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Abstract
Cerebral Malaria (CM) is associated with a pathogenic T cell response. Mice infected by P.
bergheiANKA clone 1.49 (PbA) developing CM (CM+) present an altered PBL TCR repertoire,

partly due to recurrently expanded T cell clones, as compared to non-infected and CM-

infected mice. To analyse the relationship between repertoire alteration and CM, we per-

formed a kinetic analysis of the TRBV repertoire during the course of the infection until CM-

related death in PbA-infectedmice. The repertoires of PBL, splenocytes and brain lympho-

cytes were compared between infected and non-infected mice using a high-throughput CDR3

spectratyping method.We observed a modification of the whole TCR repertoire in the spleen

and blood of infected mice, from the fifth and the sixth day post-infection, respectively, while

only three TRBV were significantly perturbed in the brain of infectedmice. Usingmultivariate

analysis and statistical modelling, we identified a unique TCRβ signature discriminating CM+

fromCTRmice, enriched during the course of the infection in the spleen and the blood and

predicting CM onset. These results highlight a dynamic modification and compartmentaliza-

tion of the TCR diversity during the course of PbA infection, and provide a novel method to

identify disease-associated TCRβ signature as diagnostic and prognostic biomarkers.

Introduction
Cerebral malaria (CM) represents a global health disease caused by Plasmodium falciparum
infection. Despite efforts made in controlling Plasmodium infection spreading in the last
decade, its burdens remains extensive, endemically accounting for 30% of the 627,000 infec-
tion-related deaths as estimated in 2012 [1]. CM is obviously associated with neurological
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features caused by the binding onto endothelial cells (EC) of P. falciparum parasitized red
blood cells (pRBC) leading to their sequestration in the brain microvessels [2,3]. Intravascular
leukocytes and platelets infiltration has been also observed in brains of Malawian children dead
of CM [4]. Mouse models of experimental CM (ECM), greatly contribute to the description of
the immune response in cerebral malaria, confirmed the major role of T lymphocytes in the
neuropathogenesis [5]. Particularly, this emphasizes the major implication of both CD4+ and
CD8+ Tαβ cells in the development of ECM [6–11]. Indeed, we and others observed the seques-
tration of Tαβ lymphocytes in the brain of mice developing CM (CM+) [12,13]. However, evi-
dence regarding the natural antigenic specificities of these infiltrating T cells is still poor.
Studies using recombinant parasite constitutively expressing the OVA peptide showed that
pathogenic CD8+ T cells reaching the brain are specific for this exogenous peptide [14], con-
firming that “parasite-specific” CD8+ T cells are induced during infection. Very recently, two
groups identified PbA epitopes recognized by different CD8+ T cells, each of which being char-
acterized by different T cell receptors (TCR), which in turn reach and might damage the brain
[15–17]. Although, most of those epitopes are associated with an enrichment of specific CD8+

T cells in both spleen and brain of PbA infected mice, none of them can protect mice from
ECM outcome. Given that Plasmodium is characterized by a differential pattern of protein
expression through his life-cycle and a high diversity of molecules, including antigen, superan-
tigen and mitogen [18–21], it is conceivable that ECM outcome is the results of a synergic
action of these several molecules leading to inappropriate responses that, in turn, scramble or
divert the protective appropriate response. As a consequence, T cell repertoire might be pro-
foundly altered in contrast with a more classical restricted clonal response.

In fact, we previously showed that blood TCRβ repertoire of CM+ mice is greatly perturbed
compared to healthy mice and also to infected mice without cerebral symptoms. This perturba-
tion is partly due to recurrently expanded T cell clones [22]. However, it remains unclear
whether those modifications are the cause or the consequence of the disease. In order to
address the quality of lymphocyte responses during the course of experimental CM infection,
we described their antigen-specific receptor diversity, produced by somatic DNA rearrange-
ments of V, (D) and J segments later spliced to C segments [23], using CDR3 spectratyping
and the ISEApeaks strategies [24–26] on blood and spleen lymphocytes, from day 3 post-infec-
tion (p-i) until the ECM-related death of PbA-infected mice. Additionally, we characterized
the whole brain Tαβ cell repertoire in naïve and PbA-infected mice. Using a microarray-
derived analysis and prediction modelling, we looked for TCRβ peak signatures. Our results
showed that splenic and blood TCRβ repertoires are progressively and broadly modified simul-
taneously with disease development with spleen modifications appearing before blood modifi-
cations. Importantly, we explored the whole TCRαβ repertoire in mouse brain and we showed
that, although peculiar in naïve mice, there are few but major modifications following the infec-
tion, suggesting a particular response in the brain of PbA-infected mice. Finally, we identified a
list of TCRβ peaks forming a signature associated with ECM development and appearing dur-
ing the course of the infection. Altogether, these data strongly support the idea that T cell diver-
sity as a whole must be taken into account for drug and vaccine development against infectious
diseases.

Material and Methods

Mice and Parasites
Seven-week-old B10.D2 mice were purchased from Harlan UK Limited one week before infec-
tion and housed in filter-topped cages under specific pathogen-free conditions in the Institut
Pasteur animal facilities of the Immunulogy Department at Institut Pasteur (Paris, France),
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under a 12h:12h light:dark cyle, and received the same food and water provided by the animal
facility staff. Food and water bottle were changed daily and made available 24h a day for all the
animals of the same cage during the whole experiment timeline. Up to five sex-matched mice
were grouped per cage and followed during the experiment timeline. The clone 1.49L of Plas-
modium berghei ANKA was kindly given by Dr. Walliker (Institute of Genetics, Edinburg, UK)
and is maintained in our laboratory on C57BL/6J female mice. This clone induces in mice a
neurological syndrome partly mimicking the one of human CM. Blood stages of the parasite
were cryopreserved in liquid nitrogen as stabilates in Alserver’s solution containing 10%
glycerol.

Infection
Mice infection was induced in 75 mice by intraperitoneal injection of 106 parasitized Red
Blood Cells (pRBC). 35 mice were sacrificed at day 3 (n = 5), 4 (n = 10), 5 (n = 10) and 6
(n = 10) post-infection, constituting four groups for the kinetic study. A total of 40 mice were
sacrificed at the stage of cerebral malaria later referred to as CM+. Animals under continuous
human observation were classified as CM+ when decreased body temperature and ataxia or
hemiplegia or paraplegia or convulsions were recorded. Animals may have experienced the suf-
fering associated with CM+ signs, though not excessive since they were sacrificed whenever
diagnosed as such. To prevent excessive suffering, we implemented a shift of 2 people every 8
hours (3 groups of 2 people per 24h) to ensure human presence, animal observation and han-
dling during the whole experiment duration. To minimize animal suffering, animals where
under continuous observation 24h per day during the whole experiment duration by 2-people
shifts every 8h, immediately sacrificed whenever diagnosed with CM+ signs and handled
according to recommended regulations. At the same time, 24 B10.D2 mice which received
either PBS or uninfected C57BL/6 Red Blood Cells (RBC) were sacrificed to constitute the con-
trol group (CTR). Parasitemia was measured on Giemsa-stained thin blood smears from day 4
p-i for all infected mice. All individuals included in this study displayed parasite positive stain-
ing from day 4 until ECM development, with 1 to 20% of parasitized RBCs (data not shown).

Ethics Statements
Institut Pasteur animal facility was accredited by the French Ministry of Agriculture to perform
experiments on live mice, in application of the French (Decree 87–848 issued on 19/10/1987)
and European (Directive 86/609/CEE) regulations on care and protection of Laboratory Ani-
mals. All animal experiments were approved and conducted in accordance with the Institut
Pasteur Biosafety Committee (Paris) and performed in compliance with the NIH Animal Wel-
fare Assurance #A5476-01 issued on 02/07/2007. All efforts were made to minimize animal
suffering, mice euthanasia was performed using Carbon Dioxide flow in chamber for 3 min.

Cell Preparation
For each group (CTR, CM+) and subgroups (day3, 4, 5 and 6 p-i), blood and spleen were
removed. Blood was obtained on heparin by retroorbital or intracardiac punction. Mononu-
clear cells were isolated on Ficoll-Hypaque gradient (Pharmacia, France). Spleen was removed
and cells suspended in 3% FCS-PBS. Brain was harvested from CTR, day 6 p-i and CM+ ani-
mals and maintained for thirty minutes in Hepes medium containing 0.05% of Collagenase
(Sigma). Cells were then isolated on 30% Percoll gradient in DMEMmedium and suspended
in 3% FCS-PBS. Residual RBCs were removed from all the samples by hypotonic shock using
ammonium chloride (ACK) lysis buffer for 1 to 2 minutes at room temperature. Cell
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preparations were then washed twice with 3% FCS-PBS. Lymphoid cells were counted using
Malassez cell in presence of eosin to exclude dead cells.

TCRB Repertoire
In order to avoid bias, samples were treated randomly. Depending on the sample, total RNA
was extracted from 250,000 to 8.106 mononuclear cells using the TRI REAGENT kit (Molecu-
lar Research Center, Cincinnati, Ohio). 20 μg of glycogen (Roche, Meylan, France) was used to
ensure optimal precipitation of RNA and pellet visualization. cDNA was synthesised for 1h30
at 42°C using retrotranscriptase for AM virus (Roche-Boehringer) and an inhibitor of RNAse
(RNAsin, Promega) was added to avoid RNA degradation. PCR were done using cDNA corre-
sponding to 250,000 mononuclear cells. Protocols for TCR TRBV-TRBC CDR3 spectratyping
have already been explained elsewhere in detail [22,24]. TRBC and TRBV primer sequences
were as described earlier [22]. As TRBV12-3 [27], TRBV24 [28] and TRBV21 [29] are not
functional in B10.D2 mice, they were not analysed. TRBV16 was excluded from this study
afterwards due to technical problem with the corresponding primer. PCR products were loaded
on a 36-well ABI373 or 96-well ABI377 automated sequencer (Applied Biosystems, Foster city,
CA) and separated according to their nucleotide length forming a profile of peaks for each
primer combination, spaced by 3 nucleotides as expected for in-frame transcripts. Each peak
corresponds to a CDR3 length. The Immunoscope software [24] was used to obtain peak area
and nucleotide length and CDR3 profile displays from sequencer raw data. IMGT nomencla-
ture has been used for TRBV genes [30].

CDR3 Spectratype Analysis
We used the ISEApeaks software package (2000–2002 Institut Pasteur, Paris, France) to
extract, smooth, manage and analyse the data [25,26]. For each CDR3 length profile, the peak
distribution is calculated as the percentage of each peak, obtained by dividing its area by the
total area of all peaks within the profile. Briefly, for each TRBV-TRBC combination analysed, a
reference repertoire is computed as the average CDR3 peak distribution of the samples belong-
ing from the control group. Then, the distance between the peak distribution of each sample
and that of the reference repertoire is calculated for each TRBV-TRBC combination. This dis-
tance, named DBV-BC, is the perturbation index reflecting the perturbation of the repertoire
against a reference repertoire [31,32]. Since perturbation score distributions are often skewed,
we log-transformed them for statistical analysis. Then, for each sample of each experimental
group, the average of the DBV-BC (μDBV-BC) perturbations of all the TRBV-TRBC combina-
tions is calculated, reflecting the global perturbation of the repertoire. DBV-BC perturbations
indices range from 0 (identical profiles) to 100 (completely different profiles). To deal with pos-
sible missing values while keeping statistical power for unbiased conclusions, we applied multi-
ple imputation as proposed by Rubin et al. [33]: (1). Missing data were imputed randomly
1000 times to produce 1000 complete datasets using predictive mean matching (ppm) method
[34,35]; (2). On each of 1000 complete datasets, linear regressions were used to model the rela-
tionship between perturbation scores and day post-infection for each TRBV; (3). Estimated
regression coefficient (or slope) and its standard error were pooled from 1000 analyses to give
a final result; (4). A test is performed to assess whether the regression coefficient is significantly
different from 0.

Multivariate methods were used to analyse data such as Principal Component Analysis
(PCA) and unsupervised clustering methods of perturbation scores to study globally the modi-
fication of repertoire between organs and after infection and explore the underlying structure
of data. We defined global perturbation index as the average perturbation score across all
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TRBV (μμDBV-BC). ANOVA test was used to compare the global perturbation index within
days post-infection and organ. To control the false discovery rate in multiple testing, we
adjusted p-values using Benjamini-Hochberg’s method [36]. Statistical significant level was
fixed at α = 0.05 (type I error: the probability to reject the null hypothesis when it is true).

TCRβ Peak Signature Discovery
Gene set enrichment analysis, a microarray-based method, allows to determine whether an a
priori gene set is significantly enriched in one of two biological conditions. For each organ,
TCRβ peaks were first ranked according to t-statistic based on pooled coefficient computed for
differential expression between uninfected and CM+ mice by multiple imputation process as
described above. For each signature, GSEA provided normalized enrichment score, p-value
and q-value for multiple testing problem (details on how GSEA works are reported in Subra-
manian et al. [37]). TCRβ peak sets or clusters were formed using pvclust, an unsupervised
bootstrap-based version of hierarchical classification tree [38], which assesses p-values indicat-
ing how strong are the cluster. Significantly enriched clusters identified by GSEA are called sig-
natures. To test the predictive power of significantly enriched signatures, random forest
models were trained on our datasets and cross-validated on an independent dataset (24). Miss-
ing datasets were imputed 100 times to produce 100 complete datasets using the above imputa-
tion process. A random forest model was trained on each of the 100 complete datasets with 100
trees each (intermediate models) and combined within a single model (final model). This
model was tested on a test dataset. For cross-validation, random forest model was trained on
the test dataset and tested on the training dataset. Prediction accuracy was set as the good pre-
diction rate based on the confusion matrix (S1 Fig).

Statistical Analysis Tools
Statistical analysis was performed using R platform v3.0.2 with the following packages in addi-
tion: mice 2.17 [39], ade4 1.5–2, survival 2.37–4, pvclust 1.2–2, randomForest 4.6–7 [40].
These tools are available at CRAN repository http://www.r-project.org. GSEA 2.0.13 software
was installed from http://www.broadinstitute.org/gsea.

Results

Compartmentalized Repertoire Diversity during PbA Infection
Our previous study showed that blood Tαβ cell repertoire is highly perturbed in PbA-infected
B10.D2 mice developing ECM (CM+) [22]. We aimed at determining whether these modifica-
tions occur in the early days before the disease and could be used as a signature of the develop-
ment of ECM in mice. For this purpose, we analysed the TCRβ diversity of B10.D2 mice from
day 3 until ECM-related death. As described in Material and Methods and in Fig 1A, we
infected 75 mice with 1.106 PbA pRBC, among which 35 were sacrificed at day 3 (5 mice), 4
(10 mice), 5 (10 mice) and 6 (10 mice) post-injection (p-i) constituting four groups for the
kinetic study and 40 mice were killed when they developed ECM (as described in material and
methods), constituting the CM+ group. The control uninfected group was composed by 24
mice half of which received PBS or 1.106 non-parasitized RBCs. Spleen, blood and brain were
harvested as described in Material and Methods, leucocytes were isolated and following RNA
extraction and cDNA synthesis, we performed the combined CDR3 spectratyping technique
and ISEApeaks strategy in order to evaluate the perturbation of the repertoire. Perturbation
score was calculated against the average repertoire of the spleen control uninfected group as
the polyclonal reference repertoire for all the groups (see Material and Methods and [26,31]).
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Perturbation score distributions were log-transformed and multiple imputation was applied to
correct for bias due to missing data. Descriptive analyses were performed on the average of
1000 complete datasets. Fig 1B represents the average of global perturbation score
(μμDBV-BC) of splenocytes, PBLs and brain repertoires during the course of infection. The
perturbation increased in all organs compared to the organ related CTR groups and was differ-
ent between organs (two-way ANOVA p-values showed significant perturbation between
organs (p<0.0001) and between day p-i (p<0.0001)). These results suggest a compartmentali-
zation of the response to PbA infection. We compared, for each compartment, the global per-
turbation scores of infected groups against the CTR group. In order to explore globally the
repertoire modification across all TRBV, we performed a principal component analysis (PCA)
on perturbation scores computed on spleen and blood repertoire (Fig 2). PCA plots show a
separation of day 5, day 6 p-i and CM+ groups (negative PCA scores) from CTR, day 3 and
day 4 p-i groups (positive PCA scores) in the spleen (Fig 2A). In the blood, day 6 p-i was sepa-
rated from the other groups (Fig 2B). These observations were confirmed by t-tests showing
that the perturbation index is significantly different from day 5 (p<0.0001) in the spleen (Fig
2C) and day 6 (p = 0.0003) in the blood (Fig 2D), until the development of ECM (p<0.0001
for both compartments) when compared to CTR group. Finally, the perturbation index is
higher in CM+ blood compared to CM+ spleen (Fig 2C and 2D), as shown previously [22].
These results indicate that during infection, the T cell repertoire is modified early in the spleen
compared to the blood, suggesting a dynamic with time of the modifications between both
compartments.

Fig 1. Kinetic analysis of the TCR TRBV-TRBC repertoire during the course of PbA infection. (A) Experimental procedure showing the preparation of
samples from both infected and non-infected mice, as well as the parallel analysis of mice during the course of the infection (“kinetic” samples) and at the time
of ECM onset (“CM+” samples). Days post-infection (days p-i) indicate the time at which animals of the corresponding groups are sacrificed. Organs
harvested for each group are indicated. (B) Modification of the TRBV-TRBC repertoire in spleen, blood and brain of B10.D2 mice during the course of
Plasmodium berghei ANKA infection. Average DBV-BC perturbations across all TRBVs and individuals in each group (μμDBV-BC) in the spleen (black), the
blood (red) and the brain (green) are shown for the control uninfected (CTR), day 3 p-i (d3), day 4 p-i (d4), day 5 p-i (d5), day 6 p-i (d6) and CM+ groups.
DBV-BC perturbations were computed with ISEApeaks using CTR Spleen as the reference group.

doi:10.1371/journal.pone.0147871.g001
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Progressive but Massive Modifications of Spleen and Blood Repertoires
during PbA Infection
We further analysed the perturbation for each TRBV-TRBC combinations accounting for a
total of 2079 variables. As previously, we used a multiple imputation process (see Material and
Methods). 1000 complete datasets were generated and linear regressions were fitted for each
TRBV-TRBC combination to compare perturbation score in each day p-i to uninfected group.
Regression coefficients estimated over complete datasets were pooled to produce a unique coef-
ficient and its confidence interval. Using such information, t-tests were performed to compare
each infected group to the CTR in the corresponding organ. Results are shown in the Table 1.
Except for TRBV14, all other TRBVs are deeply altered. In the spleen, significant alterations
were observed at day 5 p-i for 8 out of 20 TRBVs to which 7 other TRBVs were added at day 6
p-i. TRBV31 is transiently perturbed at day 5. In blood, significant perturbations appeared at
day 6 for five TRBVs followed by an alteration of the overall repertoire, except for TRBV13-2,
TRBV14. Interestingly, before the development of ECM, some TRBVs perturbed in the blood
are not perturbed in the spleen, suggesting that the kinetic of the modifications is proper to
each compartment, the blood containing circulating cells from the whole body. Altogether,
these results show that TCR diversity is highly modified not only in CM+ mice but also during
the course of PbA infection, supporting the hypothesis that the alteration of the TCRβ reper-
toire is an upstream and rather early process with regards to disease development, and thus
probably a cause of ECM onset. In addition, the alteration of several TRBVs indicates multiple
immunogenic sources.

Fig 2. Differential kinetics of TCR TRBV-TRBC repertoire perturbation in the spleen and blood of
infectedmice. (A-B) Kinetic representation of global perturbation scores across all TRBVs in the spleen (A)
and the blood (B) using principal component analysis (PCA). Progressive modification of the repertoire is
diagrammed by the shift of day p-i-related groups from the right to the left on the first PCA component (PC1).
Colors correspond to analyzed groups. (C-D) Mean DBV-BC perturbations across all TRBVs (μDBV-BC) in
the spleen (C) and the blood (D). DBV-BC were computed as in Fig 1B. Black dots represent individual
mouse global perturbation scores. Red dots represent the average global perturbation score for each group.
Statistical comparisons were performed using the two-way ANOVA test for the difference between organs
and between infected groups. Tests were significant for organs (p<0.0001) and day post infection (p<0.0001)
at α = 0.05.

doi:10.1371/journal.pone.0147871.g002
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Table 1. Estimated regression coefficient and 95% confidence interval of log perturbation values between infected and control groups in spleen
and blood.

TRBV Group D3 D4 D5 D6 CM+

1 Spleen 0.07 0.25 0.52 0.66 1.24

[-0.46;0.6] [-0.14;0.64] [0.15;0.9]* [0.27;1.05]** [0.94;1.54]***

Blood -0.06 -0.21 -0.02 0.32 1.16

[-0.57;0.45] [-0.62;0.21] [-0.43;0.39] [-0.11;0.75] [0.84;1.47]***

2 Spleen 0.2 0.3 0.23 0.37 0.61

[-0.22;0.61] [-0.01;0.6] [-0.06;0.53] [0.07;0.68]* [0.37;0.84]***

Blood 0.38 0.15 0.36 0.47 0.77

[-0.04;0.8] [-0.18;0.47] [0.03;0.7] [0.11;0.83]* [0.5;1.04]***

3 Spleen 0.09 0.1 0.54 0.72 1.02

[-0.37;0.56] [-0.25;0.44] [0.21;0.87]* [0.38;1.07]*** [0.76;1.29]***

Blood -0.05 0.18 0.29 0.54 1.05

[-0.48;0.38] [-0.16;0.53] [-0.05;0.64] [0.18;0.9]* [0.78;1.32]***

4 Spleen 0.15 0.4 0.2 0.75 0.52

[-0.38;0.68] [0.01;0.79] [-0.19;0.59] [0.36;1.14]** [0.22;0.82]**

Blood 0.15 0.3 0.1 0.3 0.73

[-0.31;0.6] [-0.06;0.66] [-0.26;0.46] [-0.08;0.68] [0.45;1.01]***

5 Spleen 0.16 0 0.37 0.56 0.68

[-0.27;0.59] [-0.32;0.31] [0.07;0.68]* [0.25;0.88]** [0.44;0.93]***

Blood -0.3 -0.13 -0.41 0.01 0.59

[-0.67;0.07] [-0.43;0.17] [-0.71;-0.12] [-0.31;0.33] [0.35;0.82]***

12–1 Spleen -0.41 -0.15 0.03 0.31 0.14

[-0.9;0.09] [-0.51;0.21] [-0.32;0.38] [-0.05;0.67] [-0.14;0.41]

Blood 0.11 0.06 0.56 0.32 0.5

[-0.29;0.52] [-0.29;0.4] [0.21;0.9]* [-0.07;0.7] [0.23;0.77]***

12–2 Spleen -0.18 -0.31 0.43 0.45 0.56

[-0.72;0.37] [-0.78;0.17] [0.01;0.85] [0.03;0.88] [0.21;0.91]**

Blood -0.03 0.1 0.49 0.46 0.76

[-0.6;0.54] [-0.37;0.57] [0.03;0.96] [0.03;0.89] [0.38;1.14]***

13–1 Spleen -0.22 -0.37 -0.16 0.22 0.28

[-0.65;0.22] [-0.69;-0.05] [-0.47;0.15] [-0.1;0.54] [0.03;0.52]*

Blood -0.25 -0.01 0.21 0.03 0.61

[-0.71;0.21] [-0.37;0.35] [-0.18;0.59] [-0.36;0.42] [0.32;0.9]***

13–2 Spleen 0.12 0.38 0.27 0.59 0.41

[-0.38;0.62] [0.02;0.75] [-0.09;0.62] [0.22;0.96]** [0.12;0.69]**

Blood 0.22 0.07 0.26 0.31 0.19

[-0.19;0.63] [-0.25;0.39] [-0.07;0.6] [-0.05;0.67] [-0.07;0.45]

13–3 Spleen 0 0.05 0.15 0.4 0.49

[-0.4;0.4] [-0.24;0.35] [-0.14;0.43] [0.1;0.69]* [0.27;0.72]***

Blood 0.24 0.02 0.09 0.37 0.43

[-0.18;0.65] [-0.3;0.34] [-0.25;0.42] [0.01;0.73] [0.17;0.69]**

14 Spleen -0.13 0 0.17 0.07 0.05

[-0.45;0.19] [-0.24;0.23] [-0.07;0.42] [-0.17;0.3] [-0.14;0.23]

Blood -0.04 -0.08 -0.1 0.03 -0.06

[-0.35;0.26] [-0.32;0.17] [-0.35;0.15] [-0.23;0.3] [-0.26;0.14]

15 Spleen -0.17 0.16 0.17 0.26 0.73

[-0.69;0.35] [-0.24;0.56] [-0.19;0.54] [-0.13;0.66] [0.43;1.02]***

(Continued)
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Targeted T Cell Repertoire Modifications in the Brain of PbA-Infected
Mice
Next, we wanted to characterize the diversity of the brain T cell population repertoire. The per-
turbation index was calculated as previously using CTR Spleen as the reference repertoire.

Table 1. (Continued)

TRBV Group D3 D4 D5 D6 CM+

Blood -0.18 -0.26 0.17 0.58 0.61

[-0.67;0.31] [-0.64;0.12] [-0.23;0.56] [0.15;1.01]* [0.29;0.92]***

16 Spleen 0.09 -0.02 0.12 0.05 0.11

[-0.24;0.42] [-0.27;0.23] [-0.12;0.36] [-0.19;0.3] [-0.07;0.3]

Blood -0.27 -0.17 -0.29 -0.07 0.11

[-0.58;0.03] [-0.41;0.08] [-0.55;-0.04] [-0.32;0.19] [-0.08;0.3]

17 Spleen 0.4 0.34 0.24 0.19 0.5

[-0.13;0.93] [-0.09;0.76] [-0.14;0.61] [-0.19;0.57] [0.19;0.81]**

Blood 0.2 -0.06 0.07 0.07 0.36

[-0.29;0.68] [-0.45;0.33] [-0.35;0.49] [-0.34;0.48] [0.04;0.68]*

19 Spleen 0.2 0.19 0.49 0.64 0.55

[-0.27;0.67] [-0.15;0.54] [0.14;0.83]* [0.3;0.98]** [0.29;0.81]***

Blood -0.02 0.37 0.17 0.7 0.56

[-0.45;0.41] [0.04;0.71] [-0.18;0.52] [0.33;1.06]** [0.29;0.83]***

20 Spleen -0.2 0.17 0.44 0.63 0.44

[-0.69;0.29] [-0.19;0.53] [0.09;0.79]* [0.26;0.99]** [0.16;0.73]**

Blood 0.38 0.14 -0.12 0.1 0.63

[-0.16;0.91] [-0.28;0.56] [-0.58;0.33] [-0.37;0.56] [0.28;0.98]**

23 Spleen 0.24 0.38 0.43 0.55 0.61

[-0.21;0.68] [0.05;0.71] [0.12;0.74]* [0.22;0.87]** [0.36;0.85]***

Blood -0.02 0.06 0 0.35 0.63

[-0.5;0.45] [-0.31;0.43] [-0.38;0.38] [-0.04;0.75] [0.32;0.95]***

26 Spleen 0.15 0.03 0.75 1.05 0.75

[-0.29;0.59] [-0.3;0.36] [0.44;1.07]*** [0.72;1.38]*** [0.5;1]***

Blood 0.3 -0.25 0.03 0.7 1.24

[-0.19;0.8] [-0.63;0.13] [-0.39;0.44] [0.29;1.11]* [0.92;1.55]***

29 Spleen -0.34 -0.22 0.09 0.5 0.56

[-0.85;0.18] [-0.6;0.15] [-0.28;0.45] [0.12;0.87]* [0.27;0.85]***

Blood 0.04 -0.11 0.17 0.49 0.74

[-0.41;0.48] [-0.43;0.2] [-0.15;0.5] [0.12;0.85]* [0.48;0.99]***

30 Spleen 0.33 0.16 0.37 0.71 0.28

[-0.18;0.83] [-0.22;0.53] [0.01;0.73] [0.34;1.09]** [-0.01;0.58]

Blood 0.21 -0.06 0.25 0.42 0.36

[-0.3;0.71] [-0.46;0.35] [-0.14;0.64] [0;0.85] [0;0.71]

31 Spleen -0.09 0.08 0.51 0.34 0.41

[-0.55;0.37] [-0.26;0.41] [0.18;0.84]* [-0.01;0.68] [0.16;0.67]**

Blood 0.3 0.02 0.11 0.03 0.49

[-0.19;0.79] [-0.37;0.4] [-0.3;0.51] [-0.38;0.44] [0.18;0.8]**

*** adjusted p<0.001

** adjusted p<0.01

* adjusted p<0.05

doi:10.1371/journal.pone.0147871.t001
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First, we focused our attention on the CTR group. Only a limited number of T cells (2 to 3.104

cells) are found in the brain of naïve mice [12]. In order to characterize the whole repertoire,
we pooled six brains of naïve mice per control sample to ensure enough material for full TCRβ
repertoire analysis and retain the representative range of daily circulating brain T cell popula-
tion [41]. We performed pairwise comparisons by t-test to confront perturbation scores of
CTR brain against CTR spleen and CTR blood and found that perturbation scores of CTR
groups are significantly different from each other (Figs 3A and 2B, adjusted p<0.0001 for each
comparison). This result revealed a clear compartmentalization of the T cell repertoire already
at steady-state and a higher inter-individual variability of blood TRBV.

We therefore analysed the global perturbation score of the brain T cell repertoire of CTR
and infected mice (at day 6 p-i as well as CM+ mice). Globally, day 6 and CM+ brain repertoires
are significantly different compared to CTR Spleen (p<0.0001) moreover, a significant pertur-
bation between day 6 p-i, but not CM+, and uninfected brain repertoire was also detected
(p = 0.0238) (Fig 4A). The high inter-individual variability of CM+ brain sample repertoires

Fig 3. TRBV-TRBC repertoire differences in spleen, blood and brain of naïve B10.D2mice. (A) Mean
DBV-BC perturbations across all TRBVs (μDBV-BC) in the spleen (left), blood (center) and brain (right) of
CTR uninfected mice are shown for each individual. DBV-BC perturbations were computed with ISEApeaks
using CTR Spleen as the reference group. Statistical comparisons were performed using pairwise t-test with
correction for FDR between groups depicting significant p-value (p<0.0001) for each comparison. (B) PCA on
DBV-BC log perturbation scores separating repertoires of the spleen, blood and brain on the x axis (PC1).

doi:10.1371/journal.pone.0147871.g003

Fig 4. Modification of the TRBV-TRBC repertoire in the brain of B10.D2mice during the course of PbA
infection. (A) Mean DBV-BC perturbations across all TRBVs (μDBV-BC) in the brain of CTR uninfected
(CTR), day 6 p-i (Day 6) and CM+ mice are shown for each individual. DBV-BC were computed as in Fig 1B.
Black dots represent individual mouse scores. Lines represent the average score for each group. Average
DBV-BC of CTR spleen is indicated as the reference (Ctr_sp). (B) Survival curve of B10.D2 mice infected
with 106 PbA-PRBC. All mice developed ECM symptoms. 75% of the mice died between day 6 and day 8. (C)
Regression slope and 95% confidence band of parasitemia (%) over day post infection. The infection has no
effect on the % of parasitemia (no significant slope). (D) DBV-BC perturbations scores of five TRBV.
Statistical tests were performed as described in Fig 2.

doi:10.1371/journal.pone.0147871.g004
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might explain these inconsistent results. To ensure that this variability was not due to the large
timeframe of ECM onset as shown in Fig 4B, we subdivided the CM+ group into two groups:
CM+ mice identified between day 6 and 8 p-i and CM+ identified between day 10 and 14, given
that all the CM+ mice died after similar clinical manifestations. Global perturbation scores cal-
culated for both groups showed no significant differences (data not shown). These results are
consistent with the comparable level of parasitemia observed for mice developing ECM
between day 7 and 14 p-i (Fig 4C, not significant regression coefficient; 0 is included in the
confidence interval and p = 0.2701). This again strongly supports the hypothesis that impor-
tant TCR repertoire perturbations are a cause of ECM development. However, another non-
exclusive explanation would be that few TRBVs are perturbed in the brain during infection.
Since all TRBVs in the brain are significantly perturbed at day 6 p-i and CM+ compared to the
uninfected spleen group (data not shown), we therefore analysed the perturbation per TRBV in
the brain against the uninfected brain group (Fig 4D). t-tests on pooled coefficients against
uninfected mice showed that three TRBVs are significantly perturbed in infected CM+ mice
compared to CTR brain: TRBV1 (adjusted p = 0.0044), TRBV29 (adjusted p = 0.0237) and
TRBV3 (adjusted p = 0.0237). TRBV13-3 was significantly perturbed at day 6 p-i (adjusted
p = 0.007) but not in CM+ brain repertoires.

Altogether, our data show that, although there is a massive perturbation of the whole spleen
and blood repertoire of infected mice, only three TRBV are perturbed in the brain of infected
mice compared to uninfected mice.

A TCRβ Repertoire Signature Predicts Cerebral Malaria
Furthermore, we tested the impact of ECM onset on TRBV peak composition. In other words,
we looked for CM+ signatures as a combination of individual peaks taken separately from sev-
eral TRBV that could predict the CM+ onset. The peak database was tested in GSEA software
with pre-ranked option to determine whether our a priori defined peak sets are significantly
enriched in the CM+ group. Peak sets are generated separately for each organ by pvclust and
assembled within a peak set database. We retained clusters having at least 95% of confidence.
In the presence of missing data, peak values are imputed using the multiple imputation process
(see Material and Methods). Peaks were then ranked according to the pooled t-statistic value
comparing uninfected samples to CM+ samples. GSEA reports (Fig 5A) identified a peak set
that was significantly enriched in the CM+ group in the spleen (NES = 2.1744, q-value = 0), in
the blood (NES = 2.3300, q-value = 0) and in the brain (NES = 2.2873, q-value = 0). This peak
set contains peaks from TRBV1, TRBV3, TRBV4, TRBV5, TRBV12-2, TRBV13-2, TRBV19,
TRBV26 and TRBV29 (S2 Fig) suggesting a rather restricted pathogenic T cell response. In
order to assess the predictive power of this signature, we applied the process described in the
methodology section separately for spleen and blood. For validation, we used previous data
published in [22] as a test set to predict (“AC set”). As a training set, we used our current data
from spleen and blood (“EMF set”). Due to a high number of missing data on the “EMF set”,
we applied the multiple imputation process for peak data. Random forest models were trained
on 20 CTR and 23 CM+ in spleen and on 20 CTR and 21 CM+ in blood and tested on 6 CTR
and 9 CM+ in spleen and on 7 CTR and 13 CM+ in blood. Accuracy was assessed on train and
test sets for each step. Random forest models showed very good accuracy> 90% of good pre-
diction (Table 2). Altogether, the identified peak set allows to discriminate CM+ from CTRmice
regardless of the organs, as validated on two independent datasets. We then asked whether the
combinations of most discriminant peaks were different between organs, Random forest models
providing score indexes to rank variables according to their importance. In the spleen, the most
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Fig 5. A unique TRBV signature discriminates CTR from CM+ spleen, blood and brain repertoires. (A) Panels of GSEA report for the peak set
BL_PVCLUST_37 showing significant enrichment for CM+ condition compared to uninfected group in spleen (left) and blood (middle) and in the brain (right).
The enrichment figures show ranked peaks according to the pooled t-statistic across imputed dataset (bottom). Peak positions are indicated on the ranked
list (middle). The enrichment score (ES) is the maximum of the running sum (top). (B) Normalized GSEA enrichment scores post-infection growth curves in
three compartments for the peak set BL_PVCLUST_37. In comparison to the CTR groups, the set is significantly enriched in day 5 post-infection in spleen
(solid line), in day 6 in blood (dashed line) and in ECM state in brain (dotted line).

doi:10.1371/journal.pone.0147871.g005

Table 2. Accuracy of random forest models.

Train on EMF, test on AC Train on AC, test on EMF

Prediction
accuracy

Intermediate model Imputed
train data

Final model Imputed train
data

Final model test
data

Final model test
data

Final model train
data

Spleen 97,00% 100,00% 100,00% 93,30% 92,70%

Blood 94,60% 99,56% 90,00% 95,00% 90,24%

doi:10.1371/journal.pone.0147871.t002
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discriminant peaks are TRBV26_008, TRBV1_009, TRBV3_010 and TRBV5_010 whereas in the
blood, the most discriminant peaks are TRBV1_009, TRBV19_006, TRBV26_008, TRBV5_010.

To determine whether this signature can predict ECM outcome, we performed GSEA
between each “kinetic” group and the CTR group in three compartments separately (due to
small sample size, day 3 and 4 were pooled). During the course of infection, the peak set is sig-
nificantly enriched at day 5 p-i in the spleen (NES = 1.9833; q-value = 0.0049), at day 6 p-i in
the blood (NES = 1.9387; q-value = 0.0023) and in CM+ mice for the brain. Until day 6 p-i,
NES is higher in spleen than in blood (Fig 5B), and then, it seems to converge to an equivalent
value for the three compartments. These results are similar to those obtained from the analyses
of global perturbation scores above. These findings reveal that the compartmentalized TCRβ
repertoire changes can be detected at the level of TCR peaks. Moreover, the progression of NES
in the spleen and in the blood underlines the diagnostic value of this TCRβ signature.

Discussion
Cerebral malaria is a complex situation in which T cells are “necessary” to the development of
the disease. Indeed, in the absence of T cells, ECM-susceptible mice are protected [8,42]. It is
well described that CD8 T cells display a pathogenic role [12,13], mainly through their cyto-
toxic activity as shown by the protection associated with the perforin deficiency [43]. However,
although up to seven target epitopes have been identified [15–17], none of them could defi-
nitely explain ECM development in mice [17]. A possible explanation is that as shown by Poh
et al., part of these PbA epitopes are also shared by non-ECM inducing Plasmodium strains.
An alternative explanation is that ECM occurs under the synergic/progressive presentation of
several epitopes, including the CD8+ epitopes identified by the different studies but also still
unknown CD4+ epitopes, given the critical role of CD4+ T cells in ECM development [8–10].

Here, we report a comprehensive analysis of the TCRβ repertoire during the course of PbA
infection, including the analysis of brain T cell repertoires. Our results confirmed our previous
observations of a massive perturbation of the repertoire associated with ECM onset, particu-
larly in the blood. Furthermore, we showed that the modifications of the repertoire appear pro-
gressively in the spleen and in the blood, with TRBVs being differentially affected over time till
all get perturbed. Strikingly, the comparison of brain repertoires between healthy and CM+

mice revealed a perturbation limited to three TRBVs out of 23. These three TRBVs are per-
turbed in the spleen and the blood, following a similar kinetic. These results indicate a targeted
alteration of the brain TCRβ diversity, compared to the blood and the spleen. With regards to
the important increase of cell numbers in the brain of CM+ animals, this suggests a selective
recruitment of particular T cell clones in the brain directed against some particular parasitic or
self-antigens.

As this is the first study showing the global repertoire of the brain T cells in naïve mice, we
wanted to ensure that the CTR brain repertoire observed are not the result of blood contamina-
tion. In the case of CM+ brain samples, this can be excluded since most TRBV are perturbed in
the blood when they are not in the brain. Surprisingly, no difference is observed between CTR
blood and CTR brain repertoires. In a preliminary analysis, we observed that the blood reper-
toire is heterogeneous in CTR mice (data not shown). Since our perturbation index is a dis-
tance between each sample and an average reference repertoire, the DBV-BC values can differ
depending on the reference repertoire used. Thus, we calculated the perturbation using CTR
Blood as reference and observed that the brain T cell repertoire is indeed different compared to
blood repertoire in naïve mice. This reflects the physiological compartmentalization of T cell
diversity in naïve animals and highlights the importance of the microenvironment in shaping
the TCR repertoire.
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Finally, we could identify a TCRβ CDR3 length signature that discriminates CTR from CM+

repertoires in spleen, blood and brain. Using multivariate statistical modelling, we showed that
this signature allows to discriminate the CTR and CM+ repertoires from spleen and blood
obtained in a previous study, supporting the robustness and reliability of the approach. Thus,
two phenomena seem to be involved in the disease. On the one hand, an alteration of the
whole repertoire in spleen and blood could be associated with parasite mitogens or superanti-
gens. Indeed, a superantigenic activity has been shown in PbA-infected C57BL/6 directing
Vβ8.1 (TRBV13-3) expressing cells [20,21]. Additionally, a recent study on malaria-susceptible
West-African children showed that the memory B cell repertoire is diverse, suggesting a
response to several Plasmodium epitopes [44]. On the other hand, the identification of a unique
and organ-independent TCRβ signature associated with CM+ onset suggests a response to spe-
cific antigenic peptides, possibly targeting antigens expressed in the cerebral compartment.
The current hypothesis suggests that pathogenic T cells should be activated upon presentation
of parasitic peptides [5]. Under these conditions, T cells could be selectively activated and
attracted to the brain where they would play their pathogenic role, or have an autoimmune
activity against brain molecules, through molecular mimicry, leading to brain damage. The
recent identification of parasite-derived CD8 T cell epitopes supports this hypothesis [15–17].
Moreover, in those studies, CD8 T cells from CM+ mouse splenocytes also respond to the iden-
tified epitopes, again in line with our observations. Although the mouse strains used in our and
the discussed studies are different, it can be noted that the TRBV signature we identified com-
prises the same TRBV genes as those found in response to the epitopes tested by Poh et al. and
Howland et al. [15,17]. Moreover, we have shown that human CM is associated with an auto-
immune blood B-cell repertoire, directed against a human brain protein [45], suggesting that
Plasmodium can indirectly induce an autoimmunity-related process. These hypotheses are not
exclusive and the activation site of pathogenic T cells remains to be elucidated. Our data sug-
gest that the observed compartmentalization of the T cell repertoire reflects the selective migra-
tion of activated T cells from the spleen to the brain.

The complexity of the observed modifications is consistent with Plasmodium infection com-
plexity. So far, therapies are oriented toward the development of vaccines targeting specific
dominant antigens expressed by Plasmodium, and unfortunately all failed in inducing an effi-
cient response against the parasite, as it has been confirmed in ECM by Poh et al. [17]. Finally,
we identify a CM+ signature significantly enriched in the spleen and the blood during the
course of the infection, strongly supporting the interest of diagnosis value of TCR repertoire
studies. This study supports the effort made by several laboratory to analyse in parallel the
modifications of the TCR repertoire diversity and the parasite antigenic variability to develop
accurate and efficient therapies.

Supporting Information
S1 Fig. Random Forest prediction modelling approach.
(TIF)

S2 Fig. TCRβ signature peaks.
(TIF)
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