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A B S T R A C T   

A subset of patients with severe COVID-19 develop profound inflammation and multi-organ dysfunction 
consistent with a “Cytokine Storm Syndrome” (CSS). In this review we compare the clinical features, diagnosis, 
and pathogenesis of COVID-CSS with other hematological CSS, namely secondary hemophagocytic lymphohis-
tiocytosis (sHLH), idiopathic multicentric Castleman disease (iMCD), and CAR-T cell therapy associated Cytokine 
Release Syndrome (CRS). Novel therapeutics targeting cytokines or inhibiting cell signaling pathways have now 
become the mainstay of treatment in these CSS. We review the evidence for cytokine blockade and attenuation in 
these known CSS as well as the emerging literature and clinical trials pertaining to COVID-CSS. Established 
markers of inflammation as well as cytokine levels are compared and contrasted between these four entities in 
order to establish a foundation for future diagnostic criteria of COVID-CSS.   

1. Introduction 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has 
infected over 4 million people worldwide, resulting in a pandemic 
responsible for over 278,000 deaths as of May 11, 2020 [1,2]. The 
severity of coronavirus disease of 2019 (COVID-19) ranges from 
asymptomatic infection to critical illness, with up to one third of hos-
pitalized patients requiring mechanical ventilation in an intensive care 
unit (ICU) [3–6]. Fatality rates vary between demographic groups, with 
old age and certain comorbidities (hypertension, obesity, diabetes) 
associated with higher risk. 

In a subset of patients with severe COVID-19, rapid progression of 
pulmonary infiltrates and multi-organ failure coincides with dramatic 
increases in inflammatory cytokines and other biochemical markers of 
inflammation, consistent with a COVID-19 associated cytokine storm 
syndrome (COVID-CSS) [7–11]. The high mortality rate associated with 
COVID-CSS has led to the off-label use of targeted anti-cytokine 

therapies aimed at blocking the inflammatory cascade and improving 
patient outcomes. Clinical trials are being conducted to assess the safety 
and efficacy of cytokine blockade in COVID-19. Currently there are no 
standard therapies for COVID-19 or COVID-CSS, and recent National 
Institutes of Health (NIH) guidelines have recommended against use of 
investigational agents outside of clinical trials [12]. On May 1, 2020 the 
United States Food and Drug Administration (FDA) have granted 
Emergency Use Authorization for the anti-viral drug remdesivir based 
on the as-yet unpublished results of a National Institute of Allergy and 
Infectious Diseases (NIAID) sponsored randomized control trial that 
demonstrated reduced recovery time compared to placebo [13]. How 
this drug my influence cytokine storm and how the NIAID trial compares 
to a prior study that found no benefit of the drug are currently not known 
[14]. 

COVID-CSS has brought renewed attention to cytokine storm syn-
drome as a general concept [15]. In 1993, (perhaps influenced by the 
military operation “Desert Storm”) the term “cytokine storm” was 
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coined to describe the hypercytokinemia seen in graft-versus-host dis-
ease (GVHD) [16,17]. CSS has since been associated with viral infections 
(eg. Influenza, severe acute respiratory syndrome/SARS), autoimmune 
diseases (eg. systemic lupus erythematosus/SLE, systemic juvenile 
idiopathic arthritis/JIA), hematologic conditions (hemophagocytic 
lymphohistiocytosis/HLH) and medications [18–20]. Examples of the 
latter include the phase I clinical trial of TGN1412, an anti-CD28 
monoclonal antibody that caused severe cytokine storm in healthy 
volunteers, and the cytokine release syndrome (CRS) following chimeric 
antigen receptor (CAR)-T cell therapy [21,22]. The wide heterogeneity 
of conditions that have been placed under this umbrella term underscore 
the need to better understand the pathophysiology and treatment of 
diseases characterized by hypercytokinemia. Recently, CSS has been 
defined as a condition of dysregulation and perpetuated activation of 
lymphocytes and macrophages resulting in secretion of large quantities 
of cytokines leading to overwhelming systemic inflammation and multi- 
organ failure with high mortality [20]. 

Understanding the hypercytokinemia and immune dysregulation 
associated with COVID-19 is urgent. Some have proposed that COVID-19 
is actually a hypo-inflammatory vasculopathy rather than a cytokine 
storm. This hypothesis is based on one study reporting relatively low 
interleukin-6 (IL-6) levels (mean 25 pg/mL, normal range < 7) measured 
on admission to hospital in one Chinese study [23]. However, cytokine 
storm is generally thought to develop later in the course of this disease, 
and emerging data from our center and others indicates that patients 
with COVID-CSS have a degree of hypercytokinemia (i.e. IL-6 levels 100 
to 5000 pg/mL) comparable to conditions such as CAR-T cell CRS. The 
overlap in clinical and biochemical features between COVID-CSS and 
cytokine storm syndromes associated with other conditions may allow 
for insight into the underlying pathologic immune dysregulation in 
COVID-CSS and inform strategies for therapeutic intervention. In this 
review, we summarize the clinical features, pathologic mechanisms, 
standard and investigational therapies for CSS in three well-defined 
hematological cytokine storm syndromes: secondary hemophagocytic 
lymphohistiocytosis (sHLH), idiopathic multicentic Castleman disease 
(iMCD), CAR-T cell CRS, in order to compare and contrast them with 
COVID-CSS. 

2. Clinical features and diagnosis 

2.1. Secondary HLH 

HLH is a hyperinflammatory syndrome of fever, cytopenias, and 
multi-organ dysfunction caused by uncontrolled immune activation and 

excessive cytokine production [24]. Primary HLH is typically a pediatric 
condition driven by germline mutations impairing granule-mediated 
cytotoxicity in natural killer and cytotoxic T cells [25]. The secondary 
HLH syndromes observed in adults are most often driven by infection 
(commonly viral such as Epstein-Barr virus [EBV], Cytomegalovirus 
[CMV], or Human Immunodeficiency Virus [HIV]); malignancy (lym-
phomas), primary rheumatologic conditions (termed Macrophage Acti-
vation Syndrome-HLH subtype, MAS-HLH), or medications (immune 
checkpoint inhibitors, lamotrigine) [24]. The HLH-2004 diagnostic 
criteria (Table 1) developed for the pediatric population are recom-
mended to guide diagnosis in adults, and include soluble interleukin-2 
receptor, a marker of T cell activation, as a cytokine-related diagnostic 
criterion [24,26,27]. The HLH-2004 criteria may be restrictive in iden-
tifying all patients that may benefit from immunomodulation. The 
HScore was developed specifically for secondary, and especially malig-
nancy associated, HLH in adults, but unfortunately does not include any 
cytokine-related criteria [28]. Initially named for the hemophagocytosis 
seen on tissue biopsy; hemophagocytosis in bone marrow aspirate is a 
common but non-specific feature in adults [29,30]. Clinical and labo-
ratory features include fevers (often described as “hectic” in that they 
may exceed 40 ◦C), organomegaly, cytopenias, coagulopathy, and pro-
found hyperferritinemia often >10,000 μg/L; which often rapidly 
worsen despite initial empiric anti-microbial therapy resulting in even-
tual multisystem organ failure [24,31]. Mortality remains high in adults, 
around 70% despite therapy; though patients with MAS-HLH driven by 
rheumatologic diseases have better prognosis with less aggressive 
immunosuppression than other secondary HLH syndromes [24,29]. 

2.2. Idiopathic MCD 

Castleman disease (CD) describes a group of syndromes with shared 
clinical hyperinflammation and histopathological features [32]. Diag-
nosis requires lymph node biopsy with characteristic histopathology, as 
defined by consensus guidelines, residing on a spectrum of histologic 
patterns from regressed germinal centers and prominent vascularization 
to hyperplastic germinal centers with prominent plasmacytosis [32,33]. 
Idiopathic MCD is characterized by dysregulation of IL-6 mediated 
inflammation. Typically occurring in the 5th and 6th decade of life, 
patients present with lymphadenopathy in more than one lymph node 
station, constitutional symptoms, fluid accumulation, and cytopenias 
[32,33]. Liver or kidney dysfunction as well as the presence of secondary 
autoimmune phenomenon are also common [32,34]. The profound 
inflammation of the disease is reflected by a frequently observed poly-
clonal hypergammaglobulinemia in the iMCD-not otherwise specified 

Table 1 
Comparison of clinical characteristics.  

HLH [24,29,31,114] Post CAR-T cell therapy [36,38,40–42] iMCD [33,34,115] COVID-CSS [116]  

CRS ICANS   

Fever 
Hepatosplenomegaly 
Hepatobiliary dysfunction 
Coagulopathy 
Neurologic symptoms 

Headache 
Cognitive changes 
Focal neurologic deficits 
Seizure 

Associated conditions and triggers 
Infection [commonly EBV, CMV] 
Malignancy [commonly lymphoma] 
Rheumatologic disease 
Immunodeficiency 
Medications [such as checkpoint inhibitors and lamotrigine] 

Fever 
Malaise 
Anorexia 
Myalgias 
Tachycardia 
Widened pulse pressure 
Hypotension 
Hypoxia 
Capillary leak syndrome 
Renal impairment 
Hepatic failure 
DIC 

Headache 
Encephalopathy 
Dysphasia/aphasia 
Delirium 
Tremor 
Seizures 

Fever 
Weight loss 
Night sweats 
Lymphadenopathy 
Hepatosplenomegaly 
Anasarca 

Pleural effusion 
Ascites 
Peripheral Edema 

Renal impairment 
Peripheral neuropathy 
Cherry angiomata 
Violaceous papules 

Fever 
Hypotension 
Hypoxia 
ARDS 
Cardiomyopathy 
Multi-organ dysfunction 
Thrombosis 

HLH – Hemophagocytic lymphohistiocytosis; CAR-T cell – chimeric antigen receptor T cell; CRS – cytokine release syndrome; ICANS - Immune effector cell-associated 
neurotoxicity syndrome; iMCD – idiopathic multicentric Castleman disease; COVID-CSS – coronavirus disease of 2019 associated cytokine storm syndrome; EBV – 
Epstein-Barr virus; CMV – cytomegalovirus; ARDS – acute respiratory distress syndrome. 
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(iMCD-NOS) subgroup [35]. A subset of patients demonstrate a more 
aggressive clinical course with thrombocytopenia, ascites, reticulin 
fibrosis, renal dysfunction, and organomegaly (TAFRO) and do not 
exhibit the same hypergammaglobulinemia seen with iMCD-NOS 
[32,35]. 

2.3. CAR-T cell therapy CRS 

The engineering of CAR T-cells to bind tumour-specific epitopes and 
elicit cell-mediated death of malignant cells has been a major leap for-
ward in cancer therapy. First implemented in relapsed and refractory B- 
cell lymphoid malignancies, CD19 CAR-T cell therapy has demonstrated 
response rates of 50–90% in CD19+ B-cell acute lymphoblastic leukemia 
and non-Hodgkin lymphoma [36]. The activation of CAR-T cells after an 
encounter with target cells leads to release of granzyme and perforin, 
proliferation of the CAR-T cell population, and a supraphysiologic in-
crease in cytokines such as IL-6 and interferon-γ. This cytokine release 
syndrome (CRS) may occur in up to 70% of patients depending on 
conditioning therapy and cell construct, with ICU admission rates up to 
13% [36–38]. CRS is grade 1–2 in the majority of patients but may be 
severe in 12–47% of patients [37]. CRS typically presents within the first 
6 days following CAR-T cell infusion with fever as the defining feature 
followed by hypotension, tachycardia, hypoalbuminemia with capillary 
leak and weight gain, and consumptive coagulopathy [36,38]. Immune 
effector cell associated neurotoxicity syndrome (ICANS) with a varied 
symptom profile (Table 1) may also be observed with later onset: during 
an episode of CRS or shortly after its resolution [36,38–40]. ICANS can 
also occur in patients who did not develop CRS and this observation in 
addition to the separate timeline of development has resulted in the 
separation of ICANS from CRS in the consensus grading system as a 
distinct toxicity [39,41,42]. CRS may be observed after other tumour- 
directed immune therapies, including the bi-specific T-cell engager 
drug, blinatumumab [37]. 

2.4. COVID-CSS 

For most people who contract COVID-19, the clinical course is mild 
(and often asymptomatic) with the majority of those able to be recover 
from the disease at home. Individuals who require hospitalization most 
commonly present with fever, cough, fatigue, and dyspnea [7–9,43]. 
Routine laboratory investigations on admission demonstrate lympho-
penia, elevated D-Dimer, and elevated CRP. Chest imaging demonstrates 
bilateral patchy shadows or ground glass opacities [7–9,43]. Twelve to 
31% of patients admitted to hospital will eventually develop severe 
hypoxemic respiratory failure and require critical care support 
[5,6,9,43]. Severe COVID-19 disease, as per WHO-China working group 
definition, includes the following: respiratory frequency ≥ 30/min, 
blood oxygen saturation ≤ 93%, PaO2/FiO2 ratio < 300, and/or lung 
infiltrates >50% of the lung field within 24–48 h [44]. Critical disease is 
defined as severe COVID-19 with any of the following: respiratory fail-
ure, septic shock, and/or multiple organ dysfunction/failure [44]. While 
multi-organ failure is frequently reported in this population, marked 
organomegaly has not been reported. One of the emerging facets of se-
vere COVID-19 is the association with a hypercoagulable state. D-dimer 
elevation was recognized early on in the pandemic to be an important 
prognostic marker for predicting severe disease and mortality [43]. Klok 
et al. have reported a 31% incidence of thrombotic complications in 
COVID patients admitted to the ICU including demonstration of venous 
thromboembolism (VTE) in 27% of patients [45]. Increased thrombotic 
risk is seen with many inflammatory states and reflects overlap in the 
regulation inflammation and thrombosis [46]. The profound activation 
of thrombotic pathways may be a unique feature to COVID-19 compared 
to other CSS, but remains to be confirmed in further studies. 

In the pediatric population affected with COVID-19 there have been 
emerging reports of a hyperinflammatory shock syndrome, sharing 
features with an atypical Kawasaki disease. Initial symptoms of fever, 

conjunctivitis, rash, and gastrointestinal symptoms progress to shock 
requiring vasopressor support, fluid accumulation, and cardiac injury 
[47]. The delayed-onset and profound rise in inflammatory markers 
suggest a secondary pathologic immune response that may share fea-
tures with adult COVID-CSS but further study is needed to confirm these 
observations. 

There is no consensus definition of COVID-CSS, and it is prudent to 
recognize that not all patients with severe or critical COVID-19 infection 
develop dysregulated immune response and toxic cytokine secretion 
[11]. The working definition of COVID-CSS at our institution used for 
consideration of adjunct immunomodulatory therapy is: critical COVID- 
19 with evidence of derangement of multiple inflammatory markers 
including ferritin >1000 μg/L and CRP > 100 mg/L although we are 
presently analyzing other clinical and laboratory parameters and im-
mune biomarkers such as IL-1 and IL-6 to produce a more nuanced 
definition. 

3. Pathophysiology 

The recent consensus recommendations for the management of adult 
HLH state that: “Primary and secondary HLH, including MAS-HLH, are 
hyperferritinemic hyperinflammatory syndromes with a common ter-
minal pathway but with different pathogenetic roots” [24]. This concept 
of a common terminal pathway resulting from diverse pathophysiolog-
ical mechanisms can reasonably be extended to other cytokine storm 
syndromes including COVID-CSS. Marked elevation in inflammatory 
cytokines such as IL-1 and IL-6, and chemokines associated with a Th1 
response, such as IP-10 and MCP-3, were reported in a subset of COVID 
patients, affirming the notion of a cytokine storm in this disease [48]. 
The marked elevation in IL-6 bears some resemblance to hyper-IL-6 
syndromes such as CAR-T cell CRS and Castleman disease, and the 
hyperferritinemia and coagulopathy parallels sHLH [49]. Similarities 
and differences between the pathophysiology of COVID-CSS and these 
hematological cytokine storm syndromes are outlined below. 

3.1. Secondary HLH 

As the adult secondary HLH disorders result from many different 
etiologies and triggers, an in-depth understanding of pathophysiology is 
lacking. Inferring from studies of the genetic defects in primary HLH 
patients, the HLH syndrome results from the dysregulation and unre-
strained activation of macrophages, cytotoxic T-cells and NK cells 
leading to the observed end-organ damage [24,25,31,50]. The inability 
to resolve certain infections and subsequent uncontrolled immune 
activation may explain the amplified inflammatory response in sHLH 
from viral, bacterial, and fungal infections. Aberrant, autonomous 
cytokine production from malignant cells of the immune system may 
develop into the HLH observed in lymphomas [24,25,31]. Secondary 
HLH can complicate auto-inflammatory conditions (SLE, Stills disease, 
etc) with the inappropriate response to self-antigen driving continuous 
activation of T-cells and macrophages [24,51]. The observed responses 
to IFN-γ antibody therapy suggests this may be a key factor perpetuating 
the pathologic feedback loop of inflammation; but murine models of 
primary HLH have implicated both IFN- γ dependant and independent 
pathways [52–54]. 

3.2. Idiopathic MCD 

The pathogenesis of iMCD is less well understood than when the 
syndrome is driven by human herpesvirus 8 (HHV-8) or POEMS. 
Increased IL-6 is seen in the majority of patients and the response to IL-6 
targeted therapy has implicated dysregulation of this pathway as the 
main driver of disease [32]. Elevated Vascular endothelial growth factor 
(VEGF) levels and dysregulated mammalian target of rapamycin 
(mTOR) signaling are also observed in some patients [32,55]. The cause 
of the elevated IL-6 levels and inappropriate inflammatory activation is 
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not known. Associations of iMCD and autoimmune and malignant con-
ditions may point to shared pathophysiology, while as-yet-undiscovered 
infectious triggers have also been hypothesized. 

3.3. CAR-T cell therapy CRS 

The development and severity of CRS correlates with CAR-T cell 
expansion, but preclinical mouse studies have also shown monocyte and 
macrophage production of IL-1 and IL-6 to be the major drivers of the 
inflammatory response [38,56–58]. Subsequent endothelial activation 
results in microvascular permeability and the clinical features of capil-
lary leak, hypotension, and reduced serum albumin levels [38]. Autopsy 
evidence also suggests activated endothelial cells produce additional IL- 
6 reinforcing the pathologic inflammatory feedback loop [59]. Eventual 
blood-brain barrier disruption as a result of increased IL-6 levels and 
endothelial activation is thought to contribute to severe ICANS [37]. 

3.4. COVID-CSS 

Our understanding of COVID-CSS is rapidly evolving, with early 
clinical, biochemical, and autopsy observations supplemented by more 
thorough preclinical studies of the closely related SARS-CoV, respon-
sible for the 2003 SARS outbreak. Mouse models of SARS-CoV suggest 
that delayed type I interferon signaling promotes accumulation of 
pathogenic inflammatory macrophages leading to hypercytokinemia, 
vascular leakage, and impaired T cell responses [60]. Deleting the IFN- 
gamma receptor or depleting macrophages protected mice from lethal 
infection without affecting viral load, supporting that the inflammatory 
response may contribute more to severe disease pathology than direct 
viral effects [60]. In a subset of patients with COVID-19, disease severity 
seems to correlate with inflammatory markers commonly implicated in 
other cytokine storm disorders including IL-2R, IL-6, IL-10, and TNF 
cytokines [7,8,10]. In patients with COVID-CSS, development of sepsis, 
need for intubation, and ARDS, are accompanied by worsening inflam-
matory markers and are observed between 7 and 14 days after illness 

onset consistent with clinical deterioration due to inflammatory 
sequelae [43]. An autopsy series from 6 patients who died from COVID- 
19 demonstrated IL-6 production by virus-infected macrophages present 
in lymph nodes and spleen tissue, suggesting that viral-infection leading 
to macrophage production of IL-6 was the initial trigger for inflamma-
tory dysregulation [61]. 

4. Treatment of cytokine storm syndromes 

Established and investigational therapies for sHLH, iMCD, CAR-T 
CRS are summarized by condition in Tables 2-4. Potential therapies 
and ongoing clinical trials for COVID-CSS are summarized in Table 5. 

4.1. Corticosteroids (with or without chemotherapy) 

Corticosteroids have been the cornerstone in managing hyper- 
inflammatory disorders due to their broad effects leading to reduced 
inflammatory mediators and immune cell activity. Used alone or in 
combination with cytotoxic therapies, responses are frequent but often 
short-lived and associated with significant long-term toxicity. The HLH- 
94 protocol combines upfront dexamethasone with etoposide for its 
specific reduction of T cell activity and cytokine production [62,63]. 
Cyclosporine may be introduced after 8 weeks, or after 1 week as per the 
HLH-2004 protocol, though it is often poorly tolerated in adult patients 
[24,26]. Despite the demonstrated efficacy in pediatric HLH syndromes, 
adults treated with the HLH-94 protocol and its variations demonstrate 
poor long-term survival around 30% [24]. Relapses in secondary HLH 
occur frequently either despite standard therapy or as therapy intensity 
is tapered; mortality related to infectious or other complications of 
prolonged immunosuppression is also common. 

In iMCD, corticosteroids are frequently used as adjunct therapy for 
disease flares, though only half of patients will demonstrate improve-
ment with corticosteroids [32]. As high dose corticosteroid therapy is 
poorly tolerated in the long term, a number of lymphoma-like chemo-
therapy options have be used to treat patients with iMCD [32]. Steroid- 

Table 2 
Summary of therapies for secondary hemophagocytic lymphohistiocytosis.  

Medication Mechanism of action Approved indications Dose regimen Notable toxicities Evidence 

Etoposide 
[26,62] 

Inhibits DNA synthesis by 
inhibiting topoisomerase 
II 

1. Refractory testicular tumors 
2. Small cell lung cancer 

150 mg/m2 twice weekly for 
2 weeks, then 150 mg/m2 

once weekly for 6 weeks 

Myelosuppression 
Hypersensitivity 
reactions 
Secondary 
malignancies 

Prospective trial (N = 249) using 
HLH-94 protocol found a 5 year 
probability of survival of 54% ±
6% 

Dexamethasone 
[26,62] 

Inhibits inflammatory 
cells and suppresses 
expression of 
inflammatory mediators 

1. Multiple allergic, hematologic 
dermatologic, neoplastic, 
rheumatic, autoimmune, nervous 
system, renal, and respiratory 
conditions. 
2. Adrenal insufficiency 
3. Cerebral edema 

10 mg/m2 for 2 weeks, then 
5 mg/m2 for 2 weeks, 2.5 
mg/m2 for 2 weeks, 1.25 mg/ 
m2 for one week, and one 
week of tapering 

Immunosuppression 
Metabolic changes 
Hypertension 
Mood alteration  

Prospective trial (N = 369) using 
HLH-2004 protocol found a 5 
year probability of survival of 
61% (95% CI, 56% - 67%) 

Cyclosporinea 

[26,62] 
Inhibits calcineurin 
mediated lymphocyte 
activation 

1. Solid organ transplant rejection 
prophylaxis 
2. Rheumatoid arthritis 
3. Psoriasis 

3 mg/kg BID daily, adjusted 
for target serum trough level 
of 200 μg/L 

Hypertension 
Renal failure 
Drug-drug 
interactions  

Emapalumab 
[69] 

Monoclonal antibody 
directed against IFN-γ 

1. Primary HLH; refractory, 
recurrent or progressive disease 
or intolerance to conventional 
HLH therapy 

1 mg/kg every 3 to 4 days; 
for 8 weeks; can be increased 
up to 10 mg/kg 

Immunosuppression 
Infusion reactions 

Overall response rate of 64.7% 
(95% CI, 46% -80%; P = .0031) 
and 12-month survival of 69% 
(95% CI, 50% - 82%) in Phase I/II 
trial (N = 34) 

Ruxolitinib 
[99–102] 

Inhibits the JAK/STAT 
pathway decreasing 
cytokine signaling and 
inflammation 

1. Myelofibrosis 
2. Polycythemia vera 
3. Acute graft versus host disease 

5 to 20 mg BID Myelosuppression 
Immunosuppression 

Two-month overall survival of 
100% (95% CI, 57% - 100%) in 
pilot study 5 adult patients with 
secondary HLH 

Anakinra 
[91–93,117] 

Il-1 receptor antagonist 1. Rheumatoid arthritis SubQ: 100 mg once daily Immunosuppression 
Injection site 
reaction 
Leukopenia 
Eosinophilia 

Case reports/series [91,93,117] 
Cohort of pediatric MAS [92]  

a Cyclosporine initiated at Week 9 in HLH-94 protocol and at Week 1 in HLH-2004 protocol. 
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containing immunomodulatory regimens with thalidomide, cyclophos-
phamide and prednisone has also shown promising efficacy and safety 
[64]. 

The use of corticosteroids in the management of CRS following CAR- 
T cells is limited by the concern of unwanted cytotoxic effects on the 
CAR-T product reducing overall efficacy. However, given its effective-
ness for rapidly reducing the systemic inflammatory burden in this 
population, corticosteroids are still used second-line after directed anti- 
cytokine therapy [36,37]. Steroids are particularly useful as first line 
therapy in the treatment of ICANS, with CNS penetrating steroids such 
as dexamethasone preferred. 

Corticosteroids were used frequently in the management of COVID- 

19 in the early days of the pandemic in China, with reported use in 
30–79% of patients [4,7–9,43,65]. The indication for therapy is not 
widely reported and may be due to comorbid conditions (COPD, asthma) 
or as adjunct therapy for sepsis. Analysis has suggested improved out-
comes in patients with ARDS treated with steroids though this has not 
been conclusive and ideal timing and patient selection are not known 
[9,43,66]. Animal models and some human data of the closely related 
SARS-CoV infection have demonstrated early corticosteroid use may 
reduce initial inflammatory response, but raise the concern of increased 
viral replication and shedding that could worsen clinical outcomes and 
increase viral transmission [67,68]. 

Table 3 
Summary of therapies for CAR-T cell cytokine release syndrome.  

Medication Mechanism of action Approved indications Dose regimen Notable toxicities Evidence 

Corticosteroids 
[36,37,98] 

Inhibits inflammatory 
cells and suppresses 
expression of 
inflammatory 
mediators 

1. Multiple allergic, 
hematologic dermatologic, 
neoplastic, rheumatic, 
autoimmune, nervous system, 
renal, and respiratory 
conditions. 

Grade 3 CRS: 
Methylprednisolone 1 mg/kg 
BID or dexamethasone 10 mg 
every 6 h 
Grade 4 CRS: 
methylprednisolone 1 g/day 
× 3 days, followed by a rapid 
taper 
Alternative: 
methlyprednisolone 2 mg/kg 
x 1 dose then 2 mg/kg/day 
divided 4 times a day3 

Immunosuppression 
Metabolic changes 
Hypertension 
Mood alteration 

Consensus over dose and regimen is 
debated 
Considered second line therapy after 
tocilizumab given potential effect on 
persistence and efficacy of CAR-T cells 

Tocilizumab 
[22][36][37] 

Monoclonal antibody 
against IL-6 receptor 

1. Rheumatoid arthritis 
2. Giant cell arteritis 
3. Polyarticular juvenile 
idiopathic arthritis 
4. Systemic juvenile idiopathic 
arthritis 
5. Severe or life-threatening 
CAR-T induced cytokine release 
syndrome 

Grade 2–4 CRS: 
8 mg/kg x 1 dose 
Repeat 8 mg/kg dose within 
3–5 days if lack of 
improvement 

Immunosuppression 
Hepatoxicity 
Bowel perforation 
Demyelinating 
disorders 

69% (95% CI, 53% - 82%) of patients 
responded to 1–2 doses within 14 
days, with median time to response of 
4 days in retrospective analysis of 
CTL019 and KTE-C19 on prospective 
clinical trials  

Table 4 
Summary of therapies for idiopathic Multicentric Castleman Disease.  

Medication Mechanism of action Approved indications Dose regimen Notable toxicities Evidence 

Siltuximaba Monoclonal antibody 
against IL-6 

1. HHV-8 negative/idiopathic 
multicentric Castleman disease 

11 mg/kg every 
3 weeks 

Infusion reactions 
Hyperkalemia 
Hyeruricemia 
URTI 
Edema 
Weight gain 
Rash 
Bowel perforation 

Randomized, placebo controlled trial (N = 79) 
found durable tumour and symptomatic response 
with siltuximab compared to placebo (34% vs 0%; 
p = .0012) [71] 
Extension study of ongoing responders (N = 19) 
found 100% sustained disease control at 61 
months 

Tocilizumaba Monoclonal antibody 
against IL-6 receptor 

1. Rheumatoid arthritis 
2. Giant cell arteritis 
3. Polyarticular juvenile idiopathic 
arthritis 
4. Systemic juvenile idiopathic 
arthritis 
5. Severe or life-threatening CAR-T 
induced cytokine release syndrome 

8 mg/kg every 2 
weeks 

Immunosuppression 
Hepatoxicity 
Bowel perforation 
Demyelinating 
disorders 

Multicenter, open-label, single-arm trial (N = 28) 
found sustained improvement in symptoms and 
biochemical abnormalities associated with MCD 
over 1 year [72] 

Rituximabb 

[32] 
Monoclonal antibody 
against CD20 antigen 
on B-lymphocytes 

1. Non-Hodgkin’s Lymphoma 
2. Chronic Lymphocytic Leukemia 
3. Rheumatoid arthritis 
4. Granulomatosis with polyangiitis 
5. Microscopic polyangiitis 

375 mg/m2 

weekly for 4 
weeks 

Infusion reactions 
Neutropenia 
Hepatitis B 
reactivation 
PML 

Better evidence for use in HHV8 positive MCD. In 
25 cases of iMCD, CR and PR rates with rituximab 
as first-line therapy were 20% and 48%, 
respectively, with a lower PFS compared to 
siltuximab [118] 

Sirolimus mTOR inhibitor 1. Post-transplant rejection 
prophylaxis 
2. Lymphangioleiomyomatosis. 

7.5 mg/m2 

loading dose 
2.5 mg/m2/day 
maintenance 

Immunosuppression 
Edema 
Hypertension 
Cytopenias 
dyslipidemia 

Case reports [32,103]  

Clinical trial in TAFRO subtype ongoing 
(NCT03933904) 

UTRI – upper respiratory tract infection, PML – progressive multifocal leukoencephalopathy, HHV-8 – human herpesvirus-8, CR – complete response, PR – partial 
response, PFS – progression free survival. 

a May be used in conjunction with corticosteroids. 
b May be used in monotherapy or in conjunction with chemotherapy/corticosteroids. 
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Table 5 
Potential therapies for COVID cytokine storm syndrome.  

Intervention Published data in 
COVID-19 as of April 
20, 2020 

NIH treatment 
guidelines 

Select registered 
trials 

Corticosteroids Case series and 
retrospective cohort 
studies found 
possible improved 
outcomes in ARDS 
[9,43]; but there 
remains concern for 
prolonged viral 
shedding [67] 

For Critically Ill 
Patients with 
COVID-19:    

• The Panel 
recommends 
against the 
routine use of 
systemic 
corticosteroids 
for the 
treatment of 
mechanically 
ventilated 
patients with 
COVID-19 
without acute 
respiratory 
distress syn-
drome (ARDS) 
(AIII).  

• For 
mechanically 
ventilated 
patients with 
ARDS, there is 
insufficient 
evidence to 
recommend for 
or against the 
use of systemic 
corticosteroids 
(CI).  

• For adults with 
COVID-19 and 
refractory 
shock, the Panel 
recommends 
using low-dose 
corticosteroid 
therapy (i.e., 
shock reversal) 
over no cortico-
steroids (BII). 

NCT04345445, 
NCT04329650, 
NCT04344288, 
NCT04273321, 
NCT04327401, 
NCT04344730, 
NCT04325061, 
NCT04343729 

IL-6 Blockade 
Tocilizumab 
Sarilumab 
Siltuximab 

Case reports and case 
series report 
improvement in fever 
and inflammatory 
markers with 
possible 
improvement in 
cytokine storm and 
ARDS through 
inhibition of IL-6 
[74–80,86,119,120] 

There are 
insufficient clinical 
data to 
recommend either 
for or against the 
use of the 
following agents 
for the treatment 
of COVID-19 
(AIII):   

• Interleukin-6 
inhibitors (e.g., 
sarilumab, 
siltuximab, 
tocilizumab)  

• Interleukin-1 
inhibitors (e.g., 
anakinra) 

NCT04317092, 
NCT04345445, 
NCT04331795, 
NCT04332094, 
NCT04346355, 
NCT04335071, 
NCT04320615, 
NCT04339712, 
NCT04332913, 
NCT04333914, 
NCT04330638, 
NCT04322773, 
NCT04331808, 
NCT04321993, 
NCT04345289, 
NCT04324073, 
NCT04315298, 
NCT04341870, 
NCT04329650, 
NCT04322188, 
NCT04306705, 
NCT04327388 

IL-1 Inhibition 
Anakinra 

A retrospective 
cohort study of 29 
patients with COVID- 
19 and moderate-to- 
severe ARDS, and 

As above NCT04330638, 
NCT04324021, 
NCT04339712, 
NCT04341584  

Table 5 (continued ) 

Intervention Published data in 
COVID-19 as of April 
20, 2020 

NIH treatment 
guidelines 

Select registered 
trials 

hyperinflammation 
with clinical 
improvement in 72% 
of patients; improved 
survival compared to 
historical controls 
[94] 

TNF Inhibition None published 
Proposed that anti- 
TNF inhibition may 
reduce lung 
inflammation, 
reducing TNF-α and 
other inflammatory 
mediators in COVID- 
19 [121] 

No 
recommendation 

NCT04370236 

IFN-γ 
Inhibition 
Emapalumab 

None published No 
recommendation 

NCT04324021 

JAK Inhibition 
Baricitinib 
Ruxolitinib 
Tofacitinib 

Pilot study of 12 
patients has 
demonstrated 
improvement in 
fever, dyspnea, and 
hypoxia with an 
lower rate of ICU 
admission than 
historical control 
[106] 
Proposed to be 
effective against 
consequences of 
elevated cytokines 
observed in COVID- 
19 by inhibiting the 
JAK/STAT pathway 
and reducing 
downstream cytokine 
signaling [122] 
Baricitinib may 
inhibit viral entry 
into cells through 
blockade of AP2- 
associated protein 
kinase 1 (AAK1) 
[104] 

The Panel 
recommends 
against the use of 
Janus kinase (JAK) 
inhibitors (e.g., 
baricitinib) for the 
treatment of 
COVID-19, except 
in the context of a 
clinical trial (AIII). 

NCT04340232, 
NCT04346147, 
NCT04320277, 
NCT04321993, 
NCT04345289, 
NCT04334044, 
NCT04348071, 
NCT04338958, 
NCT04337359, 
NCT04331665, 
NCT04332042 

Complement 
inhibition 

Inhibition of 
complement activity 
to reduce 
inflammation and 
subsequent tissue 
injury. 

No 
recommendation 

NCT04382755 

LMWH Improves the 
coagulation 
dysfunction and 
exerts anti- 
inflammatory effects 
by reducing IL-6 and 
increasing 
lymphocyte 
percentage a 
retrospective cohort 
study [90] 

No 
recommendation 

NCT04344756, 
NCT04345848 

IVIG Case reports of 
clinical improvement 
when administered at 
the time of 
respiratory 
deterioration [123] 

No 
recommendation 

NCT04261426 

NIH – National Institutes of Health (https://www.covid19treatmentguidelines. 
nih.gov/MAS - accessed May 11, 2020), MAS – macrophage activation syn-
drome, LMWH - low molecular weight heparin, IVIG – intravenous immune 
globulin. 
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4.2. Cytokine targeted therapy 

4.2.1. Interferon- γ 
Improved mechanistic understanding of hyperinflammatory syn-

dromes has led to therapies targeting specific cytokines implicated in 
disease pathogenesis. Emapalumab is a monoclonal antibody targeting 
interferon-γ that has demonstrated efficacy with overall response rates 
over 60% in a study of pediatric HLH [69]. Based on this trial the US 
Food and Drug Administration (FDA) approved emapalumab for use in 
refractory, recurrent, or progressive primary HLH in both children and 
adults [22]. Though there is a concern of secondary infections, partic-
ularly from organisms responsive to IFN-gamma driven immune re-
actions, the medication has been well tolerated in the majority of 
patients including those with infectious complications prior to therapy 
[54,69,70]. Data are limited in the use of emapalumab for secondary 
HLH in adults. 

4.2.2. IL-6 
In iMCD the disease process is thought to be dependent on elevated 

IL-6 levels perpetuating the hyperinflammatory state in most patients; 
therefore, use of IL-6 targeted therapy is now the front-line management 
for patients with iMCD with or without adjunctive steroids. Siltuximab, 
a monoclonal antibody directed against IL-6, in a placebo controlled 
trial has shown reduction in tumour burden and symptomatic response 
in a third (34%) of patients with responders having sustained disease 
control up to 6 years of follow-up [71]. Tocilizumab, a monoclonal 
antibody directed against the IL-6 receptor, has demonstrated similar 
improvement in symptoms and biochemical markers of disease activity 
in a single arm study [72]. Anti-IL-6 therapy is well tolerated for many 
years in patients with disease response, though relapses may be common 
following cessation of therapy [32,72]. 

The early observation of a substantial increase in IL-6 during CRS 
prompted the introduction of anti-IL-6 agents for management of those 
receiving CAR-T therapy, with good effect [73]. Tocilizumab is now FDA 
approved for use in CRS with response rates of 70% following 1–2 doses 
with a median time to response of 4 days [22,37]. Doses can be repeated 
every 6 to 24 h until CRS symptoms begin to improve. As tocilizumab is 
only used in short courses for a limited period, there is less concern of 
serious adverse events that may be seen in patients taking the drug long- 
term for rheumatologic indications. Tocilizumab administration has 
been demonstrated to not affect CAR-T cell efficacy, and is thus the 
preferred first line agent over corticosteroids. Tocilizumab appears to be 
not as effective for ICANS, likely because it does not cross the blood- 
brain barrier and targets the IL-6 receptor with no direct IL-6 lowering 
effect, leading to elevated systemic IL-6 levels after therapy without CNS 
protection [38,40,72]. Direct targeting of IL-6 by siltuximab may have 
better CNS response, though this has not been studied in clinical trials. 

As IL-6 levels correlate with disease severity in hospitalized COVID- 
19 patients, anti-IL-6 therapy has been one of the first treatment stra-
tegies explored during the pandemic [7–10]. There have been several 
published case reports, as a well as two larger case series from China, 
using tocilizumab as a treatment for severe COVID-19 demonstrating 
biochemical efficacy with decrease markers of inflammation, but the 
impact of clinical outcomes such as time in intensive care and mortality 
compared to supportive care, remains unknown [74–79]. A recent large 
series of 100 consecutive patients with severe COVID-19 demonstrated 
clinical stability or improvement in 77% of patients following admin-
istration of tocilizumab [80]. A press release for CORIMUNO-TOCI 
(NCT04331808), a multi-centre, open-label randomized controlled 
trial of tocilizumab in moderate and severe COVID19 has suggested 
positive results and with the study currently under peer-review [81]. 
Optimal timing of tocilizumab initiation is unknown, but there is sound 
rationale that earlier treatment in patients demonstrating a pathologic 
inflammatory response may ameliorate immune-mediated lung injury. 
Repeated doses of tocilizumab, similar in strategy to its use in CAR-T cell 
related CRS, may be reasonable for patients with refractory COVID-CSS. 

Serious risks of tocilizumab in the short term include a small risk of 
bowel perforation, acute hepatic failure, and osteonecrosis of the jaw 
[82,83]. Case reports of hypertriglyceridemia and candidemia following 
tocilizumab infusion for COVID-19 have been reported [84,85]. There is 
a concern that the use of tocilizumab in COVID-19 could increase the 
risk of secondary infections and delay viral clearance, as was postulated 
in the report of 2 cases of viral myocarditis following tociluzumab for 
COVID-19 [86]. These safety concerns should be thoroughly evaluated 
in future studies. Clinical trials of tocilizumab, siltuximab, and sar-
ilumab (an IL-6 receptor blocker) are currently being conducted in pa-
tients with moderate and severe COVID-19 though trials specifically 
evaluating these agents in the COVID-CSS population are not yet 
planned. 

In addition to their well-known anticoagulant properties, heparins 
are known to have anti-inflammatory effects with lowering of IL-6 levels 
specifically described [87–89]. In patients with COVID-19, a retro-
spective study has observed reduction of IL-6 levels in patients treated 
with low-molecular weight heparin (LMWH) [90]. Given the maturing 
evidence of increased thrombotic risk in COVID-19, LMWH may be a 
good adjunct therapy for COVID-CSS to reduce both IL-6 driven 
inflammation and thrombotic risk. Optimal dosing strategies in patients 
without proven thromboembolic disease is not currently known but is 
being investigated in upcoming clinical trials (NCT04359277). 

4.2.3. IL-1 
IL-1-receptor blockade with anakinra has been used in case series 

and retrospective studies for HLH, with a clinical trial currently ongoing 
[91–93]. Anakinra has been hypothesized to have utility for CAR-T CRS 
and neurotoxicity based on the observation that IL-1 elevations precede 
IL-6 spike in murine CRS models and treatment with anakinra therapy 
resulted in reduction of both cytokines [56,58]. Anakinra has the added 
benefit of having a very short half-life compared to other anti-cytokine 
therapies. A retrospective cohort study of 29 patients with COVID-19 
and moderate-to-severe ARDS, and hyperinflammation (CRP ≥100 
mg/L, and/or ferritin ≥900 ng/mL) treated with high dose anakinra 
demonstrated clinical improvement in 72% of patients, and improved 
survival compared to historical controls [94]. 

4.2.4. TNF 
TNF inhibiting agents are available for the management of other 

inflammatory conditions, though at the time of this review no reports of 
TNF inhibition have been reported for COVID-19. The use of TNF in-
hibitors has some potential concern these drugs have also been thought 
to trigger sHLH in some case reports [95–97]. Clinical trials for TNF 
inhibition in COVID-19 are planned. 

4.3. Signaling pathway inhibition 

To implement cellular responses to cytokines, cell surface receptors 
must connect these external environmental signals to the nucleus to 
guide gene expression, cell proliferation, and activity. This “bottle-neck” 
of inflammatory communication through shared internal signaling mo-
lecular pathways has facilitated the creation of targeted therapies that 
inhibit multiple cytokine pathways simultaneously. Many cytokine and 
growth receptors signal through the Janus Kinase (JAK) signal trans-
ducer of activators of transcription (STAT) pathway; this has spurred the 
development of small molecular JAK inhibitors for the treatment of in-
flammatory and neoplastic conditions [98]. These agents may be ad-
vantageous for disease states in which broader inhibition of cytokine 
signaling is required to control inflammation compared to the targeted 
blockade of single cytokines. 

Ruxolitinib, a JAK1/2 inhibitor already approved for the therapy of 
myeloproliferative neoplasm and rheumatologic disorders, has activity 
in murine HLH models by reducing inflammation through IFN-γ 
dependant and independent pathways. This results in reduced activity 
and tissue infiltration of T-cells and neutrophils [52,53]. Case series in 
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relapsed/refractory HLH, as well as a single case of upfront therapy for 
moderate severity HLH, have described biochemical and clinical efficacy 
in treatment of HLH with ruxolitinib monotherapy [99–101]. Early 
phase clinical trials are ongoing, but preliminary results have demon-
strated biochemical, hematologic, and clinical recovery in the few pa-
tients enrolled thus far [102]. Importantly, the treatment is tolerated 
well with few adverse events reported, especially in contrast to standard 
regimens of prolonged chemotherapy combined with high dose steroids. 

Patients with the TAFRO subtype of iMCD will typically have a more 
aggressive course and most have no substantial response to IL-6 
blockade. Analysis of molecular signaling pathways active in iMCD pa-
tients refractory to anti-IL-6 agents has implicated downstream activa-
tion of the PI3K/Akt/mTOR pathway, common to signaling of the T cell 
receptor and VEGF pathways [103]. Use of the mTOR inhibitor sirolimus 
has met with early success in limited numbers of patients and a clinical 
trial in IL-6 blockade refractory TAFRO patients is underway 
[32,55,103]. Pre-clinical studies of cells obtained from patients with 
iMCD have also indicated that JAK inhibitors may be able to interrupt IL- 
6 driven mTOR pathway activation [55]. 

Currently there are limited reports of the use of JAK-STAT or other 
cell signaling pathway inhibitors in the management of COVID-CSS. The 
use of JAK inhibitors is attractive as the medications are well tolerated, 
have short half-lives, and have the potential to target numerous in-
flammatory cytokine signaling pathways simultaneously. While rux-
olitinib has been the agent most studied in HLH other JAK inhibitors 
may have potential advantages. Baricitinib, an oral JAK1/2 inhibitor 
that is currently approved for treatment of rheumatoid arthritis, was 
recently identified by artificial intelligence-based technology as a po-
tential immunomodulatory treatment strategy for SARS-CoV-2 [104]. At 
therapeutic doses baricitinib is predicted to inhibit clathrin-mediated 
endocytosis and viral entry into cells by blocking the AP2-associated 
protein kinase 1 (AAK1) [104]. AAK1 regulates endocytosis in 
numerous cell types expressing ACE2, the receptor that mediates SARS- 
CoV-2 viral entry, including lung AT2 alveolar epithelial cells [104]. 
Because any agent that dampens the inflammatory response could lead 
to a potential loss of immune-mediated viral control, the hypothesized 
anti-viral effect makes baricitinib an attractive investigational therapy 
over agents that target disordered inflammation alone. Of concern with 
baracitinib is the increased risk of thrombosis which may increase the 
rate of thrombotic complications already observed with COVID-19 
[105]. Clinical experience with COVID-19 is limited, but a pilot study 
of 12 patients has demonstrated improvement in fever, dyspnea, and 
hypoxia with a lower rate of ICU admission than a historical control 
cohort [106]. 

5. Inflammatory biomarkers and cytokines 

CSS are disorders driven and recognized by characteristic hyper-
cytokinemia, however availability of objective cytokine profiles is 
limited. Clinicians are forced to evaluate and base treatment decisions 
on clinical signs and symptoms of inflammation, and a few widely 
available markers of overall systemic inflammation. Utility of cytokine 
levels for diagnosis and monitoring of cytokine storm syndromes are not 
standardized and currently limited to research settings. Published values 
for inflammatory markers and cytokines observed in cytokine storm 
conditions are summarized in Table 6. Importantly, many of these assays 
are not routinely performed in hospital laboratories, and as such their 
clinical relevance remains to be determined by future studies that 
address both analytical and clinical validation of these markers. 

5.1. Inflammatory biomarkers 

Ferritin, the iron storage protein, and C-reactive protein (CRP) are 
the acute phase reactants most widely available at hospitals for moni-
toring systemic inflammation. Hyperferritinemia is the most common 
feature to prompt further evaluation for secondary HLH, with levels Ta
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>10,000 μg/L observed in 78.9% of adult patients and can frequently be 
in excess of 100,000 μg/L [27,107]. Patients with CRS also demonstrate 
elevated ferritin levels with most patients reaching a peak over 3000 and 
many in excess of 10,000 μg/L [38,57]. Patients experiencing higher 
grade CRS have greater median peak ferritin and CRP though with sig-
nificant overlap in the observed ranges [38,57]. Similarly, ferritin and 
CRP levels in patients with COVID-19 are reportedly higher in patients 
with severe compared to moderate disease, and in patients who died 
compared to those that recovered [7,8,10]. In our experience with 
COVID-CSS patients in the ICU we have observed ferritin levels in the 
range of 1000–10,000 μg/L with CRP levels typically above 100 mg/L 
(Hoiland R et al., manuscript under review). 

The measurement of D-dimer, a fibrin degradation product, is a 
widely available test that shows active clot formation and breakdown. 
Its increase in systemic inflammation reflects the overlap between the 
physiologic inflammatory and thrombotic pathways. Though not 
frequently used in the evaluation of the cytokine storm disorders, it has 
been correlated with severity of CRS following CAR-T [38]. D-dimer 
levels correlate with disease severity in COVID-19 and admission D- 
dimer >1 μg/mL has emerged as one of the earliest prognostic marker to 
identify patients with high mortality [43]. 

The pattern of inflammatory markers may be more useful than 
relying on absolute values alone in order to establish a diagnosis. In 
children with sJIA the ratio of ferritin to erythrocyte sedimentation rate 
(ESR) was useful for identifying patients with MAS [108]. In one study of 
Japanese HLH cases a ratio of sIL-2R to ferritin was predictive of those 
with lymphoma-associated rather than benign disease [109]. 

5.2. Cytokines 

The soluble interleukin-2 receptor (sIL2R) level is integrated into the 
HLH-2004 diagnostic criteria [26]. In adults with secondary HLH, levels 
>2400 U/mL demonstrate good sensitivity and specificity for diag-
nosing adult HLH with an area under the curve of 0.90 (95% confidence 
interval, 0.83–0.97) [107]. Soluble IL-2R levels have not been widely 
reported on in iMCD, but one study found elevated levels in 20 of 21 
cases [34]. Additionally it was observed that for patients on anti-IL-6 
therapy, sIL-2R was one of the earliest markers that predicted disease 
relapse and failure of therapy [34,110]. In CAR-T CRS it has been 
observed that sIL2R levels are markedly elevated in patients with severe 
compared to non-severe disease [57]. Patients with COVID-19 demon-
strate higher sIL2R levels in those with severe and fatal disease; though 
levels have thus far reported to be typically less than 2000 U/mL 
[7,8,10,111]. 

IL-6 is a key cytokine common to the pathophysiology of most CSS 
disorders and has important therapeutic implications. In HLH, data 
available in pediatric patients demonstrate moderate IL-6 elevation 
though it has not been useful in distinguishing HLH from sepsis or other 
inflammatory conditions [112]. Idiopathic MCD is conceptualized as a 
primarily a disorder of IL-6 elevation, though serum IL-6 levels in iMCD 
may be normal or only mildly elevated. Response rates to IL-6 blockade 
do correlate with baseline IL-6 levels in iMCD, but many patients with 
low IL-6 levels will improve with therapy while patients with high IL-6 
levels can show no response [32,71]. IL-6 levels peak with disease flares 
in iMCD and can be used to monitor disease course, but once IL-6 
blockade is initiated serial monitoring is not useful. Tocilizumab and 
sarilumab block the receptor for IL-6 leading to clinical improvement 
while serum IL-6 levels will remain stable or increase [72]. Similarly, IL- 
6 levels cannot be accurately interpreted for 12–18 months following the 
last dose of siltuximab. CAR-T CRS demonstrates substantial increases in 
IL-6 that correlates with severity of CRS and may be orders of magnitude 
greater the levels reported for iMCD, and HLH [38,71,112]. In COVID- 
19 IL-6 levels have been high for patients with more severe and fatal 
disease [7,8,10,111]. In our institutions experience with COVID-CSS 
observed levels of IL-6 have been in the range of ~100–5000 pg/mL 
(manuscript under review). 

Interferon-γ plays a central role in the pathogenesis of HLH, and 
elevated serum levels can help differentiate HLH from sepsis and other 
inflammatory disorders in children, but routine use for diagnosis in 
adults has not been studied [112,113]. Following emapalumab therapy, 
interferon-γ levels do not correlate with disease response, but down-
stream targets of interferon such as CXCL9 and CXCL10 appear to have 
utility in monitoring disease activity and treatment response [54,70]. 

Use of cytokine measurements in CSS to diagnose and monitor dis-
ease activity and response to therapy is an area in need of further 
refinement. Monitoring response to therapy requires in depth knowl-
edge of drug targets and expected impact on cytokine levels, laboratory 
testing, and downstream pathway activation. More data, research, and 
experience are needed in order to develop the clinical acumen in 
interpretation of patterns and profiles of these diseases. 

6. Conclusions and future directions 

COVID-CSS has many clinical and pathologic similarities with other 
cytokine storm disorders. Therapy for classic CSS conditions such as 
iMCD and secondary HLH has been hampered by low numbers of pa-
tients, lack of diagnostic clarity and incompletely understood patho-
physiology. Progress has been made with the introduction of targeted 
therapy aimed at interrupting the positive feedback loops of inflam-
matory pathways. The story of CRS following CAR-T cell therapy with 
comparatively rapid determination of pathophysiology and use of 
existing medications for treatment has been a recent success. Future 
goals for CSS include improved access to immunophenotyping and 
expression profiling to inform our understanding of disease mechanisms, 
and enhancing diagnostic and monitoring capabilities. 

Due to the lack of currently available evidence, the NIH guidelines 
for the management of COVID-19 do not recommend for or against 
cytokine inhibition with IL-1 and IL-6 blockade and specifically 
recommend against off-label use of JAK pathway inhibitors outside of 
clinical trial [12]. Current industry sponsored trials of sarilumab 
(NCT04327388) and tocilizumab (NCT04320615) in patients with 
severe-critical COVID-19 are underway. However, they exclude criti-
cally ill patients requiring vasopressors and therefore will not address 
the question of whether these agents will be of benefit in those who are 
critically unwell with evidence of CSS. Development of consensus defi-
nitions for COVID-CSS may lead to identification of patients most likely 
to benefit most from immune modulating therapy. We should use the 
lessons learned from hematologic cytokine storm syndromes to help 
expedite rapid identification, evaluation, and implementation of treat-
ments urgently needed for COVID-19 CSS. 

Practice points 

• A subset of patients with COVID-19 develop a syndrome character-
ized by organ dysfunction and marked elevation of inflammatory 
markers dubbed cytokine storm syndrome (CSS).  

• To date, there is no consensus definition of COVID-CSS. Fever, organ 
dysfunction, hypoalbuminemia, and capillary leak are common to 
COVID-19 and other cytokine storm syndromes such as sHLH, iMCD 
and CAR-T cell CRS. 

• COVID-19 appears to be a hypercoagulable state leading to micro-
vascular thrombosis, a feature distinct from other hypercytokinemia 
syndromes  

• Therapies targeting specific cytokines or common inflammatory 
signaling pathways have demonstrated benefit in HLH, iMCD, and 
CAR-T CRS and are well tolerated in those contexts. Their role in 
COVID-19 CSS is under active investigation. 

• A pragmatic definition of COVID-CSS will likely require a combina-
tion of clinical criteria (such as fever, hypotension, critical illness), 
widely available laboratory parameters (such as CRP, ferritin, D- 
dimer), as well as novel biomarkers (such as IL-1, IL-6, other cyto-
kines, and immunophenotyping). 
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Research agenda 

• Consensus definitions of CSS in general and COVID- CSS in partic-
ular, with particular attention to the relationship with COVID related 
coagulopathy and vasculopathy  

• Rapid, coordinated investigations of potentially beneficial agents 
targeting inflammatory pathways in COVID-19 CSS with methodo-
logically rigorous clinical trials  

• Measurement of biomarkers in CSS including traditional laboratory 
parameters as well as genetic studies, cytokine profiles and 
lymphocyte immunophenotyping at presentation and through the 
course of disease 
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