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Background. Breast cancer (BC) is a highly heterogeneous disease with high morbidity and mortality. Its subtypes may have
distinctly different biological behaviors, clinical outcomes, and therapeutic responses. The metabolic status of BC tissue is
closely related to its progress. Therefore, we comprehensively characterized the function of metabolic genes in BC and
identified new biomarkers to predict BC patients’ prognoses. Methods. Metabolic genes were identified by intersecting genes
obtained from two published pieces of literature. The function of metabolic genes in BC was determined by extracting
differentially expressed genes (DEGs), performing functional enrichment analyses, analyzing the infiltrating proportion of
immune cells, and conducting metabolic subgroup analyses. A risk score model was constructed to assess the prognoses of BC
patients by performing the univariate Cox regression, LASSO algorithm, multivariate Cox regression, Kaplan-Meier survival
analyses, and ROC curve analyses in the training set. The prognostic model was then validated on the testing dataset, external
dataset, the whole TCGA-BC database, and our clinical specimens. Finally, a nomogram was constructed for clinical prognostic
prediction based on the risk score model and other clinicopathological parameters. Results. 955 metabolic genes were obtained.
Among these, 157 metabolic DEGs were identified between BC and normal tissues for subsequent GO and KEGG pathway
enrichment analyses. 5 metabolic genes were negatively correlated with CD8+ T cells, while 49 genes were positively correlated
with CD8+ T cells. Furthermore, 5 metabolic subgroups with varying proportions of PAM50 subtypes, TNM classification, and
immune cell infiltration were obtained. Finally, a risk score model was constructed to predict the prognoses of BC patients,
and a nomogram incorporating the risk score model was established for clinical application. Conclusion. In this study, we
elucidated tumor heterogeneity from metabolite profiling of BC. The roles of metabolic genes in the occurrence of BC were
comprehensively characterized, clarifying the relationship between the tumor microenvironment (TME) and metabolic genes.
Meanwhile, a concise prediction model was also constructed based on metabolic genes, providing a convenient and precise
method for the individualized diagnosis and treatment of BC patients.

1. Introduction

The latest data shows that breast cancer (BC) was the most
common type of cancer worldwide in 2020, with an estimated
2.3 million new cases. Although comprehensive efforts have
beenmade in BC treatment, including surgery, chemotherapy,

hormonal therapy, and radiation therapy, the outcome of BC
patients is still poor. Moreover, BC is the fifth leading cause
of cancer mortality worldwide, with 685,000 deaths [1, 2].
Meanwhile, BC is a highly heterogeneous disease whose sub-
types may have distinctly different biological behaviors, clini-
cal outcomes, and therapeutic responses [3]. Therefore, it is
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urgent to explore new prognostic factors to accurately judge
the prognoses of BC patients.

Metabolism is an indispensable biochemical process in
living organisms, providing energy and building blocks for
macromolecules [4]. Through metabolic conversions, the
cells can obtain metabolites and energy to survive. Those
metabolic conversions are also involved in cell signaling
and epigenetic networks [5, 6]. In addition, cancer cells
reprogram their catabolic and anabolic metabolism to sur-
pass nontumor cells, promoting proliferation, invasion, and
metastasis [7]. In 1924, Dr. Otto Warburg observed cancer
cells tended to perform glycolysis in the cytosol even in the
presence of oxygen, which was known as the “Warburg
effect” or “aerobic glycolysis” [8]. Since then, research has
focused on the effects of tumor metabolism on tumor gene-
sis and development, and metabolic reprogramming is now
considered a hallmark of cancer [9]. Metabolic reprogram-
ming directly and quickly supplies energy and nutrients for
the proliferation of cancer cells in harsh survival conditions.
It also shifts the tumor microenvironment (TME) into an
immunosuppressive state by disrupting the metabolism
and function of other TME components through multiple
mechanisms, further inducing tumor progression [10, 11].

The metabolic status of BC tissue is also closely related to
the progress of BC. Previous studies demonstrated that BC cells
transitioning to the metastatic state displayed increased oxida-
tive phosphorylation (OXPHOS) and glycolysis [12, 13]. Fur-
thermore, BC cells induce oxidative stress and HIF-1α in
adjacent fibroblasts, resulting in mitophagy and increased aer-
obic glycolysis [14]. Tumor cell metabolism produces several
small moleculemetabolites which can inhibit tumor immunity,
such as lactic acid, adenosine, and kynurenine [11, 15]. For
example, BC cell-derived lactate activates GPR81 in dendritic
cells and prevents the presentation of tumor-specific antigens
to other immune cells [16]. Cell-intrinsic factors causing met-
abolic reprogramming are considered oncogenes and tumor
suppressor genes that regulate metabolic pathways at multiple
levels [17]. In recent years, many metabolic genes have been
reported to promote the development of BC, such as hexoki-
nase (HK) and lactate dehydrogenase-A (LDHA), the two
glycolysis-related genes highly expressed in BC [18, 19]. With
the development of high-throughput sequencing, many data-
bases have been established to research the genomic alterations
of diseases. This enables the identification of biomarkers for
prognostic prediction of patients, serving as potential clinical
therapeutic targets [20–22].

In this study, we elucidated tumor heterogeneity through
metabolite profiling of BC. The roles of metabolic genes in
the occurrence of BC were comprehensively characterized,
clarifying the relationship between the tumor microenviron-
ment (TME) and metabolic genes. Furthermore, a concise
prediction model was also constructed based on metabolic
genes, providing a convenient and precise method for the
individualized diagnosis and treatment of BC patients.

2. Methods and Materials

2.1. Dataset Collection and Preprocessing. The gene expres-
sion profiles (fragments per kilobase of exon per million

(FPKM)) and corresponding clinical data of BC patients
were obtained from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/repository). The gene
expression data were converted into transcripts per kilobase
million (TPM) normalized counts [23], and the normalized
gene expression data were log2-transformed for further
analyses. Subsequently, the genes with an average gene
expression of less than 1 or those expressed in less than
50% of all samples were filtered out. The GSE20685 dataset
was downloaded from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) and
was used as the external dataset for validation. Furthermore,
metabolic genes were retrieved from the published literature
[24, 25]. The intersected genes from the two downloaded
gene sets were used as metabolic genes for subsequent
analyses.

2.2. Extraction of Differentially Expressed Genes. The
“limma” R package was used to identify the differentially
expressed genes (DEGs) [26]. Genes with adjusted P value
< 0.05 and jlog 2 − fold change ðlog 2 FCÞj > 1 were enrolled
in. A volcano map was drawn with the “ggplot2” package
to display DEGs.

2.3. Functional Enrichment Analyses. To investigate the bio-
logical functions and characterize the metabolic genes, the R
package “clusterProfiler” was used to perform the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional enrichment analyses [27, 28].
A cutoff criterion of FDR < 0:05 was applied. The GO terms
contained three main processes: biological process (BP),
molecular function (MF), and cell component (CC). This
study mainly focused on molecular function.

2.4. Immune Characterization. To further elucidate the rela-
tionship between metabolic genes and different immune
cells, we analyzed the gene transcriptome data of BC patients
to estimate the proportion of immune cells [29]. Through
applying single sample Gene Set Enrichment Analysis
(ssGSEA) algorithms [30], CIBERSORT algorithm [31],
microenvironment cell population (MCP) [32] algorithms,
and xCell algorithm [33], the metabolic genes affecting the
proportion of infiltrating CD8+ T cells were identified. The
above estimations were carried out by the R packages
“GSVA,” “CIBERSORT,” “MCP-Counter,” and “xCell”,
respectively. The Spearman correlation of the CD8+ T cell
fraction among four algorithms was calculated and visual-
ized by the “ggcor” package.

2.5. Metabolism-Related Consensus Clustering for BC. We
applied the “ConsensusClusterPlus” package to identify BC
molecular subtypes. This algorithm, one of the unsupervised
class discovery algorithms, defined “consensus” clustering by
applying a specific clustering means to the random data sub-
sets [34, 35]. The “pheatmap” package was utilized to display
the consensus clustering heatmap.

2.6. Prognostic Model Establishment. The impact of meta-
bolic genes on the prognoses of BC patients was explored.
First, the BC patients from the TCGA database were
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randomly divided into training cohorts and testing cohorts
in a 1 : 1 ratio. Next, the univariate regression analysis
(P < 0:05) was performed to identify candidate metabolic
genes related to overall survival (OS) in the training cohort.
The least absolute shrinkage and selection operator (LASSO)
algorithm was used to further filter prognosis-specific meta-
bolic genes [36]. Finally, genes identified in the LASSO anal-
ysis were enrolled in the multivariate Cox regression analysis
to assess their impact on the OS. The prognostic model was
established by the following formula: β1 ×mRNA level of
gene1 + β2 ×mRNA level of gene2+⋯+βn ×mRNA level of
genen, where β corresponded to the correlation coefficient.
The risk score (RS) of every patient was calculated based
on the prognostic model. The univariate and multivariate
Cox regression analyses were carried out by using “survival”
R packages, and the “glmnet” package was used for the
LASSO regression analysis [37]. Univariate analysis and
multivariate analysis of forest maps were constructed by R
package “forestplot.”

2.7. Quantitative Real-Time PCR (qRT-PCR). 50 BC patients
were enrolled from Henan Provincial Third People’s Hospi-
tal and signed written informed consent. Clinicopathological
features of 50 BC patients are shown in Supplementary
Table 1. Total RNA was extracted with TRIzol reagent
(Invitrogen Corporation, Carlsbad, CA, #A33250) and then
used for cDNA synthesis by the Prime Script RT reagent
kit with genomic DNA eraser (TaKaRa, Tokyo, Japan,
#RR037A). SYBR Green Master Mix (TaKaRa) was applied
for qRT-PCR assay. The primer sequences for selected
genes are displayed in Supplementary Table 2 and were
synthesized by the Shanghai Sangon Company.

2.8. Statistical Analysis. Statistical analyses were performed
with R (version 3.6.1). P < 0:05 was considered statistically
significant. The Kaplan-Meier method was used to assess
the differences in survival time, and the difference between
survival curves was evaluated by a log-rank test. The speci-
ficity and sensitivity of the risk score model were measured
by calculating the area under the curves (AUC) of the
time-dependent receiver operating characteristic (ROC)
curve. The different expression of genes between tumor
and normal groups was judged by paired T-test, and the cor-
relation of gene expression in clinical specimens was evalu-
ated by Pearson’s correlation coefficient using GraphPad
Prism 7 software (La Jolla, USA). The survival curve was
drawn with the Kaplan-Meier method, and the log-rank test
was used to evaluate the difference between survival curves.
The R package “rms” was used to construct a nomogram.

3. Results

3.1. Identification and Characterization of Metabolic DEGs
between Tumor and Adjacent Normal Tissues. As depicted
by the graphical abstract, the metabolic heterogeneity of
BC was comprehensively investigated from different aspects
(Figure 1). Firstly, 955 intersected genes were obtained from
two published pieces of literature for subsequent analyses
(Figure 2(a)). The metabolic DEGs between BC and adjacent
noncancerous tissues from the TCGA datasets were com-
pared, revealing 46 upregulated genes and 111 downregu-
lated genes in BC tissues (Figure 2(b)). Subsequently, the
top 10 genes with the highest significance were displayed
(Figure 2(c)), and we validated the top 3 genes (hydroxyste-
roid 17-beta dehydrogenase 13 (HSD17B13), solute carrier

Multiple
validations

Prognostic
modelImmune

infiltration
between high

vs. low risk
groups

Function
enrichment

analyses

With
clinicopathological

parameters

With
infiltrating

immune cells

Metabolic
subgroup

analyses of BC

Metabolic
genes

Identify metabolic
genes correlating 
with CD8+ T cells

Function
enrichment

analyes

Identify metabolic
DEGs between tumor

and normal tissues

Function
enrichment

analyses

Figure 1: Graphical abstract of the study.
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family 2 member 4 (SLC2A4), and aldehyde dehydrogenase
1 family member L1 (ALDH1L1)) based on adjusted P value
in our clinical specimens, and the findings were consistent

with the above results (Supplementary Figure 1A). GO
(molecular function) analyses showed that upregulated
genes were mainly focused on lysophospholipid

Group
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GO annotation (molecular function)

Lysophospholipid acyltransferase activity
Lysophosphatidic acid acyltransferase activity 
1-acylglycerol-3-phosphate O-acyltrensferase activity
Xenobiotic transmembrane transporter activity
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Group of donors, NAD or NADP as acceptor acylglycerol O-acyltransferase activity
Vitamin transmembrane transporter activity
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Carboxylic ester hydrolase activity
Steroid dehydrogenase activity
Organic acid binding
Carboxylic acid binding
Tetrapyrrole binding
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Oxidoreductase activity, acting on CH-OH group of donors
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Oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Coenzyme binding
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Figure 2: Identification of metabolic genes in BC patients between tumor and normal tissues. (a) Venn diagram showed the intersected
metabolic genes. (b) Metabolic DEGs between tumor and normal tissues were demonstrated by volcano map. (c) Box chart displayed the
top ten genes with the highest significance according to adjusted P value. (d) Top 10 most enriched molecular functions in GO analyses.
(e) Top 10 most enriched KEGG pathway enrichment analyses.
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acyltransferase activity and the downregulated genes were
involved in coenzyme binding (Figure 2(d)). The results of
KEGG pathway enrichment analyses indicated that
upregulated genes were closely related to pyrimidine
metabolism and downregulated genes were mainly
enriched in fatty acid degradation (Figure 2(e)). These
results indicate that the tumor tissues have different
metabolic patterns as compared with normal tissues.

3.2. Identification and Characterization of Metabolic Genes
Correlating with CD8+ T Cells. CD8+ T cells in the TME are
manipulated by tumor cells through several mechanisms,
including metabolic reprogramming. Therefore, four algo-
rithms were applied to score CD8+ T cells for correlation anal-
yses. There were high correlations among the ssGSEA
algorithm, MCP algorithm, and xCell algorithm, especially
between the MCPs and xCell algorithm (the correlation coef-
ficient was 0.75), indicating a relatively strong consistency
(Figure 3(a)). Next, the metabolic genes correlated with
CD8+ T cells by the above two algorithms were extracted,
and the intersected genes were identified (P < 0:05, j
correlation coefficientj > 0:2). There were 5 metabolic genes
negatively correlated with CD8+ T cells, while 49 genes were
positively correlated with CD8+ T cells (Figure 3(b)). A heat-
map was drawn to visually and independently demonstrate
the correlation between 54 genes and CD8+ T cells, further
confirming the reliability of the genes obtained from the above
two algorithms (Figure 3(c)). Table 1 also shows the top 5

genes phospholipase A2 group IID (PLA2G2D), phos-
phatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
delta (PIK3CD), indoleamine 2,3-dioxygenase 1 (IDO1), ino-
sitol polyphosphate-5-phosphatase D (INPP5D), and phos-
pholipase C beta 2 (PLCB2) which were correlated with
CD8+ T cells based on xCell algorithm and MCP algorithm.
We also verified the top 3 genes (PLA2G2D, PIK3CD, and
IDO1) with the most significant P value in our clinical speci-
mens and have found the consistent results (Supplementary
Figure 1B). Moreover, GO analysis was performed to explore
the molecular functions of those intersected genes. The
results revealed that the genes positively correlated with
CD8+ T cells were mainly involved in lipase activity, while
the negatively correlated genes focused on nucleotide
diphosphatase activity (Figure 3(d)). KEGG analyses

−2 3−1 1 20
−log10 (p.adjust)
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Inositol phosphate metabolism
Inositol phosphate metabolism
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Figure 3: Identification and characterization of metabolic genes correlated with CD8+ T cells. (a) Correlation matrix of four algorithms
based on the calculated scores of CD8+ T cells. (b) Venn diagrams showed the intersected genes. (c) Heatmap demonstrated relative
correlation between 54 genes and CD8+ T cells through MCP algorithms and xCell algorithm. (d) Top 10 most enriched molecular
functions in GO analyses. (e) Top 10 most enriched KEGG pathway enrichment analysis.

Table 1: Detailed information of top 5 genes which were correlated
with CD8+ T cells.

Gene
xCell MCP

Correlation (R) P value Correlation (R) P value

PLA2G2D 0.621 <0.001 0.584 <0.001
PIK3CD 0.523 <0.001 0.522 <0.001
IDO1 0.493 <0.001 0.482 <0.001
INPP5D 0.467 <0.001 0.468 <0.001
PLCB2 0.453 <0.001 0.450 <0.001
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indicated that the genes positively correlated with CD8+ T
cells mainly focused on platelet activation, while the genes
negatively correlated with CD8+ T cells were involved in
nicotinate and nicotinamide metabolism (Figure 3(e)).

3.3. Metabolic Subgroup Analysis of BC. In order to further
analyze the role of metabolic genes in BC, we divided BC
patients from the TCGA database into 5 subgroups by
employing the 955 metabolic genes for consensus clustering
analysis (Figure 4(a)). We next characterized the compo-
nents of metabolic subgroups through PAM50 subtypes
and found that LumA type had the highest proportion in
the C1 subgroup, while C3 subgroup was mainly composed
by basal type (Figure 4(b)). The metabolic subgroup findings
were then compared with the tumor-node-metastasis
(TNM) classification. We observed that the C3 subgroup
had the smallest proportion of stage III and IV
(Figure 4(c)), N2+N3 stage (Supplementary Figure 2A), a
smaller proportion of T3+T4 stage (Supplementary
Figure 2B), and M1 stage (Supplementary Figure 2C).

Then, survival analyses showed the C3 subgroup had a
better prognosis, both in terms of OS and progression-free
interval (PFI) (Figures 4(d) and 4(e)). We further analyzed
the immune cell infiltration of metabolic subpopulations
and found higher infiltration in the C3 subpopulation,
especially CD8+ T cells, but had fewer fibroblasts
(Figures 4(f) and 4(g)), indicating that immune response
may contribute to favorable survival of C3 subgroup.

3.4. Construction and Validation of Prognostic Model. To
further explore the function of these metabolic genes in pre-
dicting survival of BC, the candidate genes were screened by
the univariate Cox regression in the training set, and
survival-related genes were further enrolled in the LASSO
algorithm to establish an optimal prediction model. The 5
genes carboxyl ester lipase (CEL), phosphoglycerate kinase
1 (PGK1), iodotyrosine deiodinase (IYD), quinolinate phos-
phoribosyltransferase (QPRT), and solute carrier family 27
member 2 (SLC27A2) were chosen for the construction of
the risk characteristic formula (Supplementary Figure 3A-

aD
C

B 
ce

lls
Ba

so
ph

ils
CD

4+
m

em
or

y 
T 

ce
lls

CD
4+

na
iv

e T
 ce

lls
CD

4+
Tc

m
s

CD
8+

na
iv

e T
 ce

lsl
CD

8+
T 

ce
lls

CD
8+

Tc
m

CD
8+

Te
m

cD
C

D
C

iD
C

M
ac

ro
ph

ag
es

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

M
as

t c
el

ls
M

em
or

y 
B 

ce
lls

M
on

oc
yt

es
N

ai
ve

 B
 ce

lls
N

eu
tro

ph
ils

N
K 

ce
lls

N
KT pD

C

Eo
sin

op
hi

ls

Cl
as

s s
w

itc
he

d 
m

em
or

y 
B 

ce
lls

Pl
as

m
a c

el
ls

Pr
o 

B 
ce

lls
Tg

d 
ce

lls
Th

1 
ce

lls
Th

2 
ce

lls
Tr

eg
s

1.0

0.5

0.0

Sc
or

e

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎ns ns nsns ns ns ns ns

C5

C4

C3

C2

C1

Subtype

Xcell

(g)

Figure 4: Consensus clustering of metabolic genes in TCGA-BC dataset. (a) Consensus matrices of metabolic genes for k = 5. (b) Bar charts
of PAM50 subtype proportions among different metabolic subgroup patients. (c) Bar charts of TNM stage subtype proportions among
different metabolic subgroup patients. (d) Kaplan-Meier curves for the OS of BC patients among different metabolic subgroups. (e)
Kaplan-Meier curves for the PFI of BC patients among different metabolic subgroups. (f) The infiltrating immune cells of metabolic
subpopulations calculated by MCP algorithms. (g) The infiltrating immune cells of metabolic subpopulations calculated by xCell algorithms.
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Figure 5: Continued.
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B). They can all be used as independent prognostic predictors
for BC patients (Supplementary Figure 3C-D). The final risk
score model formula was constructed by a multivariate Cox
regression: risk score = 0:196 ×mRNA level of CEL + 0:530 ×
mRNA level of PGK1 + 0:279 ×mRNA level of IYD + 0:187
×mRNA level of QPRT − 0:164 ×mRNA level of SLC27A2.
According to the predictive model, each BC patient was given
a risk score, and the patients from different datasets were
divided into high-/low-risk groups based on the optimal
cutoff point. In the training dataset, patients in the high-risk
group demonstrated a shorter survival time than patients in
the low-risk group (Figure 5(a)). The above conclusion was
then verified on the testing dataset (Figure 5(b)), external
dataset (Figure 5(c)), the whole TCGA-BC dataset
(Supplementary Figure 3E), and our clinical specimens
(Figure 5(d)). The results were consistent with the above
conclusion that patients with higher scores had a poorer
prognosis. The predictive efficacy of our prognostic model
was tested by ROC curve analyses, indicating our risk score
model was accurate and sensitive. As illustrated by
Figure 5(e), AUC results for 1-, 3-, and 5-year overall
survival predictions in the training dataset were 0.82, 0.74,
and 0.75, respectively. In the testing dataset, AUC results for
1-, 3-, and 5-year overall survival predictions were 0.67, 0.73,
and 0.71, respectively (Figure 5(f)). In the external dataset,
the AUCs for 2-, 4-, and 6-year overall survival predictions
were 0.7, 0.73, and 0.68, respectively (Figure 5(g)). In the
whole TCGA-BC database, AUC results for 1-, 3-, and 5-
year overall survival predictions were 0.76, 0.73, and 0.73,
respectively (Supplementary Figure 3F). Furthermore, the
predictive efficiency was tested on our clinical specimens,
and the AUCs for 3- and 5-year overall survival predictions
were 0.72 and 0.65 (Figure 5(h)). Finally, the BC patients
from the whole TCGA-BC dataset were divided into
different subgroups according to age, pathological T stage,
pathological N stage, pathological M stage, TNM stage,
PAM50 classification, and risk score model and found that
the model was effective in assessing the outcomes of BC
patients (Supplementary Figure 4).

3.5. Clinical Application of a Nomogram Incorporating the
Risk Score Model. In order to establish a more convenient
and objective model that can be applied in clinical practice, a
nomogram was constructed to evaluate the prognostic ability
of our model in the BC patients from the TCGA database.
Our risk model and several clinicopathological characteristics
were enrolled into the univariate Cox regression analysis,
revealing that the risk score (HR = 1:285, P < 0:001), TNM
stage (HR = 2:095, P < 0:001), age (HR = 1:033, P < 0:001),
pathological M stage (HR = 4:333, P < 0:001), pathological N
stage (HR = 1:904, P = 0:002), and pathological T stage
(HR = 1:672, P = 0:028) could predict the prognosis of BC
patients (Figure 6(a)). The multivariable Cox regression anal-
ysis further confirmed that risk score (HR = 1:220, P < 0:0001
) and age (HR = 1:030, P < 0:0001) could serve as independent
prognostic biomarkers for BC patients (Figure 6(b)). The ROC
curve analysis also indicated that the risk score model could
accurately predict BC patients’ outcomes (AUC = 0:754)
(Figure 6(c)). Finally, we established a nomogram consisting
of the above variables, which could quantitatively score the
probability of BC patients’mortality. This tool provides a con-
venient method for the precise diagnosis and treatment of BC
patients. Each patient is assigned a total score from the nomo-
gram, where a higher risk score was associated with a poor
prognosis (Figure 6(d)).

3.6. Immune and Genomic Alterations between High- and
Low-Risk Groups. The above demonstrated that the risk
score model is effective in predicting the prognosis of BC
patients and patients with high risk have worse survival. In
order to further explore the causes behind the poorer prog-
noses, the differences in clinicopathological parameters
between the high- and low-risk groups were analyzed. As
shown in Figure 7(a), the TNM classification, PAM50 sub-
types, and our previous metabolic clustering subtypes were
significantly different in high- and low-risk groups. The
MCP algorithm and xCell algorithm were employed to eval-
uate the immune cell infiltration in high- and low-risk
groups. A higher degree of immune cell infiltration was
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Figure 5: Five-gene metabolic signature is a prognostic biomarker for OS in different datasets. (a–d) KM survival analyses of OS for
training, testing, external datasets, and the dataset based on our clinical specimens, respectively. (e–h) Time-dependent ROC curves of
OS for training, testing, external datasets, and the dataset based on our clinical specimens, respectively.
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found in the high-risk group, including T cells, monocytes,
and neutrophils. Notably, immunosuppressive cells such as
Th2 cells and M2 macrophages also exhibited a higher level
of infiltration. Moreover, the high-risk group showed a
higher expression of immunosuppressive molecules such as
PDCD1, IDO1, CD274, and CD163, than the low-risk group
(Figure 7(b)). The above implies that BC patients in the
high-risk group may be exposed to an immunosuppressive
TME, leading to tumor progression. By comparing patients
in the high-risk group to the low-risk group, we extracted
DEGs for functional enrichment analysis (Supplementary
Figure 5). GO analysis revealed that upregulated DEGs
were mainly involved in galactosyltransferase activity and

downregulated DEGs were focused on tetrapyrrole binding
(Figure 7(c)). KEGG analysis demonstrated that
upregulated DEGs were mainly enriched in the
biosynthesis of amino acids, while downregulated DEGs
were centralized on the degradation of valine, leucine, and
isoleucine (Figure 7(d)).

4. Discussion

BC is a disease with high morbidity and mortality and is also
highly heterogeneous [1, 2, 38]. Patients with the same
PMA50 classification or TNM stage may have different out-
comes [39, 40]. Therefore, new biomarkers which have the
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potential to better predict BC patients’ prognoses are
urgently needed. Metabolic reprogramming has been con-
sidered as a hallmark of tumors, and metabolite profiling
has become an informative approach to elucidate tumor het-
erogeneity [9, 24]. With the development of next-generation
sequencing, many public transcriptomic databases have been

established and have become convenient tools for oncology
research [41]. Herein, we used public databases such as
TCGA and GEO datasets to explore the metabolic repro-
gramming of BC.

Peng et al. demonstrated that metabolic expression sub-
types indeed reflect metabolic activities and were associated
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Figure 7: Investigation of immune infiltration between high- and low-risk groups. (a) Heatmap demonstrated the differences between
high-/low-risk groups in immune infiltration and clinical parameters. (b) The expression of immunosuppressive molecules between
high-/low-risk groups. (c) Top 10 most enriched molecular functions in GO analyses between high- and low-risk groups. (d) Top 10
most enriched KEGG pathway enrichment analyses between high- and low-risk groups.
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with patients’ survival [24]. Haider et al. reported that differ-
ent metabolic requirements contributed to genomic hetero-
geneity and invasiveness among tumors [25]. In our study,
we firstly extracted metabolic genes by intersecting gene sets
downloaded from the above two pieces of literature. In order
to further analyze the metabolic genes involved in BC
tumorigenesis, metabolic DEGs between BC and adjacent
noncancerous tissues were extracted from the TCGA data-
sets. Some metabolic DEGs had been reported to participate
in the occurrence and development of breast tumors. Putluri
N et al. found ribonucleotide reductase M2 (RRM2) as a
prognostic marker in BC associated with poor survival and
tamoxifen resistance [42]. One study had indicated that
serum Thymidine kinase 1 (TK1) was higher in BC patients
when compared with blood donors [43]. Ding et al. revealed
that pyrroline-5-carboxylate reductase 1 (PYCR1) was asso-
ciated with poor differentiation and aggressive phenotypes
of BC [44]. The above previous studies were consistent with
our study results. Functional enrichment analyses elucidated
the function of metabolic genes in BC. GO analyses demon-
strated that metabolic genes overexpressed in BC tumor tis-
sues mainly focused on lysophospholipid acyltransferase
activity, lending support to previous research. Lebok et al.
revealed lysophosphatidylcholine acyltransferase 1
(LPCAT1) as one of the core genes in lysophospholipid acyl-
transferase activity was linked to poor prognosis in BC [45].
KEGG pathway enrichment indicated that the genes overex-
pressed in BC tumor tissues are mainly involved in pyrimi-
dine metabolism. In contrast, the genes that were
overexpressed in adjacent noncancerous tissues were mainly
involved in the coenzyme binding by GO analyses and in
fatty acid degradation by KEGG pathway analyses.

CD8+ T cells are a vital component of the adaptive
immune system and play an essential role in host immune
surveillance and immune clearance against tumors. Previous
research has confirmed that the infiltration of CD8+ T cells
in BC tissues was correlated with a better prognosis [46,
47]. CD8+ T cells in the TME are manipulated by tumor cells
through several mechanisms, resulting in immune exhaus-
tion and immune dysfunction, thus weakening the monitor-
ing and clearance of tumor cells [48, 49]. Therefore, it is
important to evaluate the function and infiltration of CD8+

T cells in BC tissues. We utilized the MCP algorithm and
xCell algorithm to obtain metabolic genes correlated with
CD8+ T cells and found 49 positively correlated genes and
5 negatively correlated genes with CD8+ T cells. The above
genes can be employed to estimate the infiltration of CD8+

T cells. Surprisingly, some of the upregulated genes had been
reported to be associated with T cell dysfunction. PIK3CD
encodes the p110d isoform of the catalytic subunit of phos-
phoinositide 3-kinase (PI3K). Edwards et al. had reported
germline gain-of-function (GOF) mutations in PIK3CD
aberrantly induced exhaustion and impaired cytotoxicity of
CD8+ T cells [50]. Several studies have reported that IDO1
could suppress the function of local CD8+ T effector cells
[51]. We deduce that BC patients with high levels of these
genes may suffer a “Hot” tumor status with high infiltration
of exhausted CD8+ T cells [52, 53]. Biological function anal-
yses revealed that the genes positively correlated with CD8+

T cells were closely related to metabolic processes, especially
in lipase activity and platelet activation. In contrast, genes
that were negatively correlated with CD8+ T cells were
focused on nucleotide diphosphatase activity. This section
may provide potential principles for screening the
immunotherapy-adapted population.

We conducted consensus clustering analysis by employ-
ing metabolic genes and obtained 5 metabolic subgroups.
PAM50 classification is a method characterized by 5 intrin-
sic molecular subtypes according to the microarray-based
gene expression profiling of BC patients, including the lumi-
nal A (LumA), luminal B (LumB), HER2-enriched (HER2-
E), basal-like, and normal-like breast cancer subtypes [39,
54]. Significant heterogeneity was observed within the com-
ponents of PAM50 subtypes, especially between C1 and C3
subgroups. Based on the TNM classification, we also
deduced that the other 4 subgroups were more aggressive
than the C3 subgroup [40], and further survival analyses also
revealed C3 subgroup had a better prognosis. Proportion
analyses of infiltrating immune cells were performed to
investigate the underlying mechanism. Higher infiltration
with CD8+ T cells and less fibroblast infiltration were associ-
ated with better outcomes. These findings have also been
reported by previous studies. BC patients with more CD8+

T cell infiltration [46, 49, 52] or less fibroblast infiltration
[55] had better survival outcomes.

There are many well-established prediction models
based on public transcriptomic databases. For example, Liu
Y et al. identified a 22-autophagy gene signature based on
TCGA and GEO lung cancer cohorts. They also confirmed
that gene signature was an independent predictor of progno-
sis [56]. Through analyzing hepatocellular carcinoma (HCC)
TCGA dataset, Zhang et al. showed that hypoxia-related sig-
nature is a potential biomarker for diagnosis, prognosis, and
recurrence of HCC [57]. In our study, the univariate Cox
regression, LASSO Cox regression, and multivariate Cox
regression were further performed in training cohort, and a
5-gene signature was constructed for precise prognostic pre-
diction of BC patients. Several previous studies have
reported that the extracted genes individually affect the
prognosis of BC patients. For example, Cui et al. described
that high enzyme CEL expression might be an independent
prognostic factor for poor survival of BC patients [58].
PGK1 had been reported as a major enzyme in the aerobic
glycolysis pathway to induce cancer progression [59]. Liu
et al. confirmed QPRT to enhance the invasiveness of BC
probably through purinergic signaling and might be a poten-
tial prognostic indicator and therapeutic target in BC [60].
The above also demonstrated the prognostic value of our
risk score model. Its accuracy was verified on different data-
sets of BC patients by survival analyses and ROC curve anal-
yses. The results indicated that the risk score model could
serve as a superior tool for predicting the prognosis of BC
patients. Higher risk scores are associated with a poorer
prognosis. We also obtained that in the subgroups classified
by different pathological parameters, our risk score model
could better judge patients’ prognoses. The risk model can
accurately predict BC patients’ outcomes based on the clini-
copathological parameters. Additionally, the univariate and
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multivariate Cox regression analyses proved that our risk
score model can independently predict BC patients’ survival.
Furthermore, the nomogram integrating independent prog-
nostic factors indicated that the risk score signature can sta-
bly and precisely predict BC patients’ survival. This provides
a clinically convenient prognostic assessment strategy.
Finally, we observed that BC patients in the high-risk group
exhibit an immunosuppressive TME due to the higher infil-
tration of immunosuppressive cells such as Th2 cells [61]
and M2 macrophages [62], leading to poor prognoses for
BC patients. Moreover, higher expression of immune check-
points, such as PDCD1, IDO1, CD274, and CD163, was
detected in the high-risk group.

5. Conclusions

In summary, this study comprehensively investigated the
effects of metabolite profiles in BC patients. A 5-gene meta-
bolic prognostic signature was constructed for precise diag-
nostic assessment and individualized treatment of BC
patients.
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Supplementary Figure 1: validations on our clinical speci-
mens. (A) Validation of DEG expression between tumor
and normal tissues. (B) Validation of identified metabolic

genes that correlated with CD8+ T cells. Supplementary Fig-
ure 2: bar charts of TNM classification subtype proportions
among different metabolic subgroup patients. (A) Patholog-
ical N stage. (B) Pathological T stage. (C) Pathological M
stage. Supplementary Figure 3: establishment of prognostic
model. (A-B) Identification of 5 metabolic genes by LASSO
regression analysis. (C) 5 metabolic genes can individually
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for the OS of patients deriving from the whole TCGA-BC
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in PAM50 classification. Supplementary Figure 5: identifica-
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low-risk groups were demonstrated by volcano map. (B)
Heatmap demonstrated that metabolic DEGs between high-
and low-risk groups. The upregulated DEGs were shown in
red, while downregulated DEGs were shown in blue. Supple-
ment Table 1: clinicopathological features of 50 BC patients
from Henan Provincial Third People’s Hospital. Supplemen-
tary Table 2: primers of genes used in this study.
(Supplementary Materials)
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