlated
with resistance to stripe rust (Pearson’s product-moment correlation =
-0.42, p-value # 3.3 · 10210) and these explained about 17.2% of the
total phenotypic variance. Similarly, severity level showed strong neg-
ative correlation (Pearson’s product-moment correlation = -0.50,
p-value # 3.3 · 10214) with the number of positive alleles and
explained 17.8% of phenotypic variance. These results suggest that de-
tected loci act additively to confer resistance to stripe rust.

Genomic prediction of stripe rust resistance traits
The total number of SNP in File S1 converted to numeric data using the
AlleleDosage function was 145,605 out of which 114,808 were imputed
SNP. The slight reduction in the number of SNP was due to removal of
loci where the minor and major alleles could not be determined.
Including all imputed SNP in set 2 did not show improvement in
prediction accuracy of stripe rust resistance as compared to including
only imputed SNP that had a p-value# 0.05 as informedbyGWAS.We
hypothesized that majority of the imputed SNP were not linked to QTL
controlling stripe rust resistance and their minor allele frequency varied
greatly causing background noise given the diverse nature of the
WWAM panel. The selected imputed SNP were distributed across all
chromosomes of the CSS reference. The number of SNP in set 1 and set

Figure 2 Boxplots of phenotypic data collected for stripe rust re-
sistance for the WWAM panel.
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2 was 30,797 and 38,123, respectively. The phenotype data used for
genomic prediction included mean and BLUP values of cultivars for
infection type and severity. For seedling resistance, original observa-
tions were used because it was measured once in the green house.
Predictions based on BLUPs were slightly better than those based on
the mean values of infection type and severity. The gain in prediction
accuracy of both BayesB and RKHSmodels using SNP set 2 was. 50%
for infection type and severity relative to using SNP set 1 (Table 1). This
significant gain in PAwas attributed to the imputed SNP that increased
the number of markers in the data set that were associated with the
traits. Addition of imputed SNP to SNP set 1 did not improve the
prediction of seedling resistance with both models suggesting that
the SNP important for this trait were already present in set 1. BayesB
and RKHS models performed equally well with predictions ranging
from 0.331 to 0.582. Generally, these results suggest that imputation
of missing SNP sites using the reference panel SNP has the potential to
improve prediction accuracy but the increase depends on the trait
architecture and the population under study.

DISCUSSION
The power of IBD detection and the ability to accurately impute
genotypes is influenced by the length of underlying IBD segments,
the genotyping method utilized, and the method used for IBD analysis
(Browning and Browning 2012). In experimental crosses or breeding
populations based on a limited number of founders, significant length
of IBD segments and their high population frequency allows for IBD
detection using relatively modest marker density. In diverse popula-
tions, including distantly related lines separated by a large number of
meiotic recombination events, the short length of IBD segments re-
quires high marker density for their effective detection. In this study we

have demonstrated that accurate genotype imputation using the
re-sequenced reference panel of 62 wheat lines (Jordan et al. 2015) is
feasible in a target population of wheat cultivars genotyped using the
90K SNP array orGBS. The imputation approach presented here can be
applied to any wheat population previously genotyped using the 90K
SNP iSelect array or GBS method. Our results showed that under a
given imputation scenario the 90K SNP array dataset resulted in a
higher fraction of imputed SNP than the GBS dataset. It is possible
that the higher incidence of missing data in the GBS dataset and errors
in mapping short reads to the complex wheat genome might have
resulted in capturing a lower proportion of haplotype blocks in the
WWAMpanel compared to that captured by the 90K SNP iSelect array.
Combining both GBS and 90K SNP resulted in a significant increase in
the number of imputed genotypes, which increased the proportion of
accurately predicted IBD segments. Improvements in the quality of the
wheat genome reference sequence and increase in the accuracy of ge-
notype calling from GBS data due to improvements in algorithms and
increase in the depth of sequencing are expected to increase in the
accuracy of IBD prediction and imputation. Further improvements
can likely be achieved by using different imputations algorithms
(Whalen et al. 2017, Shi et al. 2017) or, for cases when large reference
panels are available, by applying reference selection algorithms that
were shown to improve the accuracy of imputation (Shi et al. 2017).

The utility of genotype imputation using the reference panel of
62wheat lines was further validated by performing associationmapping
and genomic prediction of stripe rust resistance in the winter wheat
cultivars from theU.S.Great Plains.While the significant fraction (30%)
of identified marker-trait associations overlapped with the previously
mapped resistance loci (Fang et al. 2011; Basnet et al. 2014; Zegeye et al.
2014; Zurn et al. 2014; Daetwyler et al. 2014; Maccaferri et al. 2015), the

Figure 3 Significance of marker-trait associations using
genotyped (blue) and imputed (red) SNP. Pair-wise LD
(r2) between SNP is shown below each chromosomal
region.

n Table 1 BayesB and RKHS prediction of stripe rust resistance for WWAM panel using SNP markers genotyped using 90K iSelect array,
GBS and selected imputed markers with p-value £ 0.05 as informed by GWAS results

BayesB model RKHS model

Traits SNP set 1 SNP set 2 % gain SNP set 1 SNP set 2 % gain

IT_mean 0.341 (0.019) 0.561 (0.023) 64.5 0.331 (0.020) 0.556 (0.023) 68.0
IT_BLUP 0.385 (0.021) 0.582 (0.021) 51.2 0.362 (0.020) 0.576 (0.021) 59.1
SV_Mean 0.348 (0.014) 0.532 (0.016) 52.9 0.343 (0.014) 0.534 (0.014) 55.7
SV_BLUP 0.350 (0.015) 0.542 (0.017) 54.9 0.350 (0.015) 0.540 (0.016) 54.3
SD 0.532 (0.013) 0.532 (0.017) 0.0 0.530 (0.015) 0.532 (0.017) 0.4

IT is infection type, SV is severity, SD is seedling resistance, SNP set 1 = 90K and GBS, SNP set 2 = 90K, GBS and imputed, % gain = 100�((SNP set 2 – SNP set 1)/ SNP
set 1), values in parentheses are standard errors.
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population of cultivars from the Great Plains appears to carry previ-
ously unreported associations. Genotype imputation increased the
number of markers available for GWAS of stripe rust resistance evi-
denced by a substantial number of significantly associated imputed
SNP identified. The newly detected associations with the imputed
SNP were in strong LD with the 90K array SNP and often showed
more significant trait association than the SNP directly genotyped using
the 90K SNP array. Stronger associations of imputed markers with a
trait have been previously shown in human and Arabidopsis mapping
projects (Abecasis et al. 2010; Cao et al. 2011). A more complete as-
certainment of SNP in the regions linked with a trait increases the
probability of detecting variants located on the same haplotype as the
causal SNP, which improves the power and precision of association
mapping studies.

Similarly, improvement in the prediction accuracy of infection type
and severity of stripe rust was attributed to increased number of SNP
imputed in the WWAM panel. Crossa et al. (2014) demonstrated the
effect of increasing the number of SNP markers on the prediction
accuracy of grain yield. However, several factors have been shown to
affect the prediction accuracy of the models including genetic related-
ness between the training and testing population, population size and
genetic architecture of the trait (Bassi et al. 2016; Spindel et al. 2015;
Wientjes et al. 2015). Our results suggest that selection of imputed
markers based on their relative association with the trait reduced the
noise of non-associated imputed markers leading to a great improve-
ment in prediction accuracy of infection type and severity. Zhang et al.
(2014) reported an improvement in whole genome prediction accuracy
of complex traits by incorporating and giving markers weights that
were associated with QTL based on previous GWAS results for the
traits in dairy cattle and rice. However, they noted that the improve-
ment in accuracy was dependent on the trait architecture. It was dem-
onstrated in rice that for each trait there is a threshold on the number of
markers required to achieve the highest prediction accuracy beyond
which no gain is achieved by addingmoremarkers (Spindel et al. 2015).
Seedling resistance to stripe rust is known to be a monogenic trait
(Aktar-Uz-Zaman et al. 2017). This could probably explain why there
was no improvement in prediction accuracy by increasing the number
of SNP in set 2. Infection type and severity are associated with adult
plant resistance, which is polygenic in nature (Aktar-Uz-Zaman et al.
2017) hence, imputed SNP increased the chances of capturing most of
the QTL linked to these traits. Indeed, BayesB model that accounts for
additive genetic effect showed a slightly better prediction for the in-
fection type and severity than seedling resistance as compared to RKHS
model, which accounts for non-additive genetic effects (Pérez and de
los Campos 2014).

Herewe have demonstrated that by transferring genetic information
from a densely genotyped reference panel of 62 wheat lines, we can
significantly improve the efficiency of GWAS and genomic prediction.
While the reference panel represents haplotypes not directly related to
the U.S. winter wheat cultivars, it appears that both reference and target
populations still share a significant fractionof chromosomal regions that
are IBD. This observation is consistent with previous studies that
demonstrated the low levels of genetic differentiation between global
spring and winter wheat populations, and between populations of
cultivars and landraces (Chao et al. 2010; Cavanagh et al. 2013). How-
ever, the lack of haplotypes representing the genetic diversity of U.S.
winter wheat resulted in imputation of a smaller number of SNP in this
study compared to that imputed in the population of spring wheat
landraces (Jordan et al. 2015). As suggested in a study based on the
analysis of 1000 human genomes (Howie et al. 2011), inclusion of
additional reference haplotypes capturing the diversity of local

populations is needed to significantly increase the number of accurately
imputed SNP.

The reference panel of diverse wheat lines genotyped by exome
capture re-sequencing represents a valuable resource for wheat
genetics and breeding studies by providing a platform that allows
transferring genomic variation data across multiple populations to
increase the power and precision of trait mapping. Genomic pre-
diction informedby results ofGWASgreatly increased the prediction
accuracy of traits. The value of this resourcemay be further improved
by increasing the number of re-sequenced lines selected to capture
the haplotypic variation of global wheat populations. In the future,
this expanded reference panel would allow for the strategic selection
of re-sequenced lines for imputation based on the relevance to the
population of interest.
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