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Objective: The timing and nature of surgical intervention for semisolid abnormalities are
dependent upon distinguishing between adenocarcinoma-in-situ (AIS), minimally invasive
adenocarcinoma (MIA), and invasive adenocarcinoma (INV). We sought to develop and
evaluate a quantitative imaging method to determine invasiveness of small, ground-glass
lesions on computed tomography (CT) chest scans.

Methods: The study comprised 268 patients from 4 institutions with resected (<=3 cm)
semisolid lesions with confirmed histopathological diagnosis of MIA/AIS or INV. A total of
248 radiomic texture features from within the tumor nodule (intratumoral) and adjacent to
the nodule (peritumoral) were extracted frommanually annotated lung nodules of chest CT
scans. The datasets were randomly divided, with 40% of patients used for training and
60% used for testing the machine classifier (Training DTrain, N=106; Testing, DTest, N=162).

Results: The top five radiomic stable features included four intratumoral (Laws and Haralick
feature families) and one peritumoral feature within 3 to 6 mm of the nodule (CoLlAGe
feature family), which successfully differentiated INV from MIA/AIS nodules with an AUC of
0.917 [0.867-0.967] on DTrain and 0.863 [0.79-0.931] on DTest. The radiomics model
successfully differentiated INV from MIA cases (<1 cm AUC: 0.76 [0.53-0.98], 1-2 cm AUC:
0.92 [0.85-0.98], 2-3 cm AUC: 0.95 [0.88-1]). The final integrated model combining the
classifier with the radiologists’ score gave the best AUC on DTest (AUC=0.909, p<0.001).
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Conclusions: Addition of advanced image analysis via radiomics to the routine visual
assessment of CT scans help better differentiate adenocarcinoma subtypes and can aid in
clinical decision making. Further prospective validation in this direction is warranted.
Keywords: radiomics, minimally invasive adenocarcinoma (MIA), ct scan (CT), integrated model analysis, invasive
adenocarcinoma (IA), radiologists interpretation
INTRODUCTION

Lung cancer is the leading cause of cancer related deaths in the
world. Adenocarcinoma is the most common lung cancer
histologic type (1). With the increase in diagnostic imaging
methods such as low-dose chest CT screening, there has been
an increase in the detection of lung cancers at earlier stages often
presenting as small solid/semisolid nodules or ground-glass
opacities (GGOs) (2–4). The new IASLC guidelines (5) and the
AJCC-defined 8th edition staging guidelines (6), along with
the WHO classification of adenocarcinomas (7), have divided
the adenocarcinoma into three broad categories: preinvasive
adenocarcinoma [including adenocarcinoma in situ (AIS)],
minimally invasive adenocarcinomas (MIA) and invasive
adenocarcinoma (INV) (8). Histopathologically, lepidic growth
(defined as growth along the alveolar walls) is a hallmark of non-
invasive lesions (8). An invasive component in the new
classification system is defined as either any cellular histologic
subtype other than lepidic or invasion of malignant cells into
myofibroblastic stroma (9). Lepidic cancers are observed to
follow an orderly progression from the AIS to MIA before
becoming INV (10).

Outcomes of adenocarcinomas following surgical resection
are dependent on the initial stage. Resected stage IA non-small
cell lung cancer (NSCLC) has a five-year overall survival rate of
about 75% (11). In comparison, the five-year disease-specific
survival rate for resected MIA is nearly 100% (12). The surgical
approach and extent of lung resection for these lung nodules can
be dictated by the adenocarcinoma histologic subtype (13).
Sublobar resection can produce equivalent results to lobectomy
in patients with non- or minimally invasive adenocarcinomas,
with the benefit of preservation of lung parenchyma and
potential eligibility for repeat resection in the case of
subsequent primary tumor.

At present, there are no definite radiographic biomarkers to
identify the extent of invasion prior to surgical resection.
Although the invasive portion of the cancer is typically solid
and non-invasive (lepidic portion) is ground glass in appearance
on the CT scan, there is substantial overlap in the imaging
findings between different subcategories. Furthermore,
traditional CT scan evaluation can be subjective, and
ng cancer; MIA, minimally invasive
itu; INV, invasive; GGO, ground-glass
mputed tomography; BAC, broncho-
eceiver operating characteristic curve;
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interpretations tend to vary widely depending on the
experience of the reading radiologist (14). This coupled with
other variables such as scan parameters, slice thickness, etc.
limits reliable differentiation on routine radiologic assessment.
Fine needle aspiration and imaging is inaccurate in determining
the degree of invasion (15). Hence, there is a critical need to
create an accurate model to non-invasively assess the level of
invasion on imaging in these early-stage adenocarcinomas prior
to surgical resection.

Radiomic textural features represent high-throughput
quantitative imaging data extracted from radiographic scans to
investigate subtle patterns within a region of interest (ROI) (16).
These textural patterns extracted from inside and outside the
nodule have been shown to have diagnostic, prognostic, and
predictive utility in the lung cancer domain (17). These features
are known to capture the underlying tumor biology and
morphology of the tissue (18, 19). There have been previous
attempts at identifying the level of invasion using radiomic
features, but most of them focus on radiomic textural analysis
solely within the tumor (20, 21). The peritumoral
microenvironment has emerged as a promising candidate
location for identifying the level of invasion, although it has
been relatively unexplored (22).

In this study, we constructed a non-invasive radiographic
biomarker based on baseline chest CT scan-guided radiomics to
distinguish MIA from INV for stage I NSCLC patients with
tumor diameter less than 3 cm. We evaluated these radiomics
features via supervised and unsupervised approaches to identify
specific patterns associated with INV and MIA nodules. We also
divided patients into different subgroups based on the diameter
of the nodule and evaluated classifier performance within
nodules with different sizes. Finally, we compared our model
with the performance of two radiologists and integrated the
radiologists’ score with the corresponding machine classifier
performance to assess combined human and machine
classification performance.
MATERIALS AND METHODS

Study Population
We performed a retrospective, multi-cohort study of patients
with resected MIA and stage 1A INV cases. A total of 268
patients from four different institutions were included in the
study, all of whom had baseline (pre-treatment) CT scans. Based
on our inclusion criteria, we selected a cohort of patients who
had tumor size less than or equal to 3 cm with a special focus on a
subset of 1 to 2 cm nodules.
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The patients were randomly divided into training
(DTrain=40%) and validation (DTest=60%) cohorts. The DTrain

was selected to keep the same number of invasive and non-
invasive lesions for training the model.

Procedure
CT Segmentation and Radiomic Textural
Feature Extraction
The index pulmonary lesions on these baseline CT scans were
annotated using a freehand tool on 3D slicer software by an
expert radiologist. The details regarding the CT scan parameters
are listed in Appendix 1.

After the tumor was annotated, the area of the nodule was
calculated using MATLAB 2015. The tumor area was calculated
upon identification of the CT slice with the largest tumor region
and was used for subgroup analysis and for creating a combined
radiomics area-based model.

These annotated nodules were used to extract the intra- and
peri-tumoral texture features. The peri-tumoral compartment
around the nodule was defined via quantitative morphological
operations (dilation) as a region extending radially from the
nodule boundary up to roughly 15 mm, since a resection margin
larger than 15 mm for lung nodules is considered not to confer
additional benefit in terms of invasive lesions. The program was
modified to eliminate skin, air, or fat when the mask was
extended. Radiomic peritumoral features were extracted in an
annular ring-shaped fashion. Five annular rings peritumorally
were analyzed, each with 3-mm increments leading up to a
maximum radius of 15 mm from the nodule periphery.

The details regarding extracted radiomic features are
provided in Appendix 1. Haralick and Collage features are
based on constructing a gray-level co-occurrence matrix and
are known to capture the general disorganized and chaotic
microarchitecture of the annotated region of interest (23, 24).
The Laws and Laplace features focus on the high-frequency
content of the image, focusing on the boundary of the ROI
(25). Gabor features are wavelet-based features (26).

Classifier Construction
All patients included in the study were divided into two groups:
pre-invasive/minimally invasive lesion group (AIS, MIA) and
frank invasive group (invasive pulmonary adenocarcinoma
[IPA]). These two groups were used as a clinical endpoint for
the classification problem.

First, all the radiomic features were analyzed using an
unsupervised clustering approach to evaluate the ability of the
radiomic features to differentiate the two different diagnostic
categories blinded to prior pathology results or clinical outcome.
First, the PCA was used on an entire feature pool and the top
three principal components were used within K-Means
clustering analysis. In addition, the hierarchical clustering was
performed on an entire cohort.

Next, a supervised machine learning based logistic regression
classifier, MR, was constructed using the top selected features
from the training cohort, DTrain, and then was validated on an
independent and blinded validation set DTest. Further, DTest was
divided into 3 different subsets based on the nodule size
Frontiers in Oncology | www.frontiersin.org 3
(less than 1 mm, 1 mm-2 mm, 2 mm-3 mm) and the
performance of the model was observed on these various
subgroups defined using nodule sizes.

Next, another supervised machine classifier model was
constructed using the tumor areas, MA, and further integrated
with radiomic features to construct the combined tumor area-
radiomics based model (MR+A).

Human Reader Experiment
The patients from DTest were individually assessed by two
radiologists with 12 and 21 years of experience, respectively,
being blinded to the ground truth pathologic diagnosis of the
nodules. The two readers scored each tumor from 1 to 3; 1
suggesting the nodule was MIA, 2 being indeterminate, and 3
being INV. We calculated the accuracy of the radiologists’ scores
and further compared our radiomics model, MR, with the results
from the radiologists (MHR). Finally, we integrated the
probability obtained from the radiomics model, MR, with the
radiologists scoring (1 to 3) to obtain the combined human and
machine-based interpretations (MR+HR).

Statistical Analysis
Statistical analysis was performed using MATLAB 2015 and R.
version 3.5.3. A two-sided p-value (<0.05) was considered
significant for all the statistical analyses.

Looking at the radiomic feature pool, radiomic feature stability
and reproducibility were evaluated using the RIDER test-retest
dataset (27). This dataset contains 31 lung cancer patients - scanned
two times, 15 min apart. These scans were used for calculating the
intraclass correlation coefficient (ICC) for each feature vector,
which measures the similarity between two feature vectors.
Considering the threshold of 0.85, all feature vectors having a
value less than this threshold were removed from the analysis.

Within an unsupervised clustering analysis, hierarchical
clustering and principal component analysis (PCA) combined
with K-means clustering was performed on DTrain. The clustering
results were compared against ground truth for calculating the
clustering accuracy.

For feature selection and building a classifier, 300 iterations of
threefold cross-validation were performed within the training
dataset, DTrain. The minimum redundancy maximum relevance
(mRMR) feature selection algorithm (28) was implemented
within the cross-validation setting to select the top-performing
radiomic features that discriminate INV from MIA/AIS. MRMR
identifies a set of features that maximally distinguished two
classes while minimizing intra-feature correlation. A maximum
offive features was selected to prevent overfitting due to the curse
of dimensionality arising from an overabundance of features
relative to the sample size. mRMR was performed using
MATLAB software with a feature selection toolbox for C. The
top radiomic feature set was further analyzed using box-and-
whisker plots and qualitative feature maps comparing feature
expressions between MIA/AIS and invasive adenocarcinomas.

To evaluate classifier performance, the area under the receiver
operating curve (AUC), accuracy, sensitivity, and specificity were
calculated for training and validation datasets. The significance
of the addition of a nodule area to the radiomic model was
May 2022 | Volume 12 | Article 902056
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calculated using DeLong’s test and the corresponding p-value
(29). Figure 1 shows the overall pipeline of the procedure.
RESULTS

Baseline Characteristics
Of the 268 nodules, 103 nodules were pathologically confirmed as
pre-invasive lesions (AIS, n = 2) and minimally invasive lesions
(MIA, n = 101), whereas 165 were confirmed as invasive lesions
(INV = 165). Figure 2 shows the datasets and patient inclusion
criteria along with training and testing set distributions.

Figure 3 shows an example of CT scans with INV and
MIA lesions.

Experiment 1 – Differentiating Minimally
Invasive Adenocarcinoma From Invasive
Adenocarcinoma
Unsupervised Clustering
The extracted radiomic feature pool, that is, the combination of
intratumoral textural and peritumoral textural radiomics features,
was used within the principal component analysis (PCA) and k-
means clustering to perform unsupervised clustering analysis. The
optimal number of clusters was two using the first three principal
components on DTrain. The constructed clusters had an accuracy of
73.1%. The compactness within the clusters, that is, how similar the
members within the same group are, was 62.8%. The validation of
the constructed cluster was performed using the silhouette
coefficient (silhouette width). The silhouette plot (30) suggests that
the clustering using the two groups was optimal with no negative
silhouette width and most cluster values > 0.5 (Appendix 1).

Using the entire extracted radiomic feature pool, within the
hierarchical clustering analysis, we observed the 4 obvious
clusters of patients. Cluster 1 and Cluster 3 were associated
with INV cases (cluster 1 = 100%, cluster 3 = 62.5% INV cases),
whereas clusters 2 and 4 were associated with MIA cases
Frontiers in Oncology | www.frontiersin.org 4
(cluster 2 = 71.4%, cluster 4 = 75% MIA cases). The results of
unsupervised clustering analysis are shown in Figure 4.

The unsupervised clustering analysis suggests that the
majority of INV adenocarcinoma cases were clustered together,
and MIA/AIS patients were clustered together. Collectively, these
results suggest that these specific patient groups have distinct
radiomic signatures.

Supervised Analysis and Selecting the Top
Differentiating Features
During feature discovery for the model MR within DTrain, the top
5 features identified included a peritumoral (CoLlAGe feature
FIGURE 1 | Overall workflow diagram. The nodules were segmented on the CT scans, and intratumoral and peritumoral features were extracted using MATLAB
2015. The top features were selected using the mRMR feature selection method. The validation of the radiomics model was performed using unsupervised clustering
and supervised classification-based approaches.
FIGURE 2 | Data source and CONSORT diagram for patient selection.
May 2022 | Volume 12 | Article 902056
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family) and 4 intratumoral features (Laws, Laplace, and Haralick
feature family). The details of the top selected five features, along
with their boxplots, are illustrated in Appendix 1. INV cases
were observed to have a higher expression of intratumoral
features compared to MIA cases. Figure 5 shows the feature
expression maps for the INV and MIA cases. The notations of
various models constructed using these features are explained
in Table 1.

On the training cohort (DTrain, N=106), the logistic regression
AUC for MR was 0.917 [0.87-0.97]. The same classifier, within an
independent blinded test set (DTest, N=162), MR yielded an AUC
of 0.88 (Table 2).

Next, within the subgroup analysis, we noticed the radiomic
model, MR, was consistent in distinguishing INV from
MIA. Further, MR is largely unaffected by the size of the
nodule (Table 2).

Further, when the area of the nodule was integrated within
the logistic regression classifier along with the radiomic features,
MR+A, there was no statistically significant improvement in AUC
on the validation set as compared to MR standalone.
Frontiers in Oncology | www.frontiersin.org 5
Experiment 2 – Comparing the Radiomics
Analysis With Readers
We performed the analysis with individual radiologists (MHR)
along with the combined performance with the classifier (MR +

HR). Reader 1 had an AUC of 0.815 and an accuracy of 0.748 for
predicting MIA cases from INV cases, whereas Reader 2 had
AUC and accuracy of 0.796 and 0.742, respectively (Table 3).

Within nodules <1 cm size, the classifier demonstrated an
improvement over the radiologists’ interpretations.

Finally, we combined the classifier predictions with the
radiologists’ scores and constructed the combined model MR+HR.
MR+HR achieved an average AUC of 0.909 on DTest, corresponding
to the highest AUC among all models (MR= 0.861, p=0.041; MHR1 =

0.815, p <0.001; MHR2 = 0.796, p<0.001).
DISCUSSION

Current CT technologies have improved and expedited early
lung nodule diagnosis. Patients diagnosed as MIA survive well,
FIGURE 3 | Pathologically proven INV (left image) and MIA (right image) cases presenting as predominantly ground-glass nodular densities which are indistinguishable
on CT imaging.
FIGURE 4 | Unsupervised clustering analysis using radiomic features. (left image) K-means clustering with 4 clusters. The red dots show the centroids of the three
clusters obtained via K-means clustering. The violet points represent INV patients, and the yellow points depict MIA patients. The two distinct clusters had an accuracy of
73.13% to distinguish MIA from INV cases. (right image) Hierarchical clustering using all features. On the x-axis, black color stands for the INV cases, and aquamarine
color stands for the MIA cases
May 2022 | Volume 12 | Article 902056
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postoperative recurrence and lymph node metastasis are rare,
and 5-year survival rate is close to 100%. In contrast, patients
with INV have reduced five-year survival (31–33). Lobectomy is
considered the standard surgical treatment for INV patients (13).
Prior studies using CT scans features of air bronchograms and
borders have not been able to accurately distinguish invasive
lesions (32). An accurate way to determine the lesion’s
invasiveness pre-operatively on routine chest CT scans would
be beneficial in guiding the need for the timing of resection and
potentially amount of resection (13).

In our work, we developed a computerized model using textural
patterns known as radiomics to accurately differentiate MIA from
INV cases from pre-treatment baseline CT scans from four different
institutions. We observed that radiomic features extracted from
intra- and peritumoral regions of these lung nodules harbor
information related to nuances of the tissue properties not
apparent to the naked eye. Additionally, in our analysis, two
radiologists examined these scans in a blinded fashion. They
scored them visually, and the integration of radiologists’
interpretation with the classifier performance yielded the highest
diagnostic accuracy on the test set (AUC = 0.909).

Although there have been previous successful attempts to
examine GGOs via radiomics analysis (20, 21, 34, 35), most
studies focus on textural patterns extracted from within the lung
lesions to differentiate MIA from INV lesions. Specifically, most
Frontiers in Oncology | www.frontiersin.org 6
of them employed features focused on the gray level co-
occurrence-based matrix and wavelet-based feature families for
identifying INV cases (20, 36). A few studies have further
integrated clinical and morphological features into the
radiomics model to improve model accuracy (20, 37).

Two of the top five features identified by our radiomics based
supervised approach corresponded to the gray-level co-
occurrence-based feature (GLCM) families which is in line
with previously published results (20). In addition, we also
noticed Laws and Laplace features extracted from within the
nodule to be among the top set of discriminating features. These
two feature families (Laws and Laplace) examine higher-order
frequency content of the given region of interest (25). We noticed
a higher expression of all intratumoral features for INV when
compared to MIA nodules. The elevated expressions of these
radiomic features could reflect more chaotic and haphazard
microarchitecture within the comparatively high-risk invasive
tumors (Figure 5).

In our work, we also interrogated the tumor environment
(TME) surrounding the nodule (i.e., peritumoral region) to
evaluate its utility in providing complementary information with
respect to disease diagnosis. We defined the radiomic profile of
these GGO nodules during the feature discovery portion using a
combination of intra- and peritumoral regions. Within our analysis,
we noticed one of the top five features was from the peritumoral
region. The feature was observed from within the 3 to 6 mm region
outside the nodule. Recent studies have shed new light on this
complex interaction between tumor and host immune cells and
immune responses. In work by Altorki et al. (22), the authors
demonstrated the role of TME for progression for pre-invasive to
invasive adenocarcinoma lesions. They observed a dominant
regulatory T cell-mediated immune suppression initiated at the
precursor level sustained with rising intensity throughout malignant
progression. Few studies also show that these perinodular radiomic
features may reflect tumor microarchitecture changes or be
FIGURE 5 | Feature maps. The first row depicts INV patient, and the bottom row depicts an MIA patient with an axial CT image as well as corresponding
peritumoral and intratumoral feature maps. For the INV case, the feature maps had a higher feature expression compared to the MIA cases suggesting
association between chaotic/disturbed microarchitecture and tumor invasiveness.
TABLE 1 | Model notations.

Model Notations

Radiomics Model MR

Clinical Model MA

Radiomics-Clinical Model MR+A

Human Reader Model MHR

Integrated Human Reader and Radiomics Model MHR+R
May 2022 | Volume 12 | Article 902056
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capturing the presence of tumor-infiltrating lymphocytes (TILs)
(18). We noticed an increased peritumoral CoLlAGe feature (24)
expression for MIA cases.

Specifically with respect to the perinodular region, in work byWu
G. et al. (36), the authors did not observe an improvement in AUC
with the addition of radiomic features from the perinodular region to
differentiate INV cases fromMIA and AIS (p = 0.11). They observed
the most predictive features to emanate from the ground-glass and
solid regions of the nodule.Whereas in the work byWu L. et. al (38).,
the authors show the utility of perinodular features for the same
clinical problem. However, in our analysis, we noticed CoLlAGe
peritumoral radiomic features to be statistically significant between
the training and testing cohorts (Appendix 1; <0.01). CoLIAGe
captures higher-order co-occurrence patterns of local gradient
tensors at a voxel level and has been shown to be diagnostic and
prognostic for a variety of disease indications (17, 18, 24).
Additionally, in our analysis, we included the complete GGOs in
addition to semisolid nodules unlike in the study by Wu et al. (36).

We further evaluated and compared our radiomic model with
the tumor diameter. Studies show the two-dimensional diameter of
the nodule to be one of the strongest predictors for pulmonary
nodule risk classification in the quantitative CT image analysis. In
work by Xu et al. (34), the authors noticed the diameter of GGOs
to be significantly different in MIA and INV nodules, and a
conventional model constructed using clinical and quantitative
features (such as age, diameter, and density) yielded the best AUC
Frontiers in Oncology | www.frontiersin.org 7
(0.848; 95% CI = 0.750-0.946). The authors observed that the
addition of radiomic features to the clinical and quantitative
models did not improve the performance of the combined
model (34). In contrast, multiple studies have reported the
added benefit of radiomics to clinical and quantitative models
(20, 37). In a study by Weng et al. (20), the authors constructed a
nomogram using lesion shape, solid component, and radiomics
features from the nodule to obtain an AUC of 0.88. Similarly, Luo
et al. (37) used three CT features (pleural indentation, solid
component size, and solid component proportion) and one
radiomic feature to help differentiate invasive pulmonary
adenocarcinoma (IPA) from non-IPA to achieve a final AUC of
0.903. Interestingly, in our analysis, the radiomic model was
superior to the model constructed with the nodule area in both
training and testing sets. The addition of the nodule diameter to
the radiomics model did not improve the performance especially
in the independent validation set (DTrain:0.95 [0.92-0.98] from 0.92
[0.87-0.97], p=0.03; DTest:0.869 [0.80-0.93] from 0.862 [0.79-0.93],
p=0.86) even though individual tumor diameter was statistically
significant in differentiating MIA and INV nodules (Appendix 1
DTrain< 0.05; DTest< 0.05). We further created a subset of nodules
with a diameter of less than 10 mm.We noticed that our radiomics
classifier was prognostic even within the smaller nodules, giving an
AUC of 0.76 [0.53-0.98] on these smaller lesions.

Another unique aspect of our study included integrated classifier
performance with expert radiologists’ visual assessment of the
TABLE 2 | AUC comparison for logistic regression model trained with tumor area MA, radiomic features, MR and combined radiomic and area based models, MR+A.
P-value is calculated to observe the added benefit of tumor area in the radiomics model, MR.

# of cases Area MA Radiomics MR Rad + area MR+A P (wrt area)

Training 0.73 [0.64-0.83] 0.917 [0.87-0.97] 0.95 [0.916-0.987] 3.013e-06
Testing All 0.665 0.862 0.869 1.362e-05

0-1 cm 22 0.79 0.759 0.713 0.492
1-2 cm 87 0.61 0.919 0.926 1.057e-05
2-3 cm 45 0.57 0.954 0.836 2.136e-05
May 2022 | Volume 12 | A
TABLE 3 | AUC comparison for logistic regression model trained with radiologists’ interpretations, MHR., radiomic features, MR, and combined radiomic and area-based
models, MR+HR on the test set. P-value is calculated to observe the added benefit of MHR in the radiomics model, MR.

Radiologist 1 MHR1 Radiologist 2 MHR2 Classifier MR Combined MR+HR P-Value

MR MHR1

DTest Entire dataset AUC 0.815 0.796 0.861 0.909 0.041 4.1 e(-5)
Accuracy 0.748 0.742 0.788 0.828
Sensitivity 0.800 0.792 0.820 0.760
Specificity 0.723 0.640 0.772 0.861

DTest 0-1 cm AUC 0.528 0.505 0.759 0.796 0.289 0.031
Accuracy 0.571 0.571 0.667 0.761
Sensitivity 0.833 1.00 0.583 0.750
Specificity 0.223 0.00 0.778 0.778

DTest 1-2 cm AUC 0.831 0.794 0.916 0.928 0.267 0.0015
Accuracy 0.771 0.747 0.843 0.892
Sensitivity 0.857 0.818 0.893 0.893
Specificity 0.727 0.607 0.818 0.891

DTest 2-3 cm AUC 0.856 0.898 0.953 0.963 0.624 0.025
Accuracy 0.800 0.844 0.756 0.911
Sensitivity 0.861 0.889 1 0.945
Specificity 0.556 0.667 0.694 0.778
rticle
Bold numbers represent the AUCs.
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tumors. We noticed that the classifier had an overall improvement
of ~4.5% compared to the radiologists’ interpretations. We noticed
that the radiologists had high sensitivity, but poor specificity. After
combining the probabilities of the machine learning classifier with
the radiologists’ score, the model AUC improved to 0.909 from
0.867 of the classifier model (p<0.05) and 0.816 of the radiologists’
model (p<0.05).

Overall, our study has three main novel contributions including
the multi-institutional nature, the addition of novel radiomics
descriptor in the analysis, and human-machine comparison and
integration to create consensus and accurate models.

Despite the progress made in this study, our work has some
limitations. First, the developed model is completely retrospective
in nature. For a successful transition into the clinically deployable
model, a prospective evaluation will be required. Second, even
though the analysis had multiple institutions, we did not truly
validate the model independently since all the cases from
individual sites were collapsed and subsequently randomly
divided into training and testing sets. Future work will entail
prospective data as well as validation on data from sites
independent from those employed for developing the model.
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