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The question of whether artificial beings or machines could become self-aware or

conscious has been a philosophical question for centuries. The main problem is that

self-awareness cannot be observed from an outside perspective and the distinction

of being really self-aware or merely a clever imitation cannot be answered without

access to knowledge about the mechanism’s inner workings. We investigate common

machine learning approaches with respect to their potential ability to become self-aware.

We realize that many important algorithmic steps toward machines with a core

consciousness have already been taken.

Keywords: machine consciousness, artificial intelligence, theories of consciousness, deep learning, machine

learning, philosophy of mind, global workspace, correlates of consciousness

1. INTRODUCTION

The question of understanding consciousness is in the focus of philosophers and researchers for
more than two millennia. Insights range broadly from “Ignorabimus”—“We will never know1.” to
mechanistic ideas with the aim to construct artificial consciousness following Richard Feynman’s
famous words “What I cannot create, I do not understand2.”

The major issue that precludes the analysis of consciousness is its subjectivity. Our mind is able
to feel and process our own conscious states. By induction, we are also able to ascribe conscious
processing to other human beings. However, once we try to imagine to be another species, as Nagel
describes in his seminal work “What is it like to be a Bat?”(Nagel, 1974), we immediately fail to
follow such experience consciously.

Another significant issue is that we are not able to determine consciousness by means of
behavioral observations as Searle demonstrates in his thought experiment (Searle, 1980). Searle
describes a room that we cannot enter. One can pass messages written in Chinese to the room
and the room returns messages to the outside world. All the messages and questions passed to the
room are answered correctly as a Chinese person would. A first conclusion would be that there is
somebody in the “Chinese Room” who speaks Chinese and answers the questions. However, the
person in the room could also have simply access to a large dictionary that contains all possible
questions and the respective answers. When we are not able to understand how the information is
actually processed, we will never be able to determine whether a system is conscious or not. In this
article, we want to explore these and different thoughts in literature in order to address the problem
of consciousness.

1With this simple statement, Emil du Bois-Reymond concluded his talk on the limits of scientific knowledge about the relation
of brain processes and subjective experience at the 45th annual meeting of German naturalists and physicians in 1872.
2Richard Feynman left these words on his blackboard in 1988 at the time of his death as a final message to the world.
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Since there exist three different, largely isolated groups in
the scientific community aiming to investigate consciousness,
i.e., philosophy, neuroscience, and computer science, here, we
try to overcome the mutual gaps between these complementary
camps of research, by incorporating arguments from each
side, thereby providing a balanced overview of consciousness
research.We therefore revisit works in philosophy, neuroscience,
artificial intelligence, and machine learning. Following the new
paradigm of cognitive computational neuroscience (Kriegeskorte
and Douglas, 2018), we present how the convergence of
these fields could potentially also lead to new insights
regarding consciousness.

Since philosophy is the root of all scientific research, and in
particular the research on consciousness, it was frequently argued
that there is a need for more philosophical thinking in scientific
research in order to be able to ask the right questions (Thagard,
2009; Rosen, 2015; Laplane et al., 2019). Therefore, we start with
the philosophical perspective, and put a special emphasis on the
description of the most important arguments and positions from
the philosophy of mind.

2. THE PHILOSOPHICAL PERSPECTIVE

More than two thousand years ago, Aristotle was convinced that
only humans are endowed with a rational soul. All animals,
however, live only with the instincts necessary for survival,
like biological automata. Along the same line, in the statement
“Cogito ergo sum” also Descartes realized being self-aware
is reserved for human beings. In his view, this insight is
fundamental for any philosophical approach (Descartes, 1990).

Modern philosophy went on to differentiate the problem into
an easy and a hard problem. While the “easy problem” is to
explain its function, dynamics, and structure, the “hard problem
of consciousness” Chalmers (1995) is summarized in the Internet
Encyclopedia of Philosophy (Weisberg, 2020) as:

“The hard problem of consciousness is the problem of explaining
why any physical state is conscious rather than nonconscious. It
is the problem of explaining why there is “something it is like”
for a subject in conscious experience, why conscious mental states
“light up” and directly appear to the subject.”

In order to avoid confusion some scientists prefer to speak
of “conscious experience” or only “experience” instead of
consciousness (Chalmers, 1995). As already noted, the key
problem of deriving models of conscious events is that they can
only be perceived subjectively. As such it is difficult to encode
such an experience in a way that it can be recreated by others.
This gives rise to the so-called “qualia problem” (Crane, 2012) as
we can never be sure, e.g., that the color red consciously looks the
same to another person. Extension of this line of thought leads
again to Nagel’s thought experiment (Nagel, 1974).

According to (Weisberg, 2020), approaches to tackle the
problem from a philosophical point of view are very numerous,
but none of them can be considered to be exhaustive:

• Eliminativism (Rey, 1988) demonstrates that the mind is
fully functional without the experience of consciousness. Being
non-functional, consciousness can be neglected.

• The view of strong reductionism proposes that consciousness
can be deconstructed into simpler parts and be explained
by functional processes. Such considerations gave rise to the
Global Work Space Theory (Newman and Baars, 1993; Baars,
1994; Baars and Newman, 1994) or Integrated Information
Theory (Tononi, 2004, 2008) in neuroscience. The main
critique of this view, is that any mechanistic solution to
consciousness that is not fully understood will only mimic
true consciousness, i.e., one could construct something that
appears conscious that simply isn’t as the Chinese Room
argument demonstrates (Searle, 1980).

• Mysterianism proposes that the question of consciousness
cannot be tackled with scientific methods. Therefore any
investigation is in vain and the explanatory gap cannot be
closed (Levine, 2001).

• In Dualism the problem is tackled as consciousness being
metaphysical that is independent of physical substance
(Descartes, 1990). Modern versions of Dualism exist, but
virtually all of them require to reject that our world can
be fully described by physical principles. Recently, Penrose
and Hammeroff tried to close this gap using quantum theory
(Penrose, 1994; Hameroff and Penrose, 2014). We dedicate a
closer description of this view in a later section of this article.

• Assuming that metaphysical world and physical world simply
do not interact does not require to reject physics and gives rise
to Epiphenomenalism (Campbell, 1992).

There are further theories and approaches to address the hard
problem of consciousness that we do not want to detail here.
To the interested reader, we recommend to study the Internet
Encyclopedia of Philosophy (Weisberg, 2020) as further reading
into the topic.

In conclusion, we observe that a major disadvantage of
exploring the subject of consciousness by philosophical means is
that we will never be able to explore the inside of the Chinese
Room. Thought alone will not be able to open the black box.
Neuroscience, however, offers various approaches to explore the
inside by means of measurement, which might be suitable to
tackle the problem.

3. CONSCIOUSNESS IN NEUROSCIENCE

In 1924, Hans Berger recorded, for the first time, electrical brain
activity using electroencephalography (EEG) (Berger, 1934). This
breakthrough enabled the investigation of different mental states
by means of electrophysiology, e.g., during perception (Krauss
et al., 2018a) or during sleep (Krauss et al., 2018b). The theory
of cell assemblies, proposed by Hebb (1949), marked the starting
point for the scientific investigation of neural networks as the
biological basis for perception, cognition, memory, and action.
In 1965, Gazzaniga demonstrated that dissecting the corpus
callosum which connects the two brain hemispheres with each
other results in a split of consciousness (Gazzaniga et al., 1965;
Gazzaniga, 2005). Almost ten years later, Weiskrantz et al.
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discovered a phenomenon for which the term “blindsight” has
been coined: following lesions in the occipital cortex, humans
loose the ability to consciously perceive, but are still able to
react to visual stimuli (Weiskrantz et al., 1974; Weiskrantz and
Warrington, 1975). In 1983, Libet demonstrated that voluntary
acts are preceded by electrophysiological readiness potentials
that have their maximum at about 550ms before the voluntary
behavior (Libet et al., 1983). He concluded that the role of
conscious processing might not be to initiate a specific voluntary
act but rather to select and control volitional outcome (Libet,
1985). In contrast to the above mentioned philosophical tradition
from Aristotle to Descartes that consciousness is a phenomenon
that is exclusively reserved for humans, in contemporary
neuroscience most researchers tend to regard consciousness
as a gradual phenomenon, which in principle also occurs in
animals (Boly et al., 2013), and several main theories of how
consciousness emerges have been proposed so far.

3.1. Neural Correlates of Consciousness
Based on Singer’s observation that high-frequency oscillatory
responses in the feline visual cortex exhibit inter-columnar and
inter-hemispheric synchronization which reflects global stimulus
properties (Gray et al., 1989; Engel et al., 1991; Singer, 1993)
and might therefore be the solution for the so called “binding
problem” (Singer and Gray, 1995), Crick and Koch suggested
Gamma frequency oscillations to play a key role in the emergence
of consciousness (Crick and Koch, 1990). Koch further developed
this idea and investigated neural correlates of consciousness in
humans (Tononi and Koch, 2008; Koch et al., 2016). He argued
that activity in the primary visual cortex, for instance, is necessary
but not sufficient for conscious perception, since activity in
areas of extrastriate visual cortex correlates more closely with
visual perception, and damage to these areas can selectively
impair the ability to perceive particular features of stimuli (Rees
et al., 2002). Furthermore, he discussed the possibility that the
timing or synchronization of neural activity might correlate
with awareness, rather than simply the overall level of spiking
(Rees et al., 2002). A finding which is supported by recent
neuroimaging studies of visual evoked activity in parietal and
prefrontal cortex areas (Boly et al., 2017). Based on these findings,
Koch and Crick provided a framework for consciousness, where
they proposed a coherent scheme to explain the neural activation
of visual consciousness as competing cellular clusters (Crick
and Koch, 2003). Finally, the concept of neural correlates
of consciousness has been further extended to an index of
consciousness based on brain complexity (Casarotto et al., 2016),
which is independent of sensory processing and behavior (Casali
et al., 2013), and might be used to quantify consciousness in
comatose patients (Seth et al., 2008). While such approaches,
known as perturbational complexity index (Casali et al., 2013), are
designed to assess dynamical or processing complexity, they are
not adequate to measure the underlying connectivity or circuitry.

3.2. Consciousness as a Computational
Phenomenon
Motivated by the aforementioned findings concerning the neural
correlates of consciousness, Tononi introduced the concept

of integrated information, which according to his “Integrated
Information Theory of Consciousness” plays a key role in the
emergence of consciousness (Tononi, 2004, 2008). This theory
represents one of two major theories of contemporary research
in consciousness. According to this theory, the quality or content
of consciousness is identical to the form of the conceptual
structure specified by the physical substrates of consciousness,
and the quantity or level of consciousness corresponds to its
irreducibility, which is defined as integrated information (Tononi
et al., 2016).

Tegmark generalized Tononi’s framework even further
from neural-network-based consciousness to arbitrary quantum
systems. He proposed that consciousness can be understood as a
state of matter with distinctive information processing abilities,
which he calls “perceptronium,” and investigates interesting
links to error-correcting codes and condensed matter criticality
(Tegmark, 2014, 2015).

Even though, there is large consensus that consciousness can
be understood as a computational phenomenon (Cleeremans,
2005; Seth, 2009; Reggia et al., 2016; Grossberg, 2017), there
is dissent about which is the appropriate level of granularity
of description and modeling (Kriegeskorte and Douglas, 2018).
Penrose and Hameroff even proposed that certain features
of quantum coherence could explain enigmatic aspects of
consciousness, and that consciousness emerges from brain
activities linked to fundamental ripples in spacetime geometry.
In particular, according to their model of orchestrated objective
reduction (Orch OR), they hypothesize that the brain is a kind
of quantum computer, performing quantum computations in
the microtubeles, which are cylindrical protein lattices of the
neurons’ cytoskeleton (Penrose, 1994; Hameroff and Penrose,
1996; Hameroff, 2001).

However, Tegmark and Koch argue, that the brain can
be understood within a purely neurobiological framework,
without invoking any quantum-mechanical properties: quantum
computations which seek to exploit the parallelism inherent in
entanglement, require that the qubits are well-isolated from the
rest of the system, whereas on the other hand, coupling the
system to the external world is necessary for the input, the
control, and the output of the computations. Due to the wet and
warm nature of the brain, all these operations introduce noise
into the computation, which causes decoherence of the quantum
states, and thus makes quantum computations impossible.
Furthermore, they argue that the molecular machines of the
nervous system, such as the pre- and post-synaptic receptors,
are so large that they can be treated as classical rather than
quantum systems, i.e., that there is nothing fundamentally wrong
with the current classical approach to neural network simulations
(Tegmark, 2000; Koch and Hepp, 2006, 2007).

3.3. The Global Workspace Theory
In the 1990s, Baars introduced the concept of a virtual “Global
Workspace” that emerges by connecting different brain areas
(Figure 1) to describe consciousness (Newman and Baars, 1993;
Baars, 1994, 2007; Baars and Newman, 1994). This idea was
taken up and further developed by Dehaene (Dehaene et al.,
1998, 2011, 2014; Dehaene and Naccache, 2001; Dehaene and
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FIGURE 1 | The Global Workspace emerges by connecting different brain

areas according to Dehaene.

FIGURE 2 | Simplified view of Damasio’s model of consciousness: The

protoself processes emotions and sensory input unconsciously. Core

consciousness arises from the protoself which allows to put the itself into

relation. Projections of emotions give rise to higher-order feelings. With access

to memory and extended functions such as language processing the

extended consciousness emerges.

Changeux, 2004; Sergent and Dehaene, 2004). Today, besides the
Integrated Information Theory, the Global Workspace Theory
represents the second major theory of consciousness, being
intensively discussed in the field of cognitive neuroscience. Based
on the implications of this theory, i.e., that “consciousness arises
from specific types of information-processing computations, which
are physically realized by the hardware of the brain” (Dehaene
et al., 2017), Dehaene argues that a machine endowed with these
processing abilities “would behave as though it were conscious;
for instance, it would know that it is seeing something, would
express confidence in it, would report it to others, could suffer
hallucinations when its monitoring mechanisms break down, and
may even experience the same perceptual illusions as humans”
(Dehaene et al., 2017). Indeed, it has been demonstrated recently
that artificial neural networks trained on image processing can be
subject to the same visual illusions as humans (Gomez-Villa et al.,
2018; Watanabe et al., 2018; Benjamin et al., 2019)

3.4. Damasio’s Model of Consciousness
Damasio’s model of consciousness was initially published in his
popular science book “The feeling of what happens” (Damasio,
1999). Later Damasio also published the central ideas in peer-
reviewed scientific literature (Damasio and Meyer, 2009). With
the ideas being published first in a popular science book,
most publications on consciousness neglect his contributions.
However, we believe that his thoughts deserve more attention.
Therefore, we want to introduce his ideas quickly in this section.

The main idea in Damasio’s model is to relate consciousness
to the ability to identify one’s self in the world and to be able
to put the self in relation with the world. However, a formal
definition is more complex and requires the introduction of
several concepts first.

He introduces three levels of conscious processing:

• The fundamental protoself does not possess the ability to
recognize itself. It is a mere processing chain that reacts
to inputs and stimuli like an automaton, completely non-
conscious. As such any animal has a protoself according to this
definition. However, also more advanced lifeforms including
humans exhibit this kind of self.

• A second stage of consciousness is the core consciousness. It
is able to anticipate reactions in its environment and adapts to
them. Furthermore, it is able to recognize itself and its parts in
its own image of the world. This enables it to anticipate and to
react to the world. However, core consciousness is also volatile
and not able to persist for hours to form complex plans.
In contrast to many philosophical approaches, core
consciousness does not require to represent representations
of the world in words or language. In fact, Damasio believes
that progress in understanding conscious processing has been
impeded by dependence on words and language.

• The extended consciousness enables human-like interaction
with the world. It builds on top of core consciousness and
enables further functions such as access to memory in order to
create an autobiographic self. Also being able to process words
and language falls into the category extended consciousness
and can be interpreted as a form of serialization of conscious
images and states.

In Damasio’s theory emotions and feelings are fundamental
concepts (Damasio, 2001). In particular Damasio differentiates
emotions from feelings. Emotions are direct signals that indicate
a positive or negative state of the (proto-)self. Feelings emerge
only in conjunction with images of the world and can be
interpreted as a second-order emotion that is derived from the
world representation and future possible events in the world.
Both are crucial for the emergence of consciousness. Figure 2
schematically puts the described terms in relation.

After having defined the above concepts, Damasio now goes
on to attempt and describe a model of (core) consciousness. In
his theory, consciousness does not merely emerge from the ability
to identify oneself in the world or an image of the world. For
conscious processing, additionally feeling oneself in the sense
of desiring to exist is required. Hence, he postulates a feeling,
i.e., a derived second-order emotion, between the protoself and
its internal representation of the world. Conscious beings as
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such want to identify oneself in the world and want to exist.
From an evolutionary perspective as he argues, this is possibly
a mechanism to enforce self-preservation.

In the context of this article, Damasio’s theory is interesting for
two major reasons. On the one hand, it describes a biologically
plausible model of consciousness, as he assigns all stages of
consciousness to certain structures in the brain, and associates
them to the respective function. On the other hand, Damasio’s
model is mechanistic, thus it can be, at least in principle,
completely implemented as a computer program.

Summing up, we can conclude that neuroscience is able
to describe fundamental processes in the brain that give rise
to complex phenomena such as consciousness. However, the
different methods of observation in neuroscience are still not
sufficient. Neither EEG nor fMRI nor any other contemporary
imaging method provide a temporal and spatial resolution that
is even close to be enough fine-grained to observe what exactly
is happening in the brain in-vivo (Maier et al., 2018), i.e., the
human brain consisting of about 8.6× 1010 neurons (Herculano-
Houzel, 2009) interconnected by approximately 1015 synapses
(Sporns et al., 2005; Hagmann et al., 2008) is far away from being
entirely accessible. At this point, the recent massive progress
in artificial intelligence and machine learning, especially deep
learning, comes to our attention. In contrast to the human brain,
artificial neural networks or any other computational model
provide the decisive advantage of being fully accessible at any
time, i.e., the state of each parameter can be read out without
any restrictions with respect to precision. Furthermore, there
is increasing evidence that, even though most artificial neural
networks largely lack biological plausibility, they are nevertheless
well-suited for modeling brain function. A number of recent
studies have shown striking similarities in the processing and
representational dynamics between artificial neural networks and
the brain (Cichy et al., 2016; Zeman et al., 2020). For instance,
in deep neural networks trained on visual object recognition, the
spontaneous emergence of number detectors (Nasr et al., 2019),
solid shape coding (Srinath et al., 2020), or center-periphery
spatial organization (Mohsenzadeh et al., 2020) was observed.
Furthermore, grid-like representations known to exist in the
entorhinal cortex (Hafting et al., 2005) spontaneously emerge in
recurrent neural networks trained to perform spatial localization
(Cueva and Wei, 2018) or navigation tasks (Banino et al., 2018).

4. CONSCIOUSNESS IN ARTIFICIAL
INTELLIGENCE

In artificial intelligence (AI) numerous theories of consciousness
exist (Sun and Franklin, 2007; Starzyk and Prasad, 2010).
Implementations often focus on the Global Work Space Theory
with only limited learning capabilities (Franklin and Graesser,
1999), i.e., most of the consciousness is hard-coded and not
trainable (Kotov, 2017). An exception is the theory by van
Hateren which closely relates consciousness to simultaneous
forward and backward processing in the brain (van Hateren,
2019). Yet, algorithms that were investigated so far made
use of a global work space and mechanistic hard-coded

FIGURE 3 | Schmidhuber already proposed a first model for autonomous

agents in 1990 (Schmidhuber, 1990). Similar to ideas presented by Damasio,

the model receives a reward R and input IN from the world. The network

processes the input, does predictions on the world PREDIN and predictions

about future rewards PREDR. Finally, actions are undertaken in OUT.

Reprinted with permission.

models of consciousness. Following this line, research on
minds and consciousness rather focuses on representation than
on actual self-awareness (Tenenbaum et al., 2011). Although
representation will be important to create human-like minds
and general intelligence (Gershman et al., 2015; Lake et al.,
2017; Mao et al., 2019), a key factor to become conscious is
the ability to identify a self in one’s environment (Dehaene
et al., 2017). A major drawback of pure mechanistic methods,
however, is that the complete knowledge on the model of
consciousness is required in order to realize and implement
them. As such, in order to develop these models to higher
forms such as Damasio’s extended consciousness, a complete
mechanistic model of the entire brain including all connections
is required.

4.1. Consciousness in Machine Learning
A possible solution to this problem is machine learning, as
it allows to form and train complex models. The topic of
consciousness, however, is neglected in the field to a large extent.
On the one hand, this is because of the concerns that the
brain and consciousness will never be successfully simulated
in a computer system (Penrose, 2001; Hameroff and Penrose,
2014). On the other hand, consciousness is considered to be an
extremely hard problem and current results in AI are still meager
(Brunette et al., 2009).

The state-of-the-art in machine learning instead focuses on
supervised and unsupervised learning techniques (Bishop, 2006).
Another important research direction is reinforcement learning
(Sutton and Barto, 2018) that aims at learning of suitable
actions for an agent in a given environment. As consciousness is
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often regarded to be associated with embodiment, reinforcement
learning is likely to be important for modeling of consciousness.

The earliest work that the authors are aware of attempting
to model and create agents that learn their own representation
of the world entirely using machine learning date back to the
early 1990’s. Already in 1990, Schmidhuber proposed a model
for dynamic reinforcement learning in reactive environments
(Schmidhuber, 1990) and found evidence for self-awareness
in 1991 (Schmidhuber, 1991). The model follows the idea of
a global work space. In particular, future rewards and inputs
are predicted using a world model as shown in Figure 3.
Yet, Schmidhuber was missing a theory on how to analyse
intelligence and consciousness in this approach. Similar to
Tononi (2008), Schmidhuber followed the idea of compressed
neural representation. Interestingly, compression is also key to
inductive reasoning, i.e., learning from few examples which we
typically deem as intelligent behavior.

Solomonoff’s Universal Theory of Inductive Inference
(Solomonoff, 1964) gives a theoretic framework to inductive
reasoning. It combines information theory with compression
theory and results in a formalization of Occam’s razor preferring
simple models over complex ones (Maguire et al., 2016), as
simple models are more likely from an information theoretic
point of view3.

Under Schmidhuber’s supervision, Hutter applied
Solomonoff’s theory to machine learning to form a theory
of Universal Artificial Intelligence (Hutter, 2004). In this theory,
intelligent behavior stems from efficient compression4 of inputs,
e.g., from the environment, such that predictions and actions
are performed optimally. Again, models capable of describing a
global work space play an important role.

Maguire et al. further expand on this concept to
extend Solomonoff’s and Hutter’s theories to also describe
consciousness. Following the ideas of Tononi and Koch (Rees
et al., 2002) consciousness is understood as data compression,
i.e., the optimal integration of information (Maguire et al.,
2016). The actual consciousness emerges from binding of
information and is inherently complex. As such, consciousness
can also not be deconstructed into mechanical sub-components,
as the decomposition would destroy the sophisticated data
compression. Maguire et al. even provide a mathematical

3 Note that of course, conscious brains have to be complex in order to implement
a computing mechanism that is able to realize the process of model creation
and selection accordingly. Thus, the concept of Occam’s razor is by no means
in contrast to this conviction. Rather, it describes the selection procedure of the
models itself. According to Occam’s razor, simple models should be preferred over
more complex ones. The idea behind this approach is that a good model should,
on the one hand be as complex as necessary, but on the other hand as simple as
possible, i.e., not too complex, e.g., containing too many free parameters, that are
not required to capture the phenomenon under consideration.
4In computer science, the concept of compression, or compressibility respectively,
does not imply simplicity of the input or the model architectures. On the contrary,
deriving more and more compressed representations from the input, requires
highly complex processes for which in turn complex architectures are crucial. For
instance, a random sequence of digits is incompressible but not complex. On the
other hand, the infinitely many digits of π can be compressed to algorithms, i.e.,
representations, of finite length that (re-)produce the digit sequence of π with
arbitrary precision. Thus, such an algorithm of finite length is both an extremely
compressed representation of π , and highly complex.

proof to demonstrate that consciousness is either integrated
and therefore cannot be decomposed or there is an explicit
mechanistic way of modeling and describing consciousness
(Maguire et al., 2016).

Based on the extreme success of deep learning (LeCun
et al., 2015), also several scientists observed similarities in
neuroscience and machine learning. In particular, deep learning
allows to build complex models that are hard to analyse
and interpret at the benefit of making complex predictions.
As such both fields are likely to benefit each other in the
ability to understand and interpret complex dynamic systems
(Marblestone et al., 2016; Hassabis et al., 2017; Van Gerven,
2017; Kriegeskorte and Douglas, 2018; Barrett et al., 2019;
Richards et al., 2019; Savage, 2019). In particular, hard-
wiring following biological ideas might help to reduce the
search space dramatically (Zador, 2019). This is in line with
recent theoretical considerations in machine learning as prior
knowledge allows to reduce maximal error bounds (Maier et al.,
2019b). Both fields can benefit from these ideas as recent
discoveries of e.g., successor representation show (Stachenfeld
et al., 2017; Gershman, 2018; Geerts et al., 2019). Several
scientists believe that extension of this approach to social,
cultural, economic, and political sciences will create even more
synergy resulting in the field of machine behavior (Rahwan et al.,
2019).

5. CAN CONSCIOUSNESS EMERGE IN
MACHINE LEARNING SYSTEMS?

After having reviewed philosophy, neuroscience, and the state-
of-the-art in AI and machine learning, we can now analyse
the most important concepts in the field of machine learning,
especially deep learning, to assess whether they have the potential
to create consciousness following one of the previous theories.
In particular, we focus on the ability of the system to represent
a category of self and how this self-awareness is constructed,
as all theories of consciousness require at least experiencing
the self.

In Figure 4, we provide an overview of important models
depicted as box-and-arrow schemes, following the standard
way to communicate neural network architectures within
the machine learning community. We denote feed-forward
connections5 as dashed black lines, recurrent connections6 as solid

5Depending on the specific task and input data, these connections are adjusted
according to a certain learning algorithm (Bishop, 2006), e.g., supervised with
error backpropagation (Chauvin and Rumelhart, 1995), unsupervised with,
e.g., contrastive divergence (Carreira-Perpinan and Hinton, 2005) or through
reinforcement learning (Sutton and Barto, 2018).
6These connections are hard-wired, i.e., not adjusted during training, and provide
a copy of the current module’s internal state to the same module. Thus, in each
subsequent processing step, the module receives the current input together with its
own previous internal state. This design principle enables processing of temporal
structured data. So called recurrent neural networks (Tsoi and Back, 1997), like e.g.,
long short-term memories (LSTMs) (Hochreiter and Schmidhuber, 1997) have
proven to do extremely well in speech and language processing, for instance.
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FIGURE 4 | Overview on typical architectures in machine learning and proposed models. Hard-coded paths, i.e., recurrent connections, are indicated by solid black

lines, trainable feed-forward connections by dashed black lines, and training losses by red lines. Arrows indicate information flow. While architectures (A–E) do not

match theories of consciousness, architectures (F–H) implement theories by Schmidhuber and Damasio.
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black lines, and training losses7 as red lines. Arrows indicate the
direction of information flow.

The trainable feed-forward connections perform certain
transformations on the input data yielding the output. In the
most simple case, each depicted feed-forward connection could
either be realized as a direct link with trainable weights from
the source module to the respective target module, a so called
perceptron (Minsky and Papert, 2017), or with a single so
called hidden layer between source and target module. Those
multi-layer neural networks are known to be universal function
approximators (Hornik, 1991). Without loss of generality, the
depicted feed-forward connections could also be implemented
by other deep feed-forward architectures (Maier et al., 2019a)
comprising several stacked hidden layers, and could thus be
inherently complex8.

Figure 4A shows a simple feed-forward architecture which
can be trained through supervised learning, i.e., it requires
external labeled training data y∗ to adjust its trainable weights
given input x to produce output y. During training the error
between expected output y∗ and actual output y is minimized.
Models like this are used in machine learning to classify static
input like images for instance (LeCun et al., 2015). In this model,
we do not expect the emergence of consciousness.

Figure 4B shows a similar setup, yet with an additional
recurrent connect feeding the momentary internal state ht back
to the input. Thus, the subsequent internal state ht+1 and
output yt+1 depend not only on the subsequent input xt+1 but
also on the previous internal state. Note that we only depict
a simple recurrent cell here with time-dependent internal state
ht. Without loss of generality, this could also be realized by
more complex architectures like gated recurrent units (GRUs)
(Cho et al., 2014) or long short-term memory cells (LSTMs)
(Hochreiter and Schmidhuber, 1997). Again, models like this fall
into the category of supervised learning, i.e., require labeled input
data or information about the expected output, respectively. Due
to their ability of processing sequential input, these models are
widely used in contemporary machine learning, e.g., natural
language processing (Young et al., 2018). The emergence of
consciousness in those models is neither observed, nor supported
by any of the theories presented so far.

In Figure 4C, we introduce the concept of “Emotion”
following Damasio’s wording. In machine learning terms, this
reflects an additional loss. Now, the system receives an additional

7Training losses provide a reference during learning to adjust weights in trainable
connections. In supervised learning (Bishop, 2006), the difference between actual
and expected output, i.e., the error, serves as training loss (Chauvin and Rumelhart,
1995). In contrast, in reinforcement learning (Sutton and Barto, 2018), rewards
indicating the appropriateness of a certain action or output are provided as
feed-back.
8In principle, all presented models could be implemented, using state-of-the-art
machine learning libraries such as Keras (Chollet, 2015), Tensorflow (Abadi et al.,
2016), or PyTorch (Paszke et al., 2019). Of course, a lot of experiments are still
necessary and some of the presented models are still difficult to train. However,
some work toward this direction has already been done. For instance, some neural
network based AI models capable of playing classic Atari games at human level do
already incorporate world models of the games’ environments (Kaiser et al., 2019),
i.e., make use of so called model-based reinforcement learning (Sutton and Barto,
2018).

input e that is associated to a valence or value, i.e., a reward.
Without loss of generality, we can assume positive entries in e

to be associated to desirable states for the system and negative
values to undesirable states. As such, training using e falls into the
category of reinforcement learning (Sutton and Barto, 2018) that
aims at maximizing future rewards of e, by adjusting or choosing
appropriate output y, i.e., action or behavior. In order to model
competing interests and saturation effects, e.g., a full battery
does not need to be charged further, we introduce a reference
e∗, i.e., a desired reward, that is able to model such effects.
This corresponds to the concept of homeostasis in biology:
desired rewards e∗ correspond to preferred values of metabolic
parameters like blood oxygenation level for instance, whereas
the actual rewards e would correspond to actual values of such
metabolic parameters. Like in a feedback loop, the organism seeks
to minimize the difference between desired and actual values
of metabolic parameters. Note that we deem the system to be
able to predict the expected future reward e′ from its current
state ht following a so called deep Q-learning paradigm (Mnih
et al., 2015). Here we use e′ and e∗ to construct a trainable
reinforcement loss, to be able to learn from low-level rewards e
to adjust the organism’s output action or behavior, respectively.
In Damasio’s model, the totality of all actual low-level rewards e
correspond to emotions. Although being able to learn, systems
like this still need supervision to train the weights producing
appropriate output (action / behavior) y using a reference. In
machine learning, such models fall into the class of model-free
reinforcement learning (Sutton and Barto, 2018). Although these
models are able to learn playing computer games (Mnih et al.,
2015) or board games like Go (Silver et al., 2017) at human
level, the emergence of consciousness is not expected, let alone
observed, since this setup also does not match any theory of
consciousness so far.

As self-awareness is a requirement for base consciousness,
we deem a world model, i.e., a model of the organism’s
environment, to be necessary. Such an approach is shown in
Figure 4D, and corresponds to so called auto-encoders which
are used in machine learning for dimensionality reduction
(Wang et al., 2016) or the construction of compact feature
spaces, so called embeddings (Lange and Riedmiller, 2010).
Given the organism’s produced output (action / behavior) y,
the world model is used to estimate an expected future input
x′. In the figure, we chose a recurrent model capturing the
sequence of external states of the world wt that is independent
of the sequence of internal states of the agent ht. To gain
consciousness, this model misses at least a link from internal
to external state and “emotions” that would guide future
decisions.

Combining the two previously described models
(Figures 4C,D), i.e., adding low-level rewards/emotions to
the auto-encoder model results in the model shown in Figure 4E,
which corresponds, in contrast to model-free reinforcement
learning, to model-based reinforcement learning (Sutton and
Barto, 2018). Again world and self are disconnected, hence
inhibiting self-representation and self-discovery. Approaches
like this are already being explored for video game control
(Kaiser et al., 2019).
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With a world-model being present, besides predicting future
rewards e′ from the internal agent state, we are now able to
additionally predict future rewards e′′ that also take into account
the external state of the world and the chosen action / behavior
y. As such Figure 4F is the first one that would implement a
trainable version of deep Q-learning. However, development of
consciousness is debatable, as the model does not feature a link
between the external state of the worldwt and the internal state of
the agent ht. If we would add trainable connections from ht to wt

and vice versa, we would end up with Schmidhuber’s Model from
1990 (Schmidhuber, 1990) (Figure 3) for which Schmidhuber
found evidence to develop self representation (Schmidhuber,
1991).

Interestingly, Damasio’s descriptions follow a similar line in
Damasio (1999). We depict a model implementing Damasio’s
core consciousness in Figure 4G. As Schmidhuber, Damasio
requires a connection from the world model wt to the body
control system ht. However, in his view, consciousness does not
emerge by itself. It is enforced by a “feeling” that is expressed
as a training loss in terms of machine learning. As such, the
Damasio model of core consciousness requires a loss that aims at
the recovery of the image of the self in the world model. If this is
implemented as a loss, we are able to express the desire to exist in
the world. If implemented merely as trainable weights, we arrive
at the theory of integrated information (Tononi et al., 2016) that
creates consciousness as a maximally compressed representation
of the world, the self, and their mutual interactions. Interestingly,
these considerations also allow the integration of an attention
mechanism (Vaswani et al., 2017) and other concepts of resolving
context information used in machine learning. Realized in
a biological learning framework, e.g., using neuromodulators
like dopamine (Russek et al., 2017), the different notions of
loss and trainable connections will disappear. Therefore, we
hypothesize that from ameta-perspective, themodels of Damasio
(Damasio, 1999), Schmidhuber (Schmidhuber, 1990), Tononi
(Tononi et al., 2016), Koch (Koch et al., 2016), and Dehaene
(Dehaene et al., 1998, 2011, 2014; Dehaene and Naccache, 2001;
Dehaene and Changeux, 2004; Sergent and Dehaene, 2004)
may be basically regarded as different descriptions of the same
fundamental principles.

Note that the models of consciousness that we have discussed
so far are very basic. They do not take into account higher
cognitive functions like language, different kinds of memory
(procedural, episodic, semantic), nor any other complex multi-
modal forms of processing, e.g., hierarchical action planning,
induction, causal inference, or conclusion by analogy. Again,
we follow Damasio at this point in Figure 4H in which all of
these sophisticated processes are mapped into a single block
“Memory / Extended Functions.” Note, although we omit these
extended functions, we are able to integrate them using trainable
paths. As such, the model of core consciousness (Figure 4G)
acts as a kind of“neural operating system” that is able to update
and integrate also higher order cognitive functions according
to the needs of the environment. We agree with Damasio
that this core consciousness is shared by many species, i.e.,
probably all vertebrates, cephalopods, and perhaps even insects.
By increasing the number of “extended functions,” the degree

of complexity and “integrated information” rises measurably,
as also observed by Casarotto et al. (2016). In mammals, all
higher order, i.e., extended, cognitive functions are located in
the cerebral cortex. Hence, the growth of cortex size during
mammal evolution, corresponds to an increasing number of
extended functions.

This brings us back to the original heading of our
section: There are clearly theories that enable modeling and
implementation of consciousness in the machine. On the one
hand, they are mechanistic to the extend that they can be
implemented in programming languages and require similar
inputs as humans would do. On the other hand, even the
simple models in Figure 4 are already arbitrarily complex,
as every dashed path in the models could be realized by a
deep neural network comprising many different layers. As such
also training will be hard. Interestingly, the models follow a
bottom-up strategy such that training and development can be
performed in analogy to biological development and evolution.
The models can be trained and grown to more complex
tasks gradually.

6. DISCUSSION

Existence of consciousness in themachine is a hot topic of debate.
Even with respect to the simple core consciousness, we observe
opinions ranging from “generally impossible” (Carter et al.,
2018) through “plausible” (Dehaene et al., 2017) to “has already
been done” (Schmidhuber, 1991). Obviously, all of the suggested
models cannot solve the qualia problem or the general problem
on how to demonstrate whether a system is truly conscious. All
of the emerging systems could merely be mimicking conscious
behavior without being conscious at all (even Figure 4A). Yet as
already discussed by Schmidhuber (1991), we would be able to
measure correlates of self recognition similar to neural correlates
of consciousness in humans (Koch et al., 2016) which could help
to understand consciousness in human beings. However, as long
as we have not solved how to provide proof of consciousness
in human beings, we will also fail to do so in machines as the
experience of consciousness is merely subjective.

Koch and Dehaene discussed the theories of global work
space and integrated information as being opposed to each other
(Carter et al., 2018). In the models found in Figure 4, we see
that both concepts require a strong degree of interconnection.
As such, we do not see why both concepts are fundamentally
opposing. A global work space does not necessarily have to
be encoded in decompressed state. Also, Maguire’s view of
integrated information (Maguire et al., 2016) is not necessarily
impossible to implement mechanistically, as we are able to use
concepts of deep learning to train highly integrated processing
networks. In fact, as observed by neuroscience (Kriegeskorte
and Douglas, 2018), both approaches might support each other
yieldingmethods to construct and reproduce biological processes
in a modular way. This allows the integration of representation
(Gershman et al., 2015) and processing theories (Sun and
Franklin, 2007) as long as they can be represented in terms of
deep learning compatible operations (Maier et al., 2019b).
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In all theories that we touched in this article, the notion of
self is fundamental and the emergence of consciousness crucially
requires embodiment. Feedback from internal body states is
regarded to be the basis of emotions and feelings. Without
emotions and feelings, the system cannot be trained and thus
cannot adapt to new environments and changes of circumstances.
Furthermore, certain additional cognitive functions are crucial
to support, together with core consciousness, the emergence
of extended consciousness as observed in humans and other
non-human primates, as well as some other higher mammals,
birds and cephalopods. These cognitive functions comprise,
for instance attention, hierarchical action planning, procedural,
episodic, and semantic memory.

In the machine learning inspired models, we assume that
a disconnection between environment and self would cause a
degradation of the system similar to the one that is observed
in human beings in complete locked-in state (Kübler and
Birbaumer, 2008) or in chronically curarized rats (Birbaumer,
2006). This homeostatsis, i.e., the regulation of body states
aimed at maintaining conditions compatible with life, was also
deemed important for the design of feeling machines by Man
and Damasio (2019). Note that, a slightly different concept of
homeostasis has been introduced by Tononi and Cirelli in the
context of the sleep homeostasis hypothesis (Tononi and Cirelli,
2003). There, it is assumed that synaptic potentiation is tied to the
homeostatic regulation of slow-wave activity.

Similar to the problems identified by Nagel, also the proposed
mechanistic machine learning models will not be able to
understand “what it is like” to be a bat. However, the notion
of train-/learnable programs and connections or adapters might
offer a solution to explore this in the future. Analogously, one
cannot describe to somebody “what it is like” to play the piano
or to snowboard on expert level unless one really acquires the
ability. As such also the qualia problem persists in machine
consciousness. However, we are able to investigate the actual
configuration of the representation in the artificial neural net
offering entirely new levels of insight.

In Damasio’s theory, consciousness is effectively created
by a training loss that causes the system to “want” to be
conscious, i.e., “Cogito ergo sum” becomes “Sentio ergo sum.”
Comparison between trainable connections after (Schmidhuber,
1990), attention mechanisms (Vaswani et al., 2017), and this
approach are within the reach of future machine learning models
which will create new evidence for the discussion of integrated
information and global work spaces. In fact, Schmidhuber has
already taken up the work on combination of his early ideas with
modern approaches from deep learning (Schmidhuber, 2015,
2018).

With models for extended consciousness, even the notion of
the Homunculus (Kenny, 2016) can be represented by extension
of the self with another self pointer. In contrast to common
rejection of the Homunculus thought experiment, this recurrent
approach can be trained using end-to-end systems comparable to
AlphaGo (Silver et al., 2016).

Damasio also presents more interesting and important work
that is mostly omitted in this article for brevity. In Damasio
(1999), he also relates structural brain damage to functional

loss of cognitive and conscious processing. Also the notion
of emotion is crucial in a biological sense and is the driving
effect of homeostasis. In Man and Damasio (2019), Damasio
already pointed out that this concept will be fundamental for
self-regulating robotic approaches.

With the ideas of cognitive computational neuroscience
(Kriegeskorte and Douglas, 2018) and the approaches detailed
above, we will design artificial systems that approach the
mechanisms of biological systems in an iterative manner. With
the iterations, the artificial systems will increase in complexity
and similarity to the biological systems. With respect to
artificial systems and machine learning, we are far away from
the complexity of biological neural structures. Yet, we can
adopt Damasio’s strategy of identifying the presence of certain
structures and links within these models. This is also the main
contribution of our article. It allows us to link AI methods to
Damasio’s categories. In our analysis, we also observe that none
of the machine learning models today could be mapped to the
highest (and human-like) kind of extended consciousness.

However, even if we arrive at an artificial system that performs
identical computations and reveals identical behavior as the
biological system, we will not be able to deem this system
as conscious beyond any doubts. The true challenge in being
perceived as conscious will be the acceptance by human beings
and society. Hence, requirements for conscious machines will
comprise the similarity to biological conscious processes, the
ability to convince human beings, and even the machine itself.
As Alan Turing already proposed in his imitation game in 1950
to decide whether a machine is intelligent or even conscious
(Turing, 1950), the ascription of such by other humans is a critical
factor. For this purpose, Turing’s Test has already been extended
to also account for embodiment (French, 2012). However, such
tests are only necessary, but not sufficient as GaryMarcus pointed
out: Rather simple chat bot models are already able to beat
Turing’s Test in some occasions (Vardi, 2014).

Turing’s test is able to test consciousness and intelligence
only from an outside point of view. For the perception of
consciousness, the internal point of view, however, is even
more important. As Turing observed, the only means to
quantify consciousness would be to directly compare experiences
or memory contents with each other, or at least indirectly
through serializations/projections. One way to serialize thoughts,
experiences, and memories is language, and the comparison of
such with real human serializations is part of the Turing-Test.
However, since language provides only a coarse projection of
memory and experience, also its analysis is necessarily coarse
and may be feigned on purpose. A better path of creating a
quantitative measure of consciousness would be to compare
digital serializations of memory with respect to the ability to
re-create the conscious experience with sufficient precision in
the sense of the Nyquist-Shannon Sampling Theorem (Shannon,
1949). However, this path is still far away in the future as it would
require storing and loading of digital memories using neural
interfaces.

In this line of thought, we can now also relate to analysis
of consciousness in biology: For example, there is the so called
mark and mirror test (Bard et al., 2006) that shows at what
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age self-representation appears in humans, or whether animals
(corvids) seem to possess this ability. Here, the means of
serialization of conscious experience is even more limited. Yet,
we are able to understand certain basic feelings such as ones
related to self-perception in the mirror by analysis of actions.
So, one could interpret the mark and mirror test as a very weak
version of the Turing test with respect to core consciousness.
Another conjecture to assess the putative existence of artificial
consciousness in candidatemachine learning systems would be to
apply the concept of the perturbational complexity index (Casali
et al., 2013) which measures the degree of consciousness even in
comatose or locked-in state patients.

Given the complexity and importance of the topic, we deem it
necessary to look also at some ethical implications at this point.

6.1. Ethical Implications
Being able to create artificial systems that are indistinguishable
from natural conscious beings and thus are also potentially
conscious raises ethical concerns. First and foremost, in
the transformation from core consciousness to extended
consciousness, the systems gain the ability to link new
program routines. As such systems followings such a line of
implementation need to be handled with care and should be
experimented on in a contained environment. With the right
choice of embodiment in a virtual machine or in a robotic body,
one should be able to solve such problems.

Of course there are also other ethical concerns, the more
we approach human-like behavior. A first set of robotic laws
has been introduced in Asimov’s novels (Clarke, 1993). Even
Asimov considered the rules problematic as can be seen from
the plot twists in his novels. Aside this, being able to follow
the robotic laws requires the robot to understand the concepts
of “humans,” “harm,” and “self.” Hence, such beings must be
conscious. Therefore, tampering with their memories, emotions,
and feelings is also problematic by itself. Being able to copy and
reproduce the same body and mind does not lead to further
simplification of the issue and implies the problem that we have
to agree on ethics and standards of AI soon (Jobin et al., 2019).

7. CONCLUSION

In this article, we reviewed the state-of-the-art theories on
consciousness in philosophy, neuroscience, AI, and machine
learning. We find that the different disciplines need to interact
to push research in this direction further. Interestingly, basic
theories of consciousness can be implemented in computer
programs. In particular, deep learning approaches are interesting
as they offer the ability to train deep approximators that are
not yet well-understood to construct mechanistic systems of
complex neural and cognitive processes. We reviewed several
machine learning architectures and related them to theories of
strong reductionism and found that there are neural network
architectures from which base consciousness could emerge.
Yet, there is still a long way to form human-like extended
consciousness.
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