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Abstract

Climate change and the rising food demand provide a need for smart crops that yield more

biomass. Recently, two Arabidopsis thaliana mutants with enhanced growth characteristics,

VP16-02-003 and the VP16-05-014, were obtained by genome-wide reprogramming of

gene expression, which led to the identification of novel biomarkers of these enhanced

growth phenotypes. Since the circadian cycle strongly influences metabolic and physiologi-

cal processes and exerts control over the photosynthetic machinery responsible for

enhanced growth, in this study, we investigate the influences of the circadian clock on the

metabolic rhythm of eighteen key biomarkers for the larger rosette surface area phenotype.

The metabolic profile was studied in intact leaves at seven different time points throughout

the circadian cycle using high-resolution magic angle spinning (HR-MAS) NMR. The results

show that the circadian rhythm of biomarker metabolites are remarkably robust across wild-

type Col-0 and VP16-02-003 and the VP16-05-014 mutants, with widely different metabolite

levels of both mutants compared to Col-0 throughout the circadian cycle. Our analysis

reveals that robustness is achieved through functional independence between the circadian

clock and primary metabolic processes.

Introduction

Smart crops with high biomass yield and with a reduced need for fertilizer and pesticides can

help to meet the increasing demand for agricultural products [1,2]. Such smart crops can be

developed by genome editing tools including zinc finger nucleases (ZFNs), transcription acti-

vator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic

repeats/Cas9 (CRISPR/Cas9) [3,4]. In a recent study, zinc finger artificial transcription factors

(ZF-ATFs) were used to obtain Arabidopsis thaliana mutants with enhanced growth character-

istics [5]. The transcriptional activator protein VP16 from the herpes simplex virus was fused

to an array of three zinc fingers (3F) to provide an artificial gene construct, denoted 3F-VP16.

Arabidopsis thaliana plants were transformed with the 3F-VP16 construct under the control of

the RPS5A promotor. The 3F motif has ~1000 binding sites in the nuclear Arabidopsis thaliana
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genome of 130 Mbp. This could lead to drastic changes in genome-wide expression patterns

and provide access to rare phenotypes of plants [4,6]. Indeed two Arabidopsis thaliana
mutants, VP16-02-003 and VP16-05-014, with enhanced growth characteristics were obtained

using such genome interrogation with ZF-ATFs [5].

Recently, we have also introduced a systems biology approach to resolve primary processes

of metabolic regulation and conversion leading to enhanced growth from the complicated bio-

logical background, using non-invasive HR-MAS NMR [7]. In the previous work, the meta-

bolic profile for both mutants was studied at one time-point in the middle of the light period

of 12 hours in a 24-hour light/dark regime [8]. The changes in the metabolomics and tran-

scriptomics of both mutants compared to the wild-type Arabidopsis thaliana accession Colum-

bia-0 (Col-0) gave us insight into the improved growth characteristics of the mutants which

were found to be a consequence of the reduce defence response in the context of the growth-

defence trade-off [5,8–11].

It is known that physiological functions, like growth, flowering time, response to stress and

metabolism are regulated by the circadian cycle [9,10]. A circadian cycle is a biological process

that displays an endogenous, entrainable oscillation of about 24 hours. Hence the circadian

clock comprises three physical entities that fulfil the functional requirements of pre-dawn acti-

vation, evening deactivation and the afternoon switching between the morning and evening

regimes, providing a nice example of a function based framework with limited complexity (Fig

1A) [11]. The molecular mechanism of the circadian clock in Arabidopsis thaliana has been

studied extensively during the last decades and consists of three interlocked transcriptional-

translation feedback loops (Fig 1B) [9,10,12–14]. The central loop of the circadian clock

Fig 1. Schematic overview of the Arabidopsis thaliana circadian clock. A) The central oscillator consists of three interlocked feedback loops. External signals like light

and temperature can influence the input pathways for the central oscillator. In turn, the central oscillator activates output pathways depending on the time of the day. B)

Model of the central oscillator containing three interlocked transcriptional-translation feedback loops.

https://doi.org/10.1371/journal.pone.0218219.g001
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consists of the morning-expressed genes CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and

LHY (LATE ELONGATED HYPOCOTYL) and the evening-expressed gene TOC1 (TIME OF
CAB EXPRESSION 1). CCA1 and LHY form a heterodimer which represses the expression of

TOC1. The heterodimer also positively regulates the afternoon-expressed pseudo-response

regulators PRR5, PRR7 and PRR9. In turn, PRR5, PRR7 and PRR9 repress the transcription of

CCA1 and LHY, which allows the induction of the evening-expressed gene TOC1. The even-

ing-expressed genes are ELF3 (EARLY FLOWERING 3), ELF4 and LUX (LUX ARRYTHMO)

and their products form the evening complex (EC). The evening complex represses the ex-

pression of the PRRs which allows the expression of CCA1 and LHY in the early morning

[9,10,12–14].

According to recent insights into the biological design from a functional perspective,

robustness requires functional independence of the abundant subsystems, which, in the case of

the clock, are controlled through interfaces while leaving the clock itself undisturbed [11]. In

this work, we show that this is in fact realized in the Arabidopsis thaliana VP16-02-003 and

VP16-05-014 mutants, where gross changes in concentrations of primary metabolites are real-

ized while the clock is running in phase across wild-type and mutants.

We have studied the circadian rhythm of the metabolites using high-resolution magic angle

spinning (HR-MAS) NMR to obtain the metabolic profiles at seven different time-points of

the light/dark cycle for the Arabidopsis thaliana wild-type Columbia 0 (Col-0) and two

mutants, VP16-02-003 and VP16-05-014. The data provide converging evidence that the clock

functional periodicity is independent of mitigation of cellular complexity and growth-defence

trade-off.

Materials & methods

Plant materials and sample collection

Arabidopsis thaliana accession Columbia-0 and VP16-02-003 and VP16-05-014 plants were

grown as described previously [8], with slight modifications. Plants were grown in a climate-

controlled growth cabinet (Bronson climate BV) instead of green house used in earlier study

[8]. Use of growth cabinet was necessary to achieve controlled harvesting of the leaves at vari-

ous time points during light/dark cycle. Plants were grown at 293 K, 70% relative humidity

and with a light regime of 12 hours light (200 μmol m-2 s-1 provided by fluorescent lamp) and

12 hours dark. In the growth chamber, the plant growth was slower than in green house, there-

fore rosette leaves were harvested at 35 instead of 28 days post germination to achieve the

same growth stage. Typically, samples of intact rosette leaves were harvested every 4 hours at

seven different time-points throughout the light/dark cycle. For HR MAS NMR, each fresh

single rosette leaf was weighed (n = 6) and rolled inserted into a 4 mm ZrO2 rotor with 10 μL

of deuterated phosphate buffer (100 mM, pH 6) containing 0.1% (w/v) 3-trimethylsilyl-

2,2,3,3-tetradeuteropropionic acid (TSP). The sample rotors were immediately frozen in liquid

nitrogen and stored at -80˚C until use. Samples for quantification of free amino acid, protein,

sugars and starch were weighed and frozen immediately in liquid nitrogen and stored at -80˚C

until use. The VP16-02-003 and VP16-05-014 mutant with an increased rosette surface area

phenotype were investigated in this study in comparison to the wild-type Arabidopsis thaliana
accession Columbia-0 (Col-0) [5].

Quantification of free amino acids, proteins, soluble sugars and starch

For the estimation of free amino acid content of the leaves, the amino acids were extracted

from leaves (~60 mg) using 600 μL 80% (v/v) ethanol at 80˚C for 30 minutes. The sample was

centrifuged for 15 minutes at 18.000 g at 4˚C. The supernatant was collected and the pellet was
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suspended in 400 μL of 50% ethanol and incubated for 20 minutes at 80˚C. The suspension

was then centrifuge for 15 minutes at 18.000 g at 4˚C. The supernatant was again collected and

pellets were resuspend in 300 μL water. Prior to centrifugation, the suspension was again incu-

bated for 20 minutes at 80˚C. After centrifugation, all the supernatants were pooled and used

for further analysis. The free amino acid content was assayed calorimetrically using 8% (w/v)

ninhydrin solution as described earlier [15]. For protein estimation, proteins were extracted

from leaves (~30 mg) by using 60 μL ice-cold extraction buffer containing 100 mM Tris-Cl

(pH 7.2), 2 mM MgCl2, 2 mM EDTA, 5 mM DTT, 2% (m/v) PVPP and 10% (v/v) glycerol).

The sample was stirred for 15 minutes at 4 ˚C and the extract was centrifuged for 5 minutes at

10.000 g at 4 ˚C. The supernatant was used to determine the protein content using a Bradford

assay [16]. For estimation of soluble sugars, the same ethanol extraction method as for free

amino acids was used. The amount of total soluble sugars was estimated according to the pro-

cedure of Dubois et al. [17]. Briefly, suitably diluted alcohol extracts were mixed with 5% (w/v)

aqueous phenol and concentrated sulphuric acid. The contents were incubated for 30 min at

room temperature and absorbance was read at 490 nm. The starch contents were determined

by following the methods as described by Smith and Zeeman [18]. Briefly, the starch in the eth-

anol extracts were first converted into glucose using α-amyloglucosidase and α-amylase. Sub-

sequently, the amount of glucose was determined by using hexokinase and glucose-

6-phosphate dehydrogenase [18].

Fumarase activity assay

To assay the fumarase activity, a colorimetric assay kit of Sigma-Aldrich (MAK206) was used.

Enzyme extract were prepared by homogenizing leaves (~10 mg) in 100 μl ice cold Fumarase

assay buffer (Sigma-Aldrich MAK206A). After 10 minutes of incubation on ice, the extract

was centrifuged at 10,000 x g for 5 min. Supernatant was used for the fumarase activity assay.

Fumarase activity was determined by measuring a colorimetric product with absorbance at

450 nm (A450) proportional to the enzymatic activity present by using Emax Plus microplate

reader (Molecular Devices) in the kinetic mode.

Statistical analysis

The one-way analysis of variation (ANOVA) function of OriginPro 2016 software (Northamp-

ton, USA) was used to determine the significant differences between Arabidopsis wild-type

Col-0, VP16-02-003 and VP16-05-014 for the data for each experiment. Values are presented

as means ± standard error (SEM) and statistical significances were determined at p< 0.05 for

Col-0 vs VP16-02-003 and for Col-0 vs VP16-05-014 adjusted for multiple testing using the

Holm-Bonferronie correction method.

HR-MAS NMR-based metabolic profiling

A Bruker AV-400 MHz spectrometer operating at a resonance frequency of 399.427 MHz was

used for the HR-MAS NMR experiments with a 4 mm HR-MAS dual inverse 1H/13C probe

with magic angle gradient. A spinning frequency of 4 kHz and a temperature of 277 K was

used during data acquisition.

A rotor synchronized Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with water sup-

pression was used to obtain one-dimensional 1H HR-MAS spectra [19]. The one-dimensional

spectra were collected applying 256 transients, a spectral width of 8000 Hz, data array size of

16K points, an acquisition time of 2 seconds and a relaxation delay of 2 seconds. The echo

time applied for CPMG-spectra was 6.4 ms (8 loops, rotor-synchronized inter-pulse delay of

0.8 ms). The free induction decays (FIDs) were exponentially weighted with a line broadening
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of 1 Hz. TOPSPIN 3.5 (Bruker BioSpin, Germany) was used to phase the spectra manually and

to perform automatically baseline correction. Data deposit publicly available.

Multivariate analysis

AMIX (version 3.8.7, Bruker BioSpin) is used to generate bucket tables for each time-point

from the one-dimensional spectra excluding the region between 4.20–6.00 ppm to remove the

larger water signal. The one-dimensional CPMG spectra were normalized to the total intensity

and binned into buckets of 0.04 ppm. The data were mean-centred and scaled using the Pareto

method in SIMCA software package (version 14.0, Umetrics, Umeå, Sweden). Supervised

orthogonal partial least squares discriminant analysis (OPLS-DA) was performed on the data

using the SIMCA software.

Quantification of the metabolites

The eighteen metabolites were quantified using the Chenomx NMR Suite 8.2 (Chenomx Inc.,

Edmonton, Alberta, Canada). The known concentration of the reference peak of TSP was used

to determine the concentration of the eighteen biomarkers. Metabolite concentrations are rep-

resented as means ± standard error. Student’s t-test analysis of the NMR quantification results

was performed with OriginPro 2016 (Northampton, USA).

Results and discussion

Circadian rhythm of amino acids, proteins, sugars and starch

The functional pathways underlying the enhanced growth characteristics of the VP16-02-003

mutant and the VP16-05-014 mutant were investigated in this study throughout the circadian

cycle. Prior to metabolic profiling, the circadian rhythms for the free amino acids, proteins,

soluble sugars and starch were examined (Fig 2).

In the wild-type Col-0, the free amino acid concentration shows an increasing trend during

the light period, while levels drop during the dark period, in line with earlier studies (Fig 2A)

[20]. The variation of the concentrations in both mutants followed the same rhythmic pattern

as for the Col-0. The metabolite concentrations of the amino acids were significantly higher in

VP16-02-003 than for the Col-0, on the other hand, the concentration of free amino acids for

the VP16-05-014 mutant was slightly lower at the beginning of the light period and very simi-

lar to the Col-0 in the dark period. The concentration of proteins remained constant through-

out the light/dark cycle except for a dip at the beginning of the dark period in Col-0 as well as

in both mutants (Fig 2B). However, the level of proteins was significantly lower for the VP16-

02-003 and VP16-05-014 mutant relative to Col-0 throughout the light/dark cycle.

In photosynthesis, CO2 is assimilated into sugars that are used for several primary processes

in plants. Starch is utilised during the dark period [21,22]. For both sugars and starch, we

expect a rhythm where the compound has risen to a maximum at the end of the light period

and reduction takes place during the dark period [21,22]. The concentration of sugars in the

Arabidopsis thaliana Col-0 show a maximum level at 12 hours and reduced during the dark

period (Fig 2C). The VP16-02-003 mutant follows the same rhythm however, the concentra-

tion of soluble sugars was lower throughout the circadian cycle as compared to Col-0. The con-

centration of soluble sugars was found to be constant for the VP16-05-014 throughout the

light/dark cycle. In Col-0, the starch level was elevated during the light period and dropped

during the dark period (Fig 2D). The starch content of the VP16-02-003 mutant remained at a

lower level in contrast to Col-0 during the whole period and this mutant does not show a high

concentration of starch at the beginning of the dark period. VP16-05-014 follows the same

A robust circadian rhythm in Arabidopsis thaliana mutants

PLOS ONE | https://doi.org/10.1371/journal.pone.0218219 June 25, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0218219


rhythm as Col-0 but with a lower amplitude. These results suggest that most probably, soluble

sugars and starch are not the most favourable carbon storage possibility in these mutants.

Organic acids, like fumaric acid and malic acid, can be used as an alternative carbon storage in

Arabidopsis plants [23–25]. These organic acids have been studied using metabolic profiling as

described in the following section.

Metabolic profiling of mutants at different time-points throughout the

light/dark cycle using HR-MAS NMR

Metabolic profiles have been obtained from intact leaves of Arabidopsis thaliana at different

time-points throughout the circadian cycle for the wild-type Col-0 and for both mutants with

enhanced growth characteristics. Fig 3 shows representative one-dimensional 1H HR-MAS

NMR spectra for Col-0, VP16-02-003 and VP16-05-014 at t = 8 hours.

The metabolic profiles for every time-point obtained by 1H HR-MAS NMR were investi-

gated by multivariate analysis of the bucket-reduced 1H NMR data, as has been described in

our earlier work [8]. In Fig 4, orthogonal partial least square discriminant analysis (OPLS-DA)

was carried out to examine the variation in metabolic profile between two mutants and the

wild-type Col-0 throughout the light/dark cycle. The variation of the OPLS-DA model was

realized by a separation of the orthogonal and predictive component of the replicates collected

from the Col-0, VP16-02-003 and VP16-05-014. The goodness-of-fit parameters of the

OPLS-DA models can be found in S1 Table. The predictive component was correlated with

Fig 2. Changes in concentration of free amino acids (A), proteins (B), soluble sugars (C) and starch (D) throughout the circadian cycle for

Arabidopsis thaliana Col-0 (●), VP16-02-003 (■) and VP16-05-014 (▲) in mg/g fresh weight. The results are given as mean ± SEM (n = 6). �

p< 0.05 Col-0 vs VP16-02-003, † p< 0.05 Col-0 vs VP16-05-014.

https://doi.org/10.1371/journal.pone.0218219.g002
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the differences between the Col-0 and mutant classes at t = 4, 8, 12 and 16 hours, while the

orthogonal component was correlated with differences between Col-0 and mutant classes at

t = 0, 20 and 24 hours. Hence, in the OPLS-DA score plots, leads to clustering and separation

of the replicates belonging to Col-0 and mutant classes at every time-point of the light/dark

cycle (Fig 4).

In our earlier metabolomics study of the VP16-02-003 and VP16-05-014, eighteen bio-

markers were identified at t = 6 hours after the start of the light period [8]. In the present

study, the rhythm of these biomarkers is followed during the circadian cycle. These metabo-

lites are the organic acids fumaric acid, malic acid and lactic acid, the sugars fructose and glu-

cose, the precursor of cell wall components choline, the secondary metabolites myo-inositol, a

sugar alcohol, and the organic osmolyte betaine (Fig 5). Also, the rhythmic pattern of ten free

amino acids was followed (Fig 6).

Fig 3. One-dimensional 1H CPMG NMR spectra for Arabidopsis thaliana Col-0 (bottom panels), VP16-02-003 (middle panels) and VP16-05-014 (top panels)

obtained from intact rosette leaf harvested at t = 8 hours into the light/dark cycle. Main metabolites have been assigned in the spectra.

https://doi.org/10.1371/journal.pone.0218219.g003
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Characterization of metabolic rhythms throughout the circadian cycle

The circadian rhythms of the concentration of the organic acids fumaric acid, malic acid and

lactic acid are shown in Fig 5A–5C. In Arabidopsis, fumaric acid is generally considered the

major form of fixed carbon and accumulates in the mitochondria and in the cytosol [24–26].

Fig 5A and 5B show that the concentrations of fumaric acid and malic acid increase during the

light to a maximum at the end of the light period and decrease during the dark period in wild-

type Col-0 and for both mutants [7,25]. Interestingly the concentration of fumaric acid was

significantly higher in both mutants as compared to Col-0, especially at the end of the light

period (t = 12 hours). The rhythm pattern of the malic acid concentration in VP16-02-003 and

VP16-05-014 also remains the same as for the wild-type Col-0, however, the concentration of

malic acid was lower in both mutants as compared to Col-0 at all time-points. In our earlier

study, we found that the concentration of lactic acid is high at the end of the light period and

dropped during the dark period in Arabidopsis thaliana Col-0 [7]. VP16-02-003 follows the

same rhythm but at a higher concentration, while VP16-05-014 has a lower lactic acid concen-

tration in comparison to Col-0 at all time-points (Fig 5C).

Sugars are known to play an important role in the circadian clock, mainly by regulation of

diurnal genes [27]. In Arabidopsis, the photosynthetic carbon fixation during the light period

also produces sugars that can be used during the dark period [20]. Fig 5D and 5E show the

concentration of fructose and glucose during the light/dark cycle. The concentration of fruc-

tose as well as glucose increased slightly during the light period and declined during the dark

period in Col-0 and in both mutants. The overall concentration of both sugars was lower in

VP16-02-003 and VP16-05-014 during the whole light/dark cycle as compared to Col-0. The

results show that both mutants VP16-02-003 and VP16-05-014 use organic acids as a storage

form of carbon instead of sugars.

Fig 4. Orthogonal partial least square-discriminant analysis (OPLS-DA) score plots of the metabolite profiles derived from the intact leaves of Arabidopsis
thaliana wild-type Col-0 (●), VP16-02-003 (■) and VP16-05-014 (▲) at the seven different time-points of harvesting throughout the light/dark cycle. There is a

clear separation between the wild-type and the mutants at the different time-points.

https://doi.org/10.1371/journal.pone.0218219.g004
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Myo-inositol in plants has diverse biological roles including phosphate storage, cell wall bio-

genesis and stress tolerance [28]. Fig 5F shows the circadian rhythm of myo-inositol for the

wild-type Col-0, VP16-02-003 and VP16-05-014. The changes in the concentration of myo-ino-

sitol were found to be very minor over the entire light/dark cycle in Col-0 as well as in VP16-

02-003 and the VP16-05-014 mutant. However, both mutants show a lower concentration of

myo-inositol as compared to Col-0 throughout the whole cycle. The lower concentration of

Fig 5. Metabolite concentrations during the circadian cycle of fumaric acid (A), malic acid (B), lactic acid (C), fructose

(D), glucose (E), myo-inositol (F), choline (G) and betaine (H) in Arabidopsis thaliana Col-0 (●), VP16-02-003 (■) and

VP16-05-014 (▲). Means ± SEM of 6 biological replicates is shown. Concentrations are expressed relative to the

concentration of Col-0 at t = 0 hours. � p< 0.05 Col-0 vs VP16-02-003, † p< 0.05 Col-0 vs VP16-05-014.

https://doi.org/10.1371/journal.pone.0218219.g005
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myo-inositol during the circadian cycle in wild-type Arabidopsis thaliana is in line with mass

spectrometry data in a previous study [29].

Choline is an essential metabolite which is needed to synthesize membrane phospholipids

in plants. Choline can be oxidized to the organic osmolyte betaine [30,31]. For Col-0, the levels

of choline decreased during the light period and increased during the dark period (Fig 5G).

The VP16-02-003 and VP16-05-014 mutants again follow the same rhythm, however at a

lower choline concentration than for Col-0 at all time-points. Similar to choline, the concen-

tration of betaine decreased during the light period and increased during the dark period (Fig

5H) in the wild-type Arabidopsis Col-0, the VP16-02-003 and the VP16-05-014 mutant. How-

ever, the level of betaine was lower in both mutants compared to Col-0 throughout the circa-

dian cycle.

Fig 6 shows the circadian rhythm for various amino acids levels for the wild-type Col-0 and

the VP16-02-003 and VP16-05-014 mutants. Overall, the rhythmic pattern of the free amino

acids during the circadian cycle does not differ between the mutants and the wild-type Col-0.

The levels of alanine, glutamic acid, glutamine, glycine, lysine, phenylalanine and tyrosine

were significantly lower in both mutants in comparison to Col-0 during whole circadian cycle.

The concentrations of aspartic acid, asparagine and β-alanine were higher in VP16-02-003 and

lower in the VP16-05-014 mutant in comparison to Col-0.

Fig 7 summarizes the results of levels of the primary metabolites in the two mutants in com-

parison to Col-0 in the central carbon metabolism of Arabidopsis thaliana. What is remarkable

is that only the concentration of fumaric acid increases for both mutants relative to Col-0,

while the levels of the other primary metabolites are decreased for both mutants. The level of

the amino acids aspartic acid, asparagine and β-alanine are higher in the VP16-05-014 while

these amino acids are lower in the VP16-02-003 mutant in comparison to Col-0. Other

detected free amino acids have lower concentration for both mutants in contrast to the wild-

type. The lower concentrations of sugars, myo-inositol and free amino acids for these mutants

compared to Col-0 were attributed to an impaired defence response in our previous study [8].

To better understand the high accumulation of fumaric acid, the TCA cycle has been stud-

ied in more detail by combining the metabolic data with the mRNA expression levels from the

RNA-seq data [5]. The expression level of mitochondrial malate dehydrogenase 1 (mMDH1,

AT1G53240) is reduced for both the VP16-02-003 and the VP16-05-014 mutant compared to

Col-0. Malic acid can be converted to pyruvate in the mitochondria and in the cytosol. This

conversion is facilitated by high concentrations of fumaric acid and may lead to increased

fluxes through acetyl-coA back into the TCA cycle [23].

Fumaric acid and malic acid can be transported to the cytosol and can be interconverted in

each other by cytosolic fumarase 2 (FUM2, AT5G50950) [32]. The mRNA expression level of

FUM2 is reduced for both mutants in comparison to Col-0. The expression level of FUM2 for

the VP16-02-003 mutant (logFC = -1.03) is even lower than for the VP16-05-014 mutant

(logFC = -0.54). We have further analysed the enzyme activity of fumarase at t = 4 hours of the

Arabidopsis thaliana Col-0, VP16-02-003 and VP16-05-014 mutant. As shown in Table 1, the

activity of fumarase enzyme was significantly lower in both VP16-02-003 and the VP16-05-

014 mutants as compared to Col-0. These results suggest that reduction in fumerase activity

may be responsible for increased levels of fumaric acid observed in the VP16-02-003 and

VP16-05-014. The natural Arabidopsis accession Rsch-4 has also reduced expression of FUM2

due to an insertion/deletion polymorphism in the promotor of the FUM2 gene and accumu-

lates high levels of fumaric acid [32,33]. Next to the similarity in high levels of fumaric acid

and reduced expression of FUM2, the rosette area of the Arabidopsis Rsch-4 was also larger in

comparison to Col-0 [34].
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Fig 6. Concentration of the free amino acids L-alanine (A), β-alanine (B), L-asparagine (C), L-aspartic acid (D), L-

glutamic acid (E), L-glutamine (F), L-glycine (G), L-lysine (H), L-phenylalanine (I) and L-tyrosine (J) throughout the

circadian cycle in Arabidopsis thaliana Col-0 (●), VP16-02-003 (■) and VP16-05-014 (▲). Means ± SEM of 6 biological

replicates is shown. Concentrations are expressed relative to the concentration of Col-0 at t = 0 hours. � p< 0.05 Col-0 vs

VP16-02-003, † p< 0.05 Col-0 vs VP16-05-014.

https://doi.org/10.1371/journal.pone.0218219.g006
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The relation between the high levels of fumaric acid and the occurrence of growth vigour is

not yet clear. Earlier occurrences of growth vigour in Arabidopsis have been related to ploidy

and hybridity effects subject to circadian regulation [35]. In addition, epigenetic regulation

can lead to growth enhancement [36]. An example is the Arabidopsis msh1 mutant where the

nuclear-encoded MutS HOMOLOGUE 1 (MSH1) gene is downregulated. This triggers

nuclear epigenetic reprogramming leading to enhanced growth vigour [36]. The zinc finger

artificial transcription factors method is a very recent epigenetic reprogramming method to

enhance growth [5,6].

For better understanding the relation between fumaric acid accumulation and growth vig-

our, and how primary metabolite concentrations are balanced in the interplay between photo-

synthetic source and utilization sinks leading to growth, examination of the enzyme activities

of malate dehydrogenase and fumarase may lead to underpinning the underlying mechanisms

Fig 7. Pathway view of the central carbon metabolism of primary metabolites for the VP16-02-003 and VP16-05-014 mutant in comparison to Col-0. Colours

indicate higher levels (green) or lower levels (red) of the primary metabolite. Dashed lines indicate multiple conversion steps.

https://doi.org/10.1371/journal.pone.0218219.g007

Table 1. The enzyme activity of fumarase in the Arabidopsis thaliana wild-type Col-0 and the VP16-02-003 and

VP16-05-014 mutant. Means ± SEM of 3 biological replicates is shown.

Fumarase activity (nmol/gFW/min)

Col-0 99.7 ± 2.6

VP16-02-003 21.2 ± 8.9 �

VP16-05-014 77.9 ± 6.1 †

� p < 0.05 Col-0 vs VP16-02-003

† p < 0.05 Col-0 vs VP16-05-014.

https://doi.org/10.1371/journal.pone.0218219.t001

A robust circadian rhythm in Arabidopsis thaliana mutants

PLOS ONE | https://doi.org/10.1371/journal.pone.0218219 June 25, 2019 12 / 15

https://doi.org/10.1371/journal.pone.0218219.g007
https://doi.org/10.1371/journal.pone.0218219.t001
https://doi.org/10.1371/journal.pone.0218219


of conversion of fumaric acid and malic acid [37]. Specific phenotypes can be examined by

fluxomics where the metabolic fluxes are studied as the interplay of gene expression, protein

concentration, kinetics, regulation and metabolite concentrations [38].

Conclusion

In this study, we investigated the circadian rhythm of the eighteen earlier identified biomarker

for the enhanced growth characteristics phenotype of the VP16-02-003 and VP16-05-014

mutant. HR-MAS NMR was used to obtain the metabolic profile throughout the light/dark

cycle for Arabidopsis thaliana wild-type Col-0 and the VP16-02-003 and VP16-05-014 mutant.

The metabolic rhythm of the eighteen biomarkers was not altered in both mutants as com-

pared to Col-0, while the concentrations of metabolites differ significantly throughout the

whole light/dark cycle. Since the clock functional periodicity is independent of the cellular

complexity and growth-defence trade-off, the results contribute to converging evidence that it

may not be necessary to—upstream—alter the circadian clock when the goal is to achieve

enhanced growth characteristics, and that—downstream—phenotypic engineering of sinks

and bottlenecks leading to growth may be more effective in a multifactorial context that can be

altered by whole genome reprogramming.
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