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ABSTRACT Systems of genetic sex determination and the homology of sex chromosomes in different taxa ~ KEYWORDS
vary greatly across vertebrates. Much progress remains to be made in understanding systems of geneticsex ~ Amphibian
determination in non-model organisms, especially those with homomorphic sex chromosomes and/or large W chromosome
genomes. We used reduced representation genome sequencing to investigate genetic sex determination =~ ddRADseq
systems in the salamander family Cryptobranchidae (genera Cryptobranchus and Andrias), which typifies  Cryptobranchus
both of these inherent difficulties. We tested hypotheses of male- or female-heterogamety by sequencing  Andrias

hundreds of thousands of anonymous genomic regions in a panel of known-sex cryptobranchids and  Genetics of Sex
characterized patterns of presence/absence, inferred zygosity, and depth of coverage to identify sex-linked
regions of these 56 gigabase genomes. Our results strongly support the hypothesis that all cryptobranchid
species possess homologous systems of female heterogamety, despite maintenance of homomorphic sex
chromosomes over nearly 60 million years. Additionally, we report a robust, non-invasive genetic assay for
sex diagnosis in Cryptobranchus and Andrias which may have great utility for conservation efforts with these
endangered salamanders. Co-amplification of these W-linked markers in both cryptobranchid genera pro-
vides evidence for long-term sex chromosome stasis in one of the most divergent salamander lineages.
These findings inform hypotheses about the ancestral mode of sex determination in salamanders, but
suggest that comparative data from other salamander families are needed. Our results further demonstrate
that massive genomes are not necessarily a barrier to effective genome-wide sequencing and that the
resulting data can be highly informative about sex determination systems in taxa with homomorphic sex
chromosomes.

How are organisms able to produce distinct sexes from a single genome?
In many cases, an individual’s sex is determined genetically by one
or more sex-determining loci which can result in an evolutionary cas-
cade of profound genomic consequences, including degradation of
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the chromosome bearing the sex-determining locus (Steinemann and
Steinemann 1998; Charlesworth et al. 2005; Graves 2006; Bachtrog
2013), accumulation of sexually antagonistic loci on sex chromosomes
(Rice 1984; van Doorn and Kirkpatrick 2007; Innocenti and Morrow
2010; Charlesworth et al. 2014), genome-wide changes in dosage com-
pensation (Mank 2009; Gu and Walters 2017; Marin et al. 2017; Rupp
et al. 2017), and the buildup of reproductive isolation during popula-
tion divergence and speciation (Seether et al. 2007; Kitano et al. 2009;
Lima 2014; Bracewell et al. 2017; O’Neill and O’Neill 2018). In mam-
mals and birds, one of the two sex chromosomes is typically heavily
degenerated and evident cytogenetically via classical karyotypic analy-
ses (i.e., heteromorphic sex chromosomes) (Graves 2006; Bachtrog
2013). However, in other lineages, sex chromosomes are much harder
to diagnose and appear to be much more labile over evolutionary
timescales. In contrast to well-studied mammalian and avian systems,
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many organisms exhibit homomorphic sex chromosomes that cannot
be diagnosed cytogenetically, making it difficult to determine sex chro-
mosome homology among species.

Homomorphic sex chromosomes predominate in amphibians,
with multiple transitions among XY and ZW systems of sex deter-
mination (Bull 1983; Hillis and Green 1990; Schmid et al. 1991;
Hayes 1998; Wallace et al. 1999; Schmid and Steinlein 2001;
Ogata et al. 2003; Eggert 2004; Nakamura 2009; Furman and Evans
2016; Miura 2017; Pennell et al. 2018; Jeffries et al. 2018). Variation
in sex chromosomes has been documented between species (Stock
et al. 2011; Brelsford et al. 2013; Roco et al. 2015; Sessions et al.
2016), and even within populations of the same species (Rodrigues
et al. 2014), suggesting that in some amphibians, sex chromosomes
may be especially labile. Furthermore, there appears to be little bias
in the direction of transitions between XY and ZW systems (Evans
et al. 2012; Pennell et al. 2018), with transition rates between ho-
momorphic and heteromorphic sex chromosomes in amphibians
appearing roughly equal [but see Hillis and Green (1990)].

Sex chromosome systems appear to be labile across salamanders,
with multiple hypothesized transitions among XY and ZW systems
(Sessions 2008), although data are only available from seven of the ten
recognized families (Figure 1). The superfamily Cryptobranchoidea
comprises the Asiatic salamanders (family Hynobiidae) and the giant
salamanders (family Cryptobranchidae). Hynobiids are thought to pos-
sess a ZW system of female-heterogametic sex determination (Kuro-o
et al. 1998, 2002; Ikebe et al. 2005). The family Cryptobranchidae is also
thought to possess a ZW system (Sessions et al. 1982). The family
Sirenidae is suspected to have a ZW system of female heterogamety
(Ledn and Kezer 1974). The remaining seven salamander families
comprise the superfamily Salamandroidea, of which at least three
families have species with XY systems. If the putative ZW systems of
Cryptobranchidae, Hynobiidae, and Sirenidae were shown to be
homologous, that would imply that the ancestral mode of sex de-
termination in salamanders is ZW and that ZW to XY transitions
occurred along branches leading to XY species in Salamandroidea.
The family Ambystomatidae has a ZW system sex determination
(Smith and Voss 2009; Keinath et al. 2017, 2018) and relatively
homomorphic sex chromosomes. The family Proteidae is com-
prised of two deeply divergent genera, Proteus and Necturus, both of
which possess an XY system of male heterogamety (Sessions 2008;
Sessions et al. 2016). While Proteus has homomorphic sex chromo-
somes, possibly resulting from an X-Y translocation, Necturus has
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heteromorphic XY sex chromosomes (Sessions et al. 2016). The two most
speciose families of salamanders, Salamandridae and Plethodontidae,
each contain genera with XY and ZW sex determination systems
and genera with homomorphic and heteromorphic sex chromo-
somes (Sessions 2008), implying that there have been additional
transitions between male- and female-heterogamety within these
lineages.

As is typical of most salamanders (Keinath et al. 2015; Elewa et al.
2017; Evans et al. 2018; Nowoshilow et al. 2018; Smith et al. 2019),
cryptobranchids have gigantic nuclear genomes over 56 Gb (Gregory
2019), nearly 18 times larger than the human genome. These huge
genomes are putatively not due to polyploidization, but instead may
be the result of ancient expansions of retrotransposons (Sun and Mueller
2014) and increases in intergenic content in the genome (Smith et al.
2009), potentially related to low metabolic rates among salamanders.
Cryptobranchids are long-lived salamanders exhibiting delayed sexual
maturity (4-7 years), and males and females are only easily distinguishable
during a narrow annual time window during the breeding season when
males have a swollen cloaca (Nickerson and Mays 1973). Cryptobranchus
and Andrias are both thought to possess a ZW system of female hetero-
gamety (Sessions 2008), though there are conflicting karyotypic reports in
the literature. Sessions et al. (1982) used cytogenetic techniques to identify
a ZW system in Cryptobranchidae, but karyotypic analyses in Andrias by
Zhu et al. (2002), appear to have found a heteromorphic XY system.
Furthermore, it is not known whether Cryptobranchus and Andrias share
a conserved system of sex determination or homologous sex chromo-
somes, and genomic data are likely required to resolve these uncertainties
(Hu et al. 2019).

Whole genome sequencing (WGS) methods are now widely used to
identify sex-linked loci in non-model organisms (Bachtrog 2013;
Keinath et al. 2018). However, the expense and other complications
associated with applying WGS to organisms with extremely large ge-
nomes has prevented widespread use of these methods in salamanders.
Reduced representation genomic approaches, such as restriction site-
associated DNA sequencing (RADseq) (Baird et al. 2008; Baxter et al.
2011; Peterson et al. 2012), have become a powerful alternative to WGS
to identify sex chromosome-associated loci and to distinguish male-
from female-heterogametic systems (Palaiokostas et al. 2013; Brown
et al. 2016; Fowler and Buonaccorsi 2016; Gamble 2016; Lambert et al.
2016; Brelsford et al. 2017; Nielsen et al. 2018; Stovall et al. 2018; Jeftries
et al. 2018; Hu et al. 2019). RADseq-based approaches involve inher-
ent tradeoffs among the numbers of loci sequenced, their depths of
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sequencing coverage, and the numbers of individuals that can be effec-
tively multiplexed on current high-throughput sequencing platforms
(Weisrock et al. 2018). Double digest RADseq (ddRADseq) protocols
(Peterson et al. 2012) are particularly well-suited to identify sex chro-
mosome-associated regions in massive genomes because they can be
readily tailored to target different numbers of loci in a given species by
varying either of the restriction enzymes (REs) used and/or the partic-
ular fragment size-selection window (Figure S1). By comparing pat-
terns of presence and absence of loci between known males and known
females, researchers can bioinformatically identify candidate sex-linked
markers which can be further validated by the polymerase chain re-
action (PCR). Explicit statistical models are also now available to iden-
tify sets of candidate sex-linked RAD loci sequenced from known-sex
individuals (Gamble et al. 2015; Stovall et al. 2018).

Sex-linked markers also provide important conservation genetic
resources for endangered species. Cryptobranchus was historically
widespread in streams and rivers across eastern and central North
America (Nickerson and Mays 1973), but wild populations are now
in sharp decline (Wheeler et al. 2003; Pitt et al. 2017). Both species of
Andrias are also in peril (Ota 2000; Wang et al. 2004; Chen et al. 2018;
Turvey et al. 2018), and all three currently recognized cryptobranchid
species are threatened or endangered throughout their ranges
(Hammerson and Phillips 2004; Kaneko and Matsui 2004; Liang
et al. 2004). In situ and ex situ conservation efforts are underway
to stabilize wild populations and establish captive breeding populations
for eventual re-release (Ettling et al. 2017; Murphy and Gratwicke 2017;
Kenison and Williams 2018). But, these conservation programs are
hindered by the difficulty of accurately determining sex for cryptobran-
chids. Ultrasound and laparoscopy have been employed to diagnose sex
in Cryptobranchus and Andrias (Kramer et al. 1983; Roth and Obringer
2003; Li et al. 2010; Kraus et al. 2017), but these techniques are
not universally effective, require expert interpretation, and, in the case
of laparoscopy, are invasive. Serum calcium level differences may also
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distinguish females from males (Nickerson and Mays 1973), but there
are numerous advantages to a genetic sex assay including effectiveness
across all age classes and seasons and the ability to analyze banked
tissue samples. Recently, Hu et al. (2019) used ddRADseq to identify
W-linked loci in Andrias davidianus, indicating an ability for these
methods to identify sex-linked markers, but further questions remain,
including the conservation of ZW sex determination systems in this
salamander family, and the robustness of the application of ddRADseq
in large genomes.

We expand on previous investigations of the evolution of sex de-
termination systems in cryptobranchid salamanders by first performing
ddRADseq in 20 known-sex Cryptobranchus individuals. We used
bioinformatic analyses of these data to compare regions of the ge-
nome assembled from males and females and to test expectations of
the mutually exclusive hypotheses of male or female heterogamety.
Our in silico analyses produced sets of candidate male- and female-
specific loci which we then validated by PCR in known-sex individ-
uals from several divergent populations of Cryptobranchus and in
both species of Andrias (Figure 2). Our results are consistent with sex
chromosome stasis in the salamander family Cryptobranchidae and sug-
gest that female heterogamety has been conserved in this lineage for over
60 million years, in stark contrast to the rapid turnovers observed in
many other amphibian lineages.

MATERIALS AND METHODS

We implemented a two-part strategy to discover and validate candidate
sex-linked regions of the Cryptobranchus genome (Figure 2). Because of
uncertainty about whether cryptobranchid salamanders have ZW or
XY sex determination, we conducted analyses agnostically for both
scenarios and tested three specific hypotheses about expected patterns
of genetic variation in males and females under models of XY or ZW
sex determination. We first used a series of bioinformatic analyses to
quantify patterns of sex-specific presence and absence of loci, to parse
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heterozygous loci from apparently homozygous loci (some of which
may be hemizygous), and to estimate relative depths of read coverage
across candidate sex-linked loci (Figure 2A-C). Next, we used PCR-
based assays in additional individuals to validate the sets of candidate
male- and female-specific loci that were identified bioinformatically.
Candidate sex-linked loci (35 female-specific candidates and eight
male-specific candidates) identified in 20 reference individuals were
screened by PCR in increasingly large and diverse sets of individuals
(Figure 2D-F).

We obtained tail tissue or blood samples from known-sex Crypto-
branchus alleganiensis individuals (n = 66) sampled from wild popu-
lations and from captive collections at the Saint Louis Zoo. We also
obtained blood samples from known-sex Andrias davidianus (n = 6)
and A. japonicus (n = 9) individuals from the Saint Louis Zoo, the
Detroit Zoo, the California Academy of Sciences Steinhart Aquarium,
and the Smithsonian National Aquarium. We used 20 known-sex Cryp-
tobranchus individuals from two separate tributaries of the White River
in Missouri and Arkansas (nine females and 11 males, as determined by
necropsy and/or observation of gametes) for our initial reduced
representation genome sequencing by ddRADseq. All other individ-
uals were sexed by visual examination during the breeding season or
by either laparoscopy or ultrasound. High molecular weight geno-
mic DNA (gDNA) was extracted from all individuals using DNeasy
silica column kits (QIAGEN). We quantified the resulting gDNA with a
Qubit2.0 Fluorometer (Invitrogen) and confirmed its integrity by 2%
agarose gel electrophoresis at 110 V for two hr.

Bioinformatic discovery of candidate sex-linked loci
The extremely large size of the Cryptobranchus genome, and the lack of
existing genomic resources for this genus, necessitated the use of re-
duced representation sequencing methods to identify sex chromo-
somes. We used ddRADseq because it offered the flexibility to select
different RE combinations and size-selection windows that can produce
varying amounts of genomic coverage. To optimize ddRAD library
preparation in this massive genome, we performed test RE digestions
for two Cryptobranchus individuals from the White River in Mis-
souri, followed by empirical fragment analysis. We estimated num-
bers of fragments per individual under three different size selection
windows and 12 different RE combinations. For each RE combina-
tion, we performed single-enzyme digests and the combined dou-
ble-enzyme digests, and we quantified these test fragment length
distributions with a Bioanalyzer 2100 high-sensitivity DNA system
(Agilent Technologies). We then calculated the estimated numbers of
sequenceable ddRAD loci across size selection windows of 300 = 30
base pairs (bp), 400 = 40 bp, and 500 * 50 bp. Based on these tests, we
selected EcoRI (3') and Sphl (5") with a fragment size selection window
of 450-550 bp for downstream library preparation. These parameters
were estimated to yield ~350,000 unique loci per individual (signifi-
cantly fewer than any other RE combination). We increased the amount
of input gDNA from 50 ng (Peterson et al. 2012) to 3 p.g per individual
to retain sufficient quantities of post-bead-cleaned product for adapter
ligation.

We generated ddRAD libraries with four sets of five individuals using
5 bp inline barcodes and 6 bp Illumina indices. We size-selected each
pool of five individuals in its own lane of a Pippin Prep cartridge (Sage
Science) with the “tight” protocol in the range of 518-634 bp (account-
ing for lengths of Illumina adapters). Size-selected products were
pooled into two sets of 10 individuals, bead-cleaned, and amplified
by PCR for 8 cycles with Phusion high-fidelity DNA polymerase
(New England Biolabs). Bead-cleanup was performed with Dynabeads
(ThermoFisher) and Agencourt AMPure XP beads (Beckman Coulter,
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Inc.). Final libraries were sequenced on two Illumina HiSeq2500 lanes
in Rapid Run mode with paired-end 150 bp reads (utilizing C-bot
clustering and a 10% PhiX DNA spike-in). Illumina sequencing was
performed at the Florida State University School of Medicine Core
Facility.

Thislibrary preparation protocol resulted in strand-specific sequenc-
ing because the PCR primers for fragment amplification select for
fragments with Sphl cut sites at the 5" end and EcoRI cut sites at the
3’ end. Each sequenced fragment was represented by 150 bp sequences
at the 5" and 3’ ends and a central unsequenced region of unknown
length (between 150-250 bp). We used custom bash scripts (Files S1) to
concatenate reads from the 5" ends of fragments (R1 of an Illumina
read pair) with the reverse complement of reads from the 3’ ends of
fragments (R2 of an Illumina read pair), recapitulating the original
orientation in the genome. We checked for optical duplicate reads
using the MarkDuplicates function in the Picard Toolkit (https://
broadinstitute.github.io/picard/). We demultiplexed the raw, stitched
reads by individual in stacks v1.46 (Catchen et al. 2013) with the
process_radtags function, allowing one mismatch between observed
and expected barcodes. We retained only reads with appropriate RE cut
sites at both ends and required reads to have a mean Phred quality score
greater than 20 over 45 bp sliding-window intervals (amounting to the
following settings for the stacks process_radtags algorithm: -renz_1
sphl -renz_2 ecoRI -c -q -r -D -w 0.15 -s 20 -barcode_dist_1 2).

We tested several assembly parameters for the range of nucleotide
variation between alleles at a given locus (ustacks -M =4, 10), the minimum
depth of sequencing coverage across loci (ustacks -m = 3, 10), and variation
between alleles across the set of individuals (cstacks -n = 0, 16). We used
sstacks to match individual loci back to the full locus catalog, and we
reconstructed haplotypes across all loci for all 20 individuals with geno-
types (-r 1 -m 3). We identified parameter settings for ustacks (-m 3 -M 4 -
N 10) and for cstacks (-n 0) that optimized the recovery of putatively
orthologous, single-copy regions in the Cryptobranchus genome. These
assembly parameters allowed us to confidently call variable sites across loci
and to determine whether individuals were homozygous or heterozygous
at a particular locus. Any locus with more than two haplotypes in any of
the 20 reference individuals was excluded from further analyses. We used
custom bash scripts (File S1) to parse the locus catalog into sets of puta-
tively male- and female-specific loci based on presence/absence, zygosity,
and relative depth of coverage (Figure 2A-C, File S2).

PCR-based validation of candidate sex-linked loci

Because ZW and XY sex determination systems are mutually exclusive,
we predicted that either all of the male-specific candidate loci or all of
the female-specific candidates would co-amplify by PCR in both sexes,
rejecting one of these alternative hypotheses about the mode of sex
determination in cryptobranchid salamanders. All candidate loci were
subjected to successive rounds of PCR validation in increasing numbers
of known-sex individuals (Figure 2D-F). First, an initial PCR validation
step was performed in one male and one female hellbender from the
White River for which sex was definitively known from post-mortem
examination of gonads. Loci with sex-specific amplification in the
two-individual panel were then tested in a 10-individual panel of six
Cryptobranchus individuals from the White River drainage in Missouri,
two individual Cryptobranchus from the Blue River in Indiana, and two
Andrias davidianus (a total of five males and five females). Loci with
sex-specific amplification in the 10-individual panel were then tested in
a blind trial with 23 known-sex Cryptobranchus from several rivers in
Missouri (Gasconade, Big Piney, Niangua, Meramec, and Current
Rivers). Sexes of individuals in the blind trial were determined by
external morphology during the breeding season by J.T.B., but were
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unknown to P.M.H. before the trial. To further validate candidate sex-
specific loci in more divergent populations of Cryptobranchus and in
both species of Andrias, we tested any retained candidate loci across
18 known-sex Cryptobranchus from the Licking River watershed in
Kentucky and in a set of four additional Andrias davidianus and nine
A. japonicus (Table S1).

Oligonucleotide primers (Table S2) were designed for eight putative
Y-linked loci and 35 putative W-linked loci in BatchPrimer3 (You et al.
2008) using default settings except for: primer length (minimum 23 bp,
optimum 30 bp, maximum 33 bp), maximum difference in melting
temperature between forward and reverse primers (5°), and optimal
amplicon fragment length (minimum 375 bp, optimum 500 bp, max-
imum 550 bp). We used an optimal primer length of 30 bp to ensure
primers would bind nonrandomly in the complex Cryptobranchus ge-
nome. An autosomal positive control locus was designed for a 756 bp
region of the 18S ribosomal RNA (rRNA) gene in Cryptobranchus.
Although nuclear-encoded rRNA may exist in multiple copies through-
out the genome, this marker is a suitable positive PCR control because
amplification of at least one 18S copy indicates a successful PCR
reaction. PCRs were carried out in 20 wL volumes [200 wM dNTPs,
0.5 wM forward and reverse primers, 109 ng gDNA, 0.4 units Phu-
sion DNA polymerase (New England BioLabs)] with a “hotstart”
initial denaturation at 98° for 30 sec, followed by 40 cycles of 98°
denaturation for 10 sec, a locus-specific annealing temperature for
20 sec (detailed in Table S2), and a 72° extension for 30 sec, followed by
a final 72° extension for 10 min. PCR products were stained with 2X
EZ-Vision Two dye (VWR Life Science) and visualized on 1.3% agarose
gels run for 45-75 min at 110 V.

Data Availability

Table S1 details the individuals examined. Table S2 details the candidate
sex-linked ddRAD loci and PCR primers. Table S3 summarizes the gel
images. File S1 contains example bash scripts. File S2 details candidate
locus identification by presence/absence, zygosity, and depth of cover-
age. Figure S1 outlines the ddRAD protocol. Figure S2 summarizes locus
assembly results across individuals. Figure S3 shows the effect of indi-
vidual sampling on numbers of candidate sex-linked loci. Figures
$4-S8 contain gel images for validation tests. Supplemental files and
Ilumina data are available in this study’s Figshare accession: https://
gsajournals.figshare.com/s/bdlal 1f0e64a4622ff43. Demultiplexed and
stitched Illumina data are also accessioned in the NCBI Short Read
Archive (PRJNA553239: SRR9655295-SRR9655314). All work was
conducted in accordance with applicable institutional guidelines for
animal welfare under Saint Louis Zoo TACUC protocols 2009-04 and
2010-07 (to P.M.H.). Supplemental material available at FigShare:
https://doi.org/10.25387/g3.8060006.

RESULTS

Bioinformatic discovery of candidate sex-linked loci

Across all 20 Cryptobranchus individuals used for ddRADseq, we
obtained 163,104,028 read pairs. After initial demultiplexing, qual-
ity filtering, and RE cut site verification and truncation, we retained
113,835,666 read pairs totaling 33,809,192,802 bp (after trimming
in-line adapter sequences). On average, males and females had roughly
equal numbers of retained reads per individual, but there was signifi-
cant variation in the numbers of reads per individual (Table 1). The
nine females had on average 5,925,697 read pairs per individual (range
1,671,803-10,897,888 reads) and the 11 males had on average 5,500,399
read pairs per individual (range 2,980,522-8,934,375 reads). The Picard
Toolkit (https://broadinstitute.github.io/picard/) identified zero reads
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B Table 1 Details of ddRAD sequencing in 20 known-sex
Cryptobranchus alleganiensis bishopi

C38AF ACTGG Female 10,897,888 387,597 27.51
C39AF ACTTC Female 8,453,283 364,016 22.69
C91CF ATACG Female 9,888,747 362,344 26.73
C92DF ATGAG Female 1,671,803 147,468 10.94
C93DF ATTAC Female 2,609,406 194,087 13.03
C100EF CATAT Female 5,058,754 283,782 17.39
C104EF CGAAT Female 3,495,437 229,634 14.82
C109EF CGGTA Female 4,170,971 257,133 15.81
C110EF CGTAC Female 7,084,986 324,687 21.34
C31AM GCATG Male 8,668,485 366,678 22.46
C32AM AACCA Male 3,243,953 260,992 11.47
C33AM CGATC Male 2,980,522 251,412 10.93
C34AM TCGAT Male 5,346,185 311,318 16.22
C35AM TGCAT Male 4,507,062 290,538 14.65
C36AM CAACC Male 7,184,657 350,200 19.35
C89CM GGTTG Male 5,613,817 321,310 16.45
C94DM AAGGA Male 8,934,375 351,762 24.31
C97DM AGCTA Male 4,946,750 315,847 14.62
C101EM ACACA Male 5,932,130 322,649 17.38
C108EM CGGCT Male 3,146,455 216,458 14.13

as duplicates. We used the stacks pipeline (Catchen et al. 2013) to
assemble loci and make preliminary haplotype calls for each individual
(ustacks), to assemble a catalog relating all loci across all individuals
(cstacks), to find catalog matches and call single-nucleotide polymor-
phisms for each individual (sstacks), and to call haplotypes across all
individuals (genotypes). There was significant variation in the number
of ustacks loci assembled for each individual (147,468-387,597), with a
general positive (but asymptotic) correlation between the number of
input reads and the number of ustacks loci (Figure S2). Across all ustacks
loci for all 20 individuals, we assembled a catalog of 1,590,599 unique
cstacks loci. Not all loci were present for all individuals, and in fact, all
individuals had loci that were shared with nearly every possible combi-
nation of other individuals. This complex situation reflected, in part, a
lack of saturation of loci due to uneven sequencing coverage across
individuals. However, some of this variation in the overlap of loci across
individuals reflected cryptic patterns of sex-linkage.

When comparing only a few individuals of each sex, many loci were
present uniquely in one sex and absent in the other sex, and this pattern
held for both males and females. As greater numbers of individuals from
each sex were compared, the numbers of putatively sex-specific loci
dropped precipitously (Figure S3). After comparing loci for all nine
female and 11 male Cryptobranchus, we retained a set of 12 loci pre-
sent in all males and absent in all females (putatively Y-linked) and a set
of 100 loci present in all females and absent in all males (putatively
Wh-linked) (Figure 2A). To reduce the number of loci involved in
PCR screening steps, we excluded any sex-specific candidate loci for
which any individual of the putatively heterogametic sex had more than
one haplotype identified, resulting in 10 male-specific candidate loci and
64 female-specific candidate loci (Figure 2B). Because W- or Y-linked
loci should have roughly half the depth of coverage of autosomal loci, we
applied read-depth filtering to further reduce the sets of candidate sex-
linked loci to eight male-specific candidate loci and 35 female-specific
candidate loci (Figure 2C).

PCR-based validation of candidate sex-linked loci
After an initial round of two-individual PCR tests in Cryptobranchus, we
retained zero putatively male-specific loci (all of these loci co-amplified
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Cryptobranchus Andrias Cryptobranchus

Andrias

Ladder C35AM C36AM  C94DM  CH8BEM  ADDTM C37AF  C38AF  C91CF CE6BF

ADO3F  (-) Cont,

Figure 3 Sex-specific amplification of a putative W-linked
marker (candidate locus 1024220) in the 10-individual
panel of Cryptobranchus and Andrias. A 100 base pair
ladder and a negative PCR control are shown in the
leftmost and rightmost lanes, respectively. This image
was exposed manually and pixels were inverted on the
gel imaging system at the time of capture, but contrast
and exposure have not been subsequently modified.
Dark blobs in the male and control wells are loading
dye bound to non-migrating DNA. The gel image has
been cropped at the edges but all lanes are shown.

Male Female

in both sexes) and 12 putatively female-specific loci which amplified
only in females (Figure 2D, Figure S4). A subsequent screening of
the 12 putatively female-specific loci using a 10-individual panel
of Cryptobranchus and Andrias revealed two putatively W-linked
loci (1024220 and 1102805) that consistently amplified in all
females and never amplified in any males (Figure 2E, Figure 3,
Figure S5). A blind trial with 23 known-sex Cryptobranchus from
additional populations in Missouri demonstrated successful am-
plification only in the known-females for both W-linked markers,
while the 185 rDNA positive control successfully amplified in all
individuals (Figure 2F, Figure S6). Further testing of these two
putative W-linked markers in Cryptobranchus individuals from
Kentucky confirmed that these loci successfully amplify only in
females for this divergent lineage of hellbenders (Figure S7). Each
of the two putative W-linked markers consistently amplified in
females of both species of Andrias (Figure S8), with the exception
of one individual that had degraded gDNA. Table S3 summarizes
all gel results.

DISCUSSION

Our results strongly support the hypothesis of female heterogamety in
cryptobranchid salamanders. Identification of consistent female-specific
amplification of two loci and the lack of male-specific amplification lead
us to reject male-heterogamety in the family Cryptobranchidae. Our
results corroborate recent ddRADseq-based findings of a ZW sex de-
termination system in Andrias by Hu et al. (2019), and expand on their
results by providing strong evidence for a ZW system in the common
ancestor of Cryptobranchus and Andrias about 60 million years ago
when these two genera likely diverged (Zhang and Wake 2009; Liang
et al. 2019). This study also demonstrates the power of reduced
representation genome scans for identifying sex-linked genes in
organisms that lack pre-existing genetic resources. Our results fur-
ther suggest that genome size may not necessarily be a limiting factor in
generating informative genome-scale data to answer evolutionary ques-
tions in salamanders [see also Nunziata et al. (2017); Murphy et al.
(2018); Weisrock et al. (2018); Hu et al. (2019)].

Investigating sex determination in a massive genome

Comparing multiple, known-sex individuals is an important aspect of
sex-specific locus detection, and contrasts drawn from greater numbers
of individuals reduce the numbers of putatively sex-linked loci which
must be screened by PCR in downstream steps. In our case with
cryptobranchid salamanders, the number of candidate loci identified
by analyzing a single representative of each sex decreased by roughly
an order of magnitude each time that we doubled the number of
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individuals of each sex under consideration (comparing two, four, or
eight individuals of each sex) (Figure S3), similar to findings from Gamble
and Zarkower (2014) (their Figure 5). In more challenging cases where
sequencing coverage is particularly uneven across individuals, relax-
ing the requirement that loci are present for all individuals of a given
sex (but still requiring absence in all individuals of the opposite sex)
could potentially lead to greater detection of putatively sex-linked loci
(Stovall et al. 2018). As a cautionary note, we stress that for RAD-based
studies searching for sex-linked markers, the sexes of individuals must be
known with absolute certainty, especially for species with large genomes
which will have large numbers of loci under consideration.

We expected the massive cryptobranchid genome to pose significant
challenges for generating genomic data in these species and our ability to
screen and validate putative sex-specific loci. Across multiple combi-
nations of REs and size selection windows, we found that nearly all
combinations would produce far too many loci (as many as four million
loci per individual) to achieve adequate multiplexing of individuals on
the Illumina platform. Using Sphl and EcoRI and size selection between
450 and 550 bp, we expected to produce ~350,000 loci per individual,
very much in line with the empirical numbers of ustacks loci which we
assembled in the highest-coverage individuals. Although a significant
proportion of these loci had affinities to known transposable elements,
filtering out loci with greater than two haplotypes or depth of coverage
greater than three standard deviations above the mean for an individual
effectively removed most tranposable element-related loci from con-
sideration. Future efforts to sequence larger genomic regions flanking
these sex-linked loci will better characterize these chromosomal regions
and facilitate more in-depth studies of the gene regions residing on
cryptobranchid sex chromosomes.

Implications for applied conservation

in Cryptobranchidae

These W-linked markers provide a robust genetic sex assay for crypto-
branchid salamanders, akin to those already widely employed in avian
taxa (Ellergren 1996), mammals (Taberlet et al. 1993), and squamate
reptiles (Rovatsos and Kratochvil 2017), and could be a massive boon
for conservation and repatriation efforts in these imperiled salaman-
ders. Researchers and conservation biologists may now accurately de-
termine sex for entire clutches to inform captive breeding efforts or to
test expectations of male-biased adult sex ratios in species with female
heterogamety (Pipoly et al. 2015). This molecular sex diagnostic could
also enable studies into whether adult cryptobranchids undergo envi-
ronmentally induced sex reversal by searching for a mismatch between
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morphological and genotypic sex (Hayes et al. 2010; Xu et al. 2015;
Tamschick et al. 2016; Hu et al. 2019).

Although the W-linked markers identified here are robust across all
Cryptobranchus populations tested (spanning most of the major lineages
across the geographic distribution) and in both species of Andrias, it is
possible that mutations in primer binding sites, or PCR failure in gen-
eral, could result in a lack of amplification of the W-linked markers. In
these cases, one would be led to an incorrect inference that individuals
were male. The converse situation (W-linked loci spuriously amplifying
in males) is extremely unlikely. Using multiple W-linked markers for sex
diagnosis and employing a positive PCR control (e.g., 18S rRNA) should
lead to increased confidence in PCR-based sex diagnosis.

Conclusions

Using ddRAD genome scans in known-sex hellbenders, we demonstrate
that both Cryptobranchus and Andrias possess a ZW system of female
heterogamety and that homologous loci on the W sex chromosomes of
these two genera have likely been maintained as sex-linked for nearly
60 million years. These findings will be important for tracing the evo-
lution of sex chromosome turnovers within salamanders. This work
also has significant implications for applied conservation efforts with
cryptobranchid salamanders. Whereas it has previously been difficult
to reliably distinguish male from female cryptobranchids on the basis of
morphology, our study has developed a universally effective PCR-based
assay for sex in this imperiled salamander family. These methods for
interrogating genetic sex determination systems are also broadly appli-
cable in other organisms with large genomes and homomorphic sex
chromosomes. The W-linked loci described here may enable new and
important research and conservation directions for cryptobranchid
salamanders, and set the stage for broader-scale comparative evolution-
ary genomic research across amphibians.
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