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Abstract

We propose novel estimators for the parameters of an exponential distribution and a normal

distribution when the only known information is a sample of sample maxima; i.e., the known

information consists of a sample of m values, each of which is the maximum of a sample of

n independent random variables drawn from the underlying exponential or normal distribu-

tion. We analyze the accuracy and precision of the estimators using extreme value theory,

as well as through simulations of the sampling distributions. For the exponential distribution,

the estimator of the mean is unbiased and its variance decreases as either m or n increases.

Likewise, for the normal distribution, we show that the estimator of the mean has negligible

bias and the estimator of the variance is unbiased. While the variance of the estimators for

the normal distribution decreases as m, the number of sample maxima, increases, the vari-

ance increases as n, the sample size over which the maximum is computed, increases. We

apply our method to estimate the mean length of pollen tubes in the flowering plant Arabi-

dopsis thaliana, where the known biological information fits our context of a sample of sam-

ple maxima.

1 Introduction

Consider the scenario where one has obtained data where each observation is the maximum

value of n independent, identically distributed random variables drawn from either an exponen-

tial distribution or a normal distribution with unknown parameters. That is, Xij�
iid ExpðbÞ or

Xij�
iid Nðm; s2Þ for i = 1, . . ., n and known data is drawn from Yj ¼ maxfXijg

n
i¼1

for j = 1, . . ., m.

Here we present a process to estimate the mean β of the underlying exponential distribution or

the mean μ and variance σ2 of the underlying normal distribution from only the set of Yj’s.

Much previous research has been conducted in the field of extreme value theory on the dis-

tribution of the maximum from a sample of n independent, identically distributed random

variables. In particular, the Fisher-Tippett-Gnedenko theorem states that the distribution of

the sample maximum, after proper rescaling, can only converge to one of three types of distri-

butions: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution [1].

When the original underlying distribution is exponential or normal, the limiting distribution

of the rescaled sample maximum is the Gumbel distribution. Extreme value theory has been
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applied in many applications, such as estimating the probability of an extreme flood, severe

adverse side effect of a drug, maximum environmental load on a structure, or large insurance

loss [2]. In these applications, the underlying distribution and its parameters are typically

known and the focus is on estimating the probability distribution of the sample maximum.

The focus of our scenario is novel in that we are using a known sample of sample maxima to

estimate unknown parameters of the underlying distribution.

Standard techniques for estimating unknown parameters, such as method of moments or

maximum likelihood estimation, typically assume that the known information consists of a

sample of observations drawn directly from the underlying population distribution. However,

in our scenario under consideration, the direct observations are unknown. Rather, we only

know the maximum value of each sample of direct observations. The estimators we propose

in the following sections are the first, to our knowledge, for estimating unknown population

parameters when the only known information is a sample of sample maxima.

2 Estimator for exponential distribution

We begin by considering the case where the underlying distribution is exponential with

unknown mean β. In Theorem 1 below, we propose an estimator for β and compute its

expected value and variance.

Theorem 1. Let Xij�
iid ExpðbÞ for i = 1, . . ., n and Yj ¼ maxfXijg

n
i¼1

for j = 1, . . ., m. Set

b̂ ¼
�Y

Hn
¼

1

mHn

Xm

j¼1

Yj: ð1Þ

Then

Eðb̂Þ ¼ b; varðb̂Þ ¼
b

2Gn

mH2
n

ð2Þ

where

Hn ¼
Xn

i¼1

1

i
; Gn ¼

Xn

i¼1

1

i2
:

Proof. From the formula for b̂ given in Eq (1), it directly follows that

Eðb̂Þ ¼
EðYjÞ

Hn
; varðb̂Þ ¼

varðYjÞ

mH2
n

:

Hence, it only remains to compute the expected value and variance of the maximum of a

single sample of n independent Exp(β) random variables. Let X(i) denote the ith smallest obser-

vation from such a sample. Then Yj = X(n) can be decomposed as the following telescoping

sum:

Yj ¼ XðnÞ ¼ Xð1Þ þ ðXð2Þ � Xð1ÞÞ þ � � � þ ðXðnÞ � Xðn� 1ÞÞ:

Due to the memoryless property of the exponential distribution, X(2) − X(1) is independent

of X(1). Moreover, while X(1) is the minimum of n independent Exp(β) random variables,

X(2) − X(1) can be viewed as the minimum of a sample of n − 1 independent Exp(β) random

variables. Likewise, all of the terms in the telescoping sum for Yj = X(n) are independent with

X(i+1) − X(i) equal in distribution to the minimum of a sample of n − i independent Exp(β)
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random variables, which in turn is equal in distribution to Exp(β/(n − i)). Thus,

EðYjÞ ¼ EðXðnÞÞ ¼
b

n
þ

b

n � 1
þ � � � þ

b

2
þ b ¼ b

Xn

i¼1

1

i
¼ bHn

and

varðYjÞ ¼ varðXðnÞÞ ¼
b

2

n2
þ

b
2

ðn � 1Þ
2
þ � � � þ

b
2

22
þ b

2
¼ b

2
Xn

i¼1

1

i2
¼ b

2Gn:

Substituting these expressions for E(Yj) and var(Yj) into the equations for the expected

value and variance of b̂ produces the formulas given in Eq (2).

As a consequence of Theorem 1, we have shown that b̂ is an unbiased estimator for β and

that its variance decreases at a rate proportional to 1

m. Since Gn !
p2

6
and Hn!1 at rate log n

as n!1, the variance of b̂ decreases at a rate proportional to 1

ðlognÞ2
. Thus, the precision of the

estimator b̂ can be improved more rapidly by increasing m, the number of sample maxima,

compared to increasing n, the sample size over which the maximum is computed.

3 Estimators for normal distribution

We now consider the case where the underlying distribution is normal with unknown mean μ
and unknown variance σ2. In Theorem 2 below, we propose estimators for μ and σ2 and ana-

lyze their expected value, while in Theorem 3 we analyze the variance of the estimators.

Theorem 2. Let Xij�
iid Nðm; s2Þ for i = 1, . . ., n and Yj ¼ maxfXijg

n
i¼1

for j = 1, . . ., m. Let �Y
and S2

Y denote the sample mean and sample variance, respectively, of the Yj’s. Set

m̂ ¼ �Y �
kn
ffiffiffifficn
p SY ; ŝ2 ¼

S2
Y

cn
ð3Þ

where kn denotes the mean and cn denotes the variance of the maximum of n independent, iden-
tically distributed N(0, 1) random variables. Then Eðŝ2Þ ¼ s2, while Eðm̂Þ > m with Eðm̂Þ ! m

as m!1.

Proof. The cumulative distribution function of Yj is given by

FYj
ðyÞ ¼ PðYj � yÞ ¼ ½PðXij � yÞ�n

¼ P
Xij � m

s
�

y � m
s

� �� �n

¼ F
y � m
s

� �h in
:

Differentiating, the probability density function of Yj is

fYj
ðyÞ ¼ n F

y � m
s

� �h in� 1

�
y � m
s

� � 1

s
;

where F(z) denotes the cumulative distribution function and ϕ(z) denotes the probability den-

sity function of a N(0, 1) random variable. The expected value of Yj can then be calculated as

EðYjÞ ¼

Z 1

� 1

yfYj
ðyÞdy ¼

Z 1

� 1

yn F
y � m
s

� �h in� 1

�
y � m
s

� � 1

s
dy

¼ mþ s

Z 1

� 1

zn½FðzÞ�n� 1
�ðzÞdz ¼ mþ skn:
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We also obtain that the variance of Yj is

varðYjÞ ¼

Z 1

� 1

ðy � EðYjÞÞ
2fYj
ðyÞdy

¼

Z 1

� 1

ðy � m � sknÞ
2n F

y � m
s

� �h in� 1

�
y � m
s

� � 1

s
dy

¼ s2

Z 1

� 1

ðz � knÞ
2n½FðzÞ�n� 1

�ðzÞdz ¼ s2cn:

We can now use the equations for E(Yj) and var(Yj) to compute the expected value of the

estimators. In particular, the expected value of the estimator of the variance is

Eðŝ2Þ ¼
EðS2

YÞ

cn
¼

varðYjÞ

cn
¼
s2cn

cn
¼ s2;

while the estimator of the mean is

Eðm̂Þ ¼ EðYjÞ �
kn
ffiffiffifficn
p EðSYÞ > ðmþ sknÞ �

kn
ffiffiffifficn
p ðs

ffiffiffiffi
cn
p
Þ ¼ m:

Although Jensen’s inequality implies that m̂ has positive bias since

EðSYÞ <
ffiffiffiffiffiffiffiffiffiffiffi
EðS2

YÞ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYjÞ

q
, the bias of the sample standard deviation goes to zero as

the sample size increases. Hence, Eðm̂Þ ! m as m!1.

Note that the constants kn and cn that appear in the formulas for the estimators depend

upon only the sample size n. Exact integral expressions exist for kn and cn and are given in the

proof of Theorem 2, but the integrals cannot be evaluated in closed form. However, the con-

stants can be approximated either analytically or numerically.

In [3], Cramér showed that bn(Z(n) − bn) converges in distribution to the standard Gumbel

distribution, where Z(n) is the maximum of a sample of n independent, identically distributed

N(0, 1) random variables and

bn ¼ ð2 lognÞ
1
2 �

1

2
log ð4p lognÞ

ð2 lognÞ
1
2

:

Since the standard Gumbel distribution has mean equal to γ� 0.5772, the Euler-Mascher-

oni constant, and variance equal to p2

6
, we can use these values to approximate

kn �
g

bn
þ bn; cn �

p2

6b2
n

: ð4Þ

Fig 1 displays the values of the analytic approximations for kn and cn given in Eq (4) for n
ranging from 10 to 100,000, along with corresponding numerical approximations, plotted on a

semi-log scale. The numerical approximations for kn and cn were computed from 10,000 reali-

zations of a simulation of the maximum.

While Theorem 2 showed that m̂ is positively biased with the bias approaching zero as

m!1, the estimation bias is fairly minimal even for relatively small values of m. Fig 2 dis-

plays the sampling distributions of the estimators for μ and σ2 for varying values of m and n. In

all the simulations, the sampling distribution of m̂ is fairly centered around the true value of

μ = 0. Setting the true value of μ to a nonzero value simply shifts the sampling distribution

of m̂ and has no effect on ŝ2. We also observe from Fig 2 that the variability of the sampling

distributions of the estimators decreases as m, the number of sample maxima, increases, but
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increases as n, the sample size over which the maximum is computed, increases. We derive an

analytical justification for this behavior in Theorem 3 below.

Theorem 3. Let Xij�
iid Nðm; s2Þ for i = 1, . . ., n and Yj ¼ maxfXijg

n
i¼1

for j = 1, . . ., m. Let �Y
and S2

Y denote the sample mean and sample variance, respectively, of the Yj’s. Set

m̂ ¼ �Y �
kn
ffiffiffifficn
p SY ; ŝ2 ¼

S2
Y

cn

where kn denotes the mean and cn denotes the variance of the maximum of n independent, iden-
tically distributed N(0, 1) random variables. Then

varðŝ2Þ ¼ s4 2

m � 1
þ
k

m

� �

and

varðm̂Þ �
s2cn

m
þ
s2k2

n

4

2

m � 1
þ
k

m

� �

�
s2kn

ffiffiffifficn
p

g1

m

where γ1 is the skewness and κ is the excess kurtosis of the distribution of Yj.

Proof. The variance of S2
Y can be computed as

varðS2

YÞ ¼ ðvarðYjÞÞ
2 2

m � 1
þ
k

m

� �

;

Fig 1. From the top curve to the bottom, the plot displays the values of the analytic approximation for kn (solid)

and the numerical approximation for kn (dashed), along with the analytic approximation for cn (dotted) and the

numerical approximation for cn (dot-dashed).

https://doi.org/10.1371/journal.pone.0215529.g001
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where κ is the excess kurtosis of the distribution of Yj [4]. Since we computed that var(Yj) =

σ2cn in Theorem 2, we obtain the desired result

varðŝ2Þ ¼ var
S2

Y

cn

� �

¼ s4 2

m � 1
þ
k

m

� �

for the variance of the variance estimator. Now for the variance of the mean estimator, we

Fig 2. Estimates of μ̂ (top) and σ̂ 2 (bottom) from 100 realizations with n, m = 10, 100, and 1000. The horizontal

lines indicate the true values of μ and σ2.

https://doi.org/10.1371/journal.pone.0215529.g002
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compute that

varðm̂Þ ¼ var �Y �
kn
ffiffiffifficn
p SY

� �

¼ varð�Y Þ þ
k2

n

cn
varðSYÞ � 2

kn
ffiffiffifficn
p covð�Y ; SYÞ:

To simplify the above expression, we use the fact that varð�Y Þ ¼ varðYjÞ

m , along with the

approximations

varðSYÞ �
varðS2

YÞ

4varðYjÞ
; covð�Y ; SYÞ �

covð�Y ; S2
YÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYjÞ

q ¼
varðYjÞg1

2m
;

where γ1 is the skewness of the distribution of Yj [5]. Using these approximations, we obtain

the desired result

varðm̂Þ �
s2cn

m
þ
s2k2

n

4

2

m � 1
þ
k

m

� �

�
s2kn

ffiffiffifficn
p

g1

m

for the variance of the mean estimator.

As n increases, the value of κ increases monotonically from 0, the excess kurtosis of the nor-

mal distribution, to 12/5, the excess kurtosis of the Gumbel distribution [1]. Thus, from Theo-

rem 3, we observe that the variance of the sampling distribution of ŝ2 increases proportionally

to σ4 as σ increases and decreases proportionally to 1/m as m increases, but only slightly

increases as n increases.

As with the excess kurtosis, the skewness of the distribution of Yj increases monotonically

from the value for the normal distribution, i.e., γ1 = 0, to the value for the standard Gumbel

distribution, i.e., γ1� 1.13955, as n increases [6]. Since the constant cn decreases towards 0

while the constant kn increases towards infinity, the dominant term in the variance of m̂

increases proportionally to k2
n as n increases. We also observe from Theorem 3 that the

variance of the sampling distribution of m̂ increases proportionally to σ2 as σ increases and

decreases proportionally to 1/m as m increases. These relationships explain the behavior of the

sampling distributions displayed in Fig 2.

4 Biological application

During fertilization in flowering plants, once pollen land on the stigma, the pollen will grow

tubes that travel down through a transmitting tract from the stigma toward an ovule. Pollen

compete against each other in a race towards the limited number of ovules to determine which

pollen will father the seeds. The mean length of the population of pollen tubes at various time

points is of interest to plant biologists, yet, to date, there are only measures of the lengths of the

longest pollen tubes in such competitions [7]. Since the pollen tube lengths must have a positive

value, it is reasonable to assume that the lengths follow an exponential distribution. Hence, our

method described in Section 2 will allow the mean pollen tube length to be estimated given the

structure of the experimental data.

In [7], Swanson et al. measured the longest pollen tube lengths at four time points for two

accessions (i.e., specific geographical populations) of Arabidopsis thaliana in a laboratory set-

ting. For both the Columbia and Landsberg accessions, either m = 8 or m = 9 individual plants

were used for each time point. The average number of pollen tubes within each plant was

n = 933 for the Columbia accession and n = 727 for the Landsberg accession. Table 1 reports

the sample mean of the longest pollen tube from the m plants for each accession after 3, 6, 9,

and 24 hours. Using these sample means of the longest lengths and Eq (2) from Theorem 1, we

Using the sample maximum to estimate the parameters of the underlying distribution
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Table 1. The sample mean, �y , of the longest pollen tube from m plants, where each plant contained an average of n
pollen tubes, along with the corresponding estimated mean pollen length, β̂, and its standard error, for two acces-

sions of Arabidopsis thaliana at varying time points.

Accession time (hrs) m �y (mm) β̂ (mm) SEβ̂ (mm)

Columbia

(n = 933)

3 9 0.690 0.093 0.005

6 8 1.069 0.144 0.009

9 9 2.538 0.342 0.020

24 9 2.778 0.375 0.022

Landsberg

(n = 727)

3 9 0.474 0.066 0.004

6 8 0.676 0.094 0.006

9 8 1.795 0.251 0.016

24 9 2.325 0.324 0.019

https://doi.org/10.1371/journal.pone.0215529.t001

Fig 3. Q-Q plots of the distribution of the maximum pollen tube length from laboratory experiments versus the

distribution of the maximum from an exponential distribution.

https://doi.org/10.1371/journal.pone.0215529.g003
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then estimated the overall mean length for each accession at each time point. The resulting

estimates and their standard errors are listed in Table 1.

To further evaluate the validity of the assumption that the population of pollen tube lengths

is exponentially distributed, we produced Q-Q plots of the distribution of the maximum

pollen tube length from the laboratory experiments performed by Swanson et al. versus the

distribution of the maximum from an exponential distribution. The theoretical distribution

of the maximum from an exponential distribution was simulated using 10,000 realizations of

Yj ¼ maxfXijg
n
i¼1

where Xij�
iid Expðb̂Þ for i = 1, . . ., n, using the values of n and b̂ that are listed

in Table 1. The Q-Q plots, displayed in Fig 3, show a roughly linear relationship, supporting

the assumption that the underlying distribution of pollen tube lengths is exponential. More-

over, we performed a Kolmogorov-Smirnov test of the equality of the empirical and theoretic

distributions for each accession of Arabidopsis thaliana at each time point. The smallest result-

ing p-value was 0.52 (corresponding to the Landsberg accession at 9 hours), further indicating

that there is no evidence that the distribution of pollen tube lengths differs significantly from

an exponential distribution.
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