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Listeners differ in their ability to attend to a speech stream in the presence of a
competing sound. Differences in speech intelligibility in noise cannot be fully explained
by the hearing ability which suggests the involvement of additional cognitive factors.
A better understanding of the temporal fluctuations in the ability to pay selective auditory
attention to a desired speech stream may help in explaining these variabilities. In order to
better understand the temporal dynamics of selective auditory attention, we developed
an online auditory attention decoding (AAD) processing pipeline based on speech
envelope tracking in the electroencephalogram (EEG). Participants had to attend to
one audiobook story while a second one had to be ignored. Online AAD was applied
to track the attention toward the target speech signal. Individual temporal attention
profiles were computed by combining an established AAD method with an adaptive
staircase procedure. The individual decoding performance over time was analyzed
and linked to behavioral performance as well as subjective ratings of listening effort,
motivation, and fatigue. The grand average attended speaker decoding profile derived in
the online experiment indicated performance above chance level. Parameters describing
the individual AAD performance in each testing block indicated significant differences in
decoding performance over time to be closely related to the behavioral performance
in the selective listening task. Further, an exploratory analysis indicated that subjects
with poor decoding performance reported higher listening effort and fatigue compared
to good performers. Taken together our results show that online EEG based AAD in a
complex listening situation is feasible. Adaptive attended speaker decoding profiles over
time could be used as an objective measure of behavioral performance and listening
effort. The developed online processing pipeline could also serve as a basis for future
EEG based near real-time auditory neurofeedback systems.

Keywords: EEG, AAD, speech envelope tracking, online attended speaker decoding, listening effort, selective
auditory attention, attentional fluctuations
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INTRODUCTION

The human auditory system enables us to follow a speaker
of interest among concurrent other speakers, even in noisy
environments (Cherry, 1953). Speech comprehension in a noisy
listening situation relies on a listeners’ ability to segregate
an auditory scene into separate auditory objects, and on the
ability to attend to a relevant sound stream while suppressing
irrelevant information. Paying attention to a specific sound
object facilitates auditory processing and resolves competition
between multiple sources (Shinn-Cunningham and Best, 2008;
Bizley and Cohen, 2013). Several electroencephalographic (EEG)
studies revealed robust modulations of event-related potentials
by selective attention, which may act as a sensory gain-control-
mechanism enhancing the responses to the attended auditory
stimulus and/or downregulating the processing of the to-be-
ignored stimulus (Hillyard et al., 1973; Woldorff et al., 1993; Choi
et al., 2013; Jaeger et al., 2018).

Hearing impaired and normal hearing listeners differ in
their performance when they have to attend to a specific
speech stream presented simultaneously with competing sounds
(Bronkhorst, 2000; Kidd et al., 2007; Shinn-Cunningham and
Best, 2008; Ruggles and Shinn-Cunningham, 2011). These
performance differences in speech intelligibility in noise cannot
be easily explained by the degree of hearing loss (Peissig
and Kollmeier, 1997; Gallun et al., 2013; Glyde et al., 2013)
and suggest the involvement of additional cognitive factors.
Listening to degraded speech may require the allocation of
attentional resources to achieve successful speech comprehension
(for a review see: Peelle, 2018). The resources are allocated
based on task demands and the allocation is controlled by
continuous performance monitoring operations to optimize
speech intelligibility (Kuchinsky et al., 2016; Vaden et al., 2016).
As a consequence, hearing impaired individuals following a
conversation in a complex listening situation may experience
higher levels of effort to achieve optimal speech comprehension
and may fatigue earlier compared to normal hearing controls
(Kramer et al., 2006; Holman et al., 2019; Puschmann et al., 2019).

Given the adaptive nature of attention allocation, it is likely
that selective attention does not operate in a stable manner
but rather fluctuates over time. This idea is supported by
recent research showing that momentary attentional lapses or
fluctuations in the level of attention are common (Weissman
et al., 2006) and can result in erroneous behavior (Eichele et al.,
2008). A time-resolved description of auditory selective attention
may provide new insights into auditory processing deficits
and may help to explain behavioral variabilities in complex
listening situations in hearing impaired as well as normal hearing
individuals. Our long-term goal is to provide this information as
an auditory neurofeedback signal in near real-time, as this may
serve as a basis for future auditory training applications.

Natural speech contains information on different time scales
(Poeppel, 2003) and envelope modulations between 4 and 8 Hz
seem to be critical for speech intelligibility (Drullman et al.,
1994a,b; Ghitza, 2012). It has been found that the speech
envelope of single speech streams is represented in ongoing
auditory cortex activity (Luo and Poeppel, 2007; Aiken and

Picton, 2008; Nourski et al., 2009; Kubanek et al., 2013) and
the strength of this representation appears to be correlated with
intelligibility (Ahissar et al., 2001; Doelling et al., 2014). A two
competing speaker paradigm in which two spatially separated
speech streams are presented simultaneously has been established
by Broadbent (1952) to examine selective attention effects in
a challenging listening situation with ecologically valid stimuli.
Selective attention to one of two speech streams results in a
stronger cortical phase-locking to the attended compared to
the ignored speech envelope (Kerlin et al., 2010; Ding and
Simon, 2012; Mesgarani and Chang, 2012; Horton et al., 2013;
Zion Golumbic et al., 2013; Kong et al., 2014; Fiedler et al.,
2019). Moreover, hearing impaired individuals show a reduced
attentional modulation in cortical speech envelope tracking,
which may reflect deficits in the inhibition of to be ignored
signals (Petersen et al., 2017). Accordingly, monitoring the neural
tracking of the to-be-attended and to-be-ignored speech stream
may capture individual differences in how selective attention
abilities unfold over time.

Identifying the degree and direction of attention in near real-
time requires that this information can be extracted from short
time intervals. Several studies have shown that attention can be
reliably decoded from single-trial EEG data in the two competing
speaker paradigm (Horton et al., 2014; Mirkovic et al., 2015, 2016;
O’Sullivan et al., 2015; Biesmans et al., 2017; Fiedler et al., 2017;
Fuglsang et al., 2017, 2020; Haghighi et al., 2017) using various
auditory attention decoding (AAD) methods (for a review
see: Alickovic et al., 2019). In these studies, AAD procedures
demonstrated above chance-level accuracy for evaluation periods
of time ranging from 2 to 60 s. In a neurofeedback application,
features should be obtained as quickly as possible. This requires
implementation of an online artifact attenuation procedure,
as ongoing EEG data are typically contaminated by artifacts.
On the other hand, this requires minimizing the evaluation
interval. Current AAD procedures do not focus on adapting
evaluation intervals online, which would allow the tracking of
attentional fluctuations. Most studies ignore the possibility of
attentional fluctuations and use a fixed evaluation interval. Yet,
it is likely that attentional fluctuations influence the individual
AAD accuracy and thereby contribute to performance differences
which are not reflected in behavioral performance (Horton
et al., 2014; Mirkovic et al., 2015, 2016; O’Sullivan et al., 2015;
Puschmann et al., 2019).

Our aim was to develop a simple online AAD processing.
Therefore, we implemented a single-trial decoding approach
that included a fully automated online EEG artifact attenuation
procedure. Individual attended speaker decoding profiles were
estimated by combining the previously established AAD method
with an adaptive staircase procedure, which modulated the
length of the next evaluation interval based on the previous
decoding outcome. The staircase served to optimize the trade-off
between the duration of an evaluation interval and a participant’s
individual AAD accuracy. A two competing speaker paradigm
was carried out to initially validate the performance of the
developed online AAD processing pipeline in a group of normal
hearing listeners. By using a well-established paradigm, we
expected to examine reliable effects of selective auditory attention
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in the normal hearing population and the derived AAD decoding
performance could be compared to other AAD methods. In
a first analysis the adaptive staircase procedure was evaluated
offline to demonstrate that decoding performance was better than
chance level. Second, the efficiency of the online EEG artifact
attenuation procedure was explored by comparing the online
AAD performance with AAD performance based on uncorrected
EEG data. Third, parameters reflecting the attended speaker
decoding performance in each testing block were analyzed and
related to behavioral performance, in order to identify a possible
link to the selective attention ability over time. Finally, a possible
relationship between attended speaker decoding performance
and subjective ratings of listening effort, motivation and fatigue
was explored based on a group analysis. Listening effort is
related to the speech intelligibility (determined by the speech-to-
noise ratio) and typically reveals large inter-individual differences
(Krueger et al., 2017).

MATERIALS AND METHODS

Participants
Twenty one native German speaking participants between the
age of 19 and 30 (mean age = 22.3; SD 2.7; 16 female) took part
in the study. All reported no present neurological or psychiatric
conditions. Audiometric thresholds of 20 dB HL or better in
both ears were confirmed by pure tone audiometry at octave
frequencies from 250 Hz to 8 kHz. The study was approved by
the local ethics committee (University of Oldenburg, Germany)
and conforms with the World Medical Association Declaration
of Helsinki. All participants signed informed consent prior to
the experiment and received monetary reimbursement afterward.
One individual had to be excluded from the analysis due to
technical problems (data loss) during the experiment, leaving a
sample size of N = 20 for the EEG analysis.

Task and Stimuli
To investigate if AAD based on envelope tracking is feasible
in an online experiment we implemented a paradigm with
two competing speakers similar to previously reported studies
(Mirkovic et al., 2015; O’Sullivan et al., 2015). Participants were
instructed to attend to one of two simultaneously presented
speech streams throughout the entire experiment (approximately
60 min). One speech stream was presented from the right
and the other from the left side to achieve a natural listening
situation in which participants were able to use additional
spatial cues to direct selective auditory attention. The to-be-
attended speech stream and its side of presentation was not
changed during the experimental session but was randomized
across participants. The stimulus presentation consisted of six
blocks lasting 10 min each and separated by short breaks of
approximately 5 min. Before each stimulus presentation block
an arrow, presented on a screen, pointed in the direction of
the to-be-attended speech stream to remind participants about
the attended story and its side of presentation. In the stimulus
presentation blocks participants were instructed to keep their
eyes open and to focus their gaze on a white fixation cross on

a light gray background. During the break, subjects were asked
to rate their “subjective listening effort,” “subjective motivation
level,” and “subjective fatigue level.” For “subjective listening
effort” participants were asked “How much effort does it require
for you to follow the speaker?” (“Wie anstrengend ist es für
Sie dem Sprecher zu folgen?” in German) using a categorical
rating scale with seven labeled categories and six intermediate
steps from “no effort” (“mühelos” in German) to “extreme
effort” (“extrem anstrengend”) according to Krueger et al. (2017).
“Subjective motivation level” and “subjective fatigue level” was
evaluated by asking “How motivated are you now?” (“Wie
motiviert sind Sie jetzt?”) and “How tired are you now?” (“Wie
müde fühlen Sie sich jetzt?”). Subjective ratings of motivation
and fatigue were done on the same categorical scale used for
rating listening effort to achieve similar scaling between the
items. After rating their subjective listening effort, motivation
and fatigue level, participants were asked to fill out a multiple-
choice questionnaire containing 10 questions related to the
content of each speech stream in the previous block. Participants
were instructed to answer as many questions as possible but
were discouraged from guessing the answers to any question by
choosing to leave a question unanswered if they did not know
the answer. Even the questionnaire contained questions related
to both speech streams, participants were further encouraged to
continue attending only to the indicated speech stream and to
ignore the other one.

The two speech streams consisted of fairy tales narrated in
German by two professional male speakers. For each speech
stream silent gaps longer than 500 ms were reduced to this length.
The amplitude of both speech streams was adjusted to achieve
equal loudness. A detailed description of the speech material and
loudness adjustment is available in Mirkovic et al. (2016). Both
speech streams were sampled at a rate of 48 kHz and presented
to the participant using Psychophysics Toolbox for Matlab
(Brainard, 1997), a HDSP 9632 sound card (RME, Haimhausen,
Germany), a ADI 8 DS MK III DA converter (RME, Haimhausen,
Germany), PA5 attenuator (Tucker-Davis Technologies, Alachua,
United States, a C245BEE amplifier (NAD, Pickering, Canada)
and two Sirocco S30 loudspeakers (Cambridge Audio, London,
United Kingdom). The loudspeakers were located in front of the
participant 45 degree to the right and to the left at ear height. The
distance between loudspeaker and ear was 1.1 m. Simultaneous
presentation of the two sound streams via loudspeakers resulted
in a comfortable sound pressure level of 70 dB SPL, measured at
the place of the participants head.

EEG Recordings
During the experiment, participants were seated in a comfortable
chair in a sound-attenuated and dimly lit booth. EEG data were
collected simultaneously from two different electrode layouts, a
high-density EEG cap and two cEEGrids (Debener et al., 2015)
placed around each ear of the participant. The cEEGrid data will
be presented elsewhere.

The high-density EEG cap consisted of 94 Ag/AgCl electrodes
arranged in a customized, infracerebral electrode cap with an
equidistant electrode layout (Easycap, Herrsching, Germany).
Two additional electrodes were placed below the eyes to record
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FIGURE 1 | (A) Psychophysics toolbox was used for sound presentation and sending event markers to the Lab recorder and into Matlab on the recording computer.
EEG was recorded at 96-channel high density cap (pink) and one cEEGrid attached around each ear (gray, data not shown here). High density EEG was recorded
using the BrainAmp amplifiers physically connected to the recording computer. EEG data and event markers were integrated into one XDF file (extensible data
format) by using Lab recorder software. High density EEG data and event marker information were collected and analyzed in Matlab. The derived attended speaker
decoding performance was condensed into a feedback value, transmitted to the presentation computer and visually presented to the participant. (B) Schematic
illustration of the training and testing procedure. EEG data derived in the training and testing phase underwent similar pre-processing and artifact attenuation. In the
training procedure individual features of selective auditory attention were extracted from the cross-correlation function and related to the main positive and negative
deflections (P1crosscorr, N1crosscorr, P2crosscorr, and N2crosscorr). For each deflection a spatial filter was determined and applied to the EEG data. The virtual
channel time course was again cross-correlated with the attended and ignored speech envelope in order to determine a time window containing the largest attention
effect. During the testing procedure spatial filters and corresponding time windows were applied to extract the attention effect based on cross-correlation values.
Averaged across the main deflections a positive value indicated a correctly classified trial while a negative value indicated an incorrectly classified trial. Based on the
classification outcome in the previous evaluation interval the length of the next evaluation interval was modulated in steps of 5 s to derive individual attended speaker
decoding profiles. Condensed neurofeedback was presented as a visual bar at the end of each testing block.

electro-oculograms (EOG). BrainAmp amplifiers (Brainproducts
GmbH, Gilching, Germany) recorded all channels against a nose-
tip reference with a sampling rate of 500 Hz and band-pass
filtered the data from 0.0159 to 250 Hz. Electrode impedances
were kept below 20 k�.

Experimental Setup
The experimental setup is shown in Figure 1A and consisted
of two personal computers connected with ethernet cable to a
switch and building a small network. A presentation computer
was responsible for auditory stimulus presentation, sound onset
marker delivery and presentation of visual instructions and
feedback information on a screen located in the booth. High
density EEG cap and cEEGrids EEG signals as well as sound
presentation onset markers were streamed into the network
and integrated using the Lab Recorder software from the Lab
Streaming Layer (LSL)1 package running on the recording

1https://github.com/sccn/labstreaminglayer

computer. LSL enables the collection of time series from
different recording modalities by handling the networking,
time-synchronization and (near) real-time access to the data
(Swartz Center for Computational Neuroscience and Kothe,
2015). On the same recording computer, high-density EEG
data and sound presentation onset markers were additionally
collected in Matlab (Version 7.14, Mathworks Inc., Natick, MA,
United States) to perform the online attended speaker decoding.
Using Matlab (as described in section “Online AAD Processing
Pipeline”) the derived attended speaker decoding performance
was condensed into a single feedback value and presented to the
participant as a horizontal bar on the screen.

Online AAD Processing Pipeline
During the experiment AAD was performed online on the
high-density EEG cap data and by using customized Matlab
scripts and the EEGLAB toolbox (Version 13.6.5b; Delorme
and Makeig, 2004). Since selective auditory attention modulates
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the strength of the attended speech representation in the EEG
(Kong et al., 2014; O’Sullivan et al., 2015), speech envelope
tracking was realized by analyzing the EEG impulse responses
to the temporal envelopes of the presented speech streams.
EEG impulse responses were estimated by applying a cross-
correlation analysis between EEG signals and corresponding
speech envelope information.

The temporal envelopes of the clean speech were extracted
following Petersen et al. (2017). After computing the absolute
values of the Hilbert transform of the two speech streams the
transformed signals were low-pass filtered at 15 Hz. The first
order derivative was calculated to highlight prominent changes
in the speech signal time course related to sound onsets of words
and syllables. After half-wave rectification the resulting speech
envelopes were resampled to 250 Hz. The speech envelopes of the
presented speech streams were extracted offline and stored for the
online EEG data analysis.

The online speech envelope tracking procedure consisted of
two parts: (1) training the model needed for making attended
speaker prediction was performed after the 1st presentation block
on EEG data collected in that block, (2) testing the model in
subsequent presentation blocks (2–6) and condensed feedback
presentation at the end of each block. Note that the online,
adaptive processing pipeline for AAD was fully automated and
did not require any action from participants or experimenter.
A schematic illustration of the training and testing procedure is
shown in Figure 1B.

Training Procedure
After finishing the data collection of the 1st presentation
block, the EEG raw data were pre-processed. This included re-
referencing to common average, low pass filtering at 40 Hz (FIR
filter, filter order: 100, window type: Hann), downsampling to
250 Hz and high pass filtering at 1 Hz (FIR filter, filter order:
500, window type: Hann) to remove drifts from the data. The
pre-processed EEG data were submitted to a processing pipeline
performing EEG artifact attenuation and deriving individual
parameters for EEG based attended speaker decoding.

For online EEG artifact reduction Artifact Subspace
Reconstruction (ASR) as introduced by Mullen et al. (2013)
and available as EEGLAB plugin clean_rawdata (version
0.32) was used. ASR is based on a sliding-window Principal
Component Analysis and attenuates high-variance signal
components in the EEG data (for instance, eye blinks, eye
movements, and motion artifacts) relative to some artifact-free
calibration data reasonably well (Blum et al., 2019). To derive the
required artifact-free calibration data, time windows containing
abnormally high-power artifacts were automatically removed
from the pre-processed EEG data by running the clean_window
function. The function is included in the clean_rawdata plugin
and was called based on default parameters except of the
MaxBadChannels parameter: aiming for a very clean output
we used a value of 0.075. EEG channels containing abnormal
data or higher amount of line noise were identified based on
inter-channel correlations by submitting the pre-processed
EEG data to the clean_channels function (included in the
clean_rawdata plugin). As CorrelationThreshold parameter a

value of 0.95 was chosen meaning that EEG channels with a lower
correlation value relative to the other channels were marked as
abnormal. The identified bad channels were excluded from the
EEG data analysis during the training and testing procedure.
The obtained artifact-free calibration data were submitted to
the ASR calibration method (function asr_calibrate) to derive
a state structure containing the statistical properties of the
calibration data. This state structure was submitted together
with the original pre-processed EEG data to the ASR processing
method (function asr_process). During the processing step the
ASR method detects artifacts based on their deviant statistical
properties and linearly reconstructs the EEG data from the
retained signal subspace based on the statistical properties of
the calibration data. Since ASR is processing the EEG data in
chunks of 500 ms, it makes it suitable for automatic EEG artifact
attenuation in online applications.

The artifact attenuated EEG data from the first presentation
block were used as a training data set to derive individual
parameters for the EEG based AAD. After low pass filtering at
15 Hz (FIR filter, filter order: 100, window type: Hann) the 10 min
continuous training data were segmented in time periods of 30
s resulting in 20 consecutive trials. EEG impulse responses to
the attended speaker stream were calculated for each channel
and trial by running a cross-correlation between EEG signals
and corresponding speech envelope information on time lags of
−200 to 600 ms. The cross-correlation measures the similarity
between EEG and speech envelope as a function of temporal
displacement of one relative to the other. The derived cross-
correlation coefficients range between −1 and +1. Values closer
to 0 indicate no similarity, while values closer to ±1 indicate a
strong linear relationship between the two signals.

The obtained EEG impulse responses at each channel
were averaged across trials and revealed positive and
negative deflections which resemble in their peak latencies
and topographies components from the auditory evoked
potential literature (Picton, 2013). From the averaged EEG
impulse response we extracted the scalp distribution of the
cross-correlation coefficients corresponding to the maxima
and minima of the main deflections denoted P1crosscorr,
N1crosscorr, P2crosscorr, and N2crosscorr based on their
polarity and predefined time windows (P1crosscorr: 28–68 ms;
N1crosscorr: 76–156 ms; P2crosscorr: 156–396 ms; N2crosscorr:
276–456 ms). Each of the extracted scalp distributions were used
as a spatial filter in which the corresponding cross-correlation
coefficients were interpreted as filter weights. Multiplying the
spatial filter weights with the multi-channel EEG time course
derived one virtual channel time course for each deflection
(P1crosscorr, N1crosscorr, P2crosscorr, and N2crosscorr).
Thereby, EEG channels with higher cross-correlation values were
given more weight than those with lower values. Furthermore,
EEG channels with negative cross-correlation coefficients,
indicating a negative linear relationship between EEG and speech
envelope time course, were reversed in phase.

Separately for each deflection, the virtual channel time course
was segmented into trials of 30 s length and cross-correlated
with the speech envelopes of to-be-attended and to-be-ignored
speech stream. The trial averaged EEG impulse response to
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the to-be-ignored speaker stream was subtracted from the trial
averaged EEG impulse response to the to-be-attended speaker
stream to quantify the effect of selective attention on the neural
tracking of speech. In the derived difference EEG impulse
response the time point was determined showing the maximum
positive deviation, indicating the largest attention effect. To
further optimize performance of the attended speaker decoding
algorithm against trial to trial variations in the EEG impulse
response, an analysis time window of ±20 ms was centered
on each time point. Averaging cross-correlation values across
the analysis time window should increase robustness of the
discriminative algorithm against random outliers.

At the end of the training procedure, the individually extracted
spatial filter weights and corresponding analysis time windows
at each deflection (P1crosscorr, N1crosscorr, P2crosscorr, and
N2crosscorr) were stored for the attended speaker decoding
performed by the testing procedure together with bad channels
information and the ASR state structure necessary to run the
automatic EEG artifact attenuation.

Testing Procedure and Condensed Feedback
Presentation
EEG based AAD including automatic EEG artifact attenuation
was performed by running a testing procedure at the end of
each presentation block (2–6). The following processing steps
were done on a single-trial level to evaluate the feasibility
of online data processing. EEG raw data were pre-processed
identically to the training procedure. Bad channels identified
during training procedure were excluded from the data analysis
and pre-processed EEG data were submitted together with the
ASR state structure to the ASR processing method (function
asr_process) to run automatic EEG artifact attenuation. The ASR
state structure was updated every time it was called to account for
gradual changes in the statistical properties of the EEG data over
time. After performing artifact attenuation, the pre-processed
EEG data were low pass filtered at 15 Hz (FIR filter, filter order:
100, window type: Hann) and submitted to the attended speaker
decoding algorithm.

During AAD the extracted spatial filter weights were applied
to the pre-processed multi-channel EEG time course to derive
one virtual channel for each deflection (P1crosscorr, N1crosscorr,
P2crosscorr, and N2crosscorr). These virtual channel time
courses underwent the same processing steps as in the training
procedure resulting again in EEG impulse response difference
values that were then averaged across all four deflections
(P1crosscorr, N1crosscorr, P2crosscorr, and N2crosscorr) and
used as a decision criterion to quantify the effect of selective
attention. A positive difference value indicated that the to-be-
attended speech envelope was more strongly represented in
the EEG compared to the to-be-ignored speech envelope and
the single trial was marked as correctly classified. A negative
difference value indicated a stronger representation of the to-
be-ignored speech envelope in the EEG and the single trial was
marked as incorrectly classified.

We used a 1-up, 1-down staircase procedure to adapt the
evaluation interval (trial length) of the single trial analysis to
the individual attended speaker decoding performance. Starting

with an evaluation interval of 30 s for the first trial in the 2nd
presentation block (i.e., 1st testing block) the evaluation interval
of the following trials was varied in steps of ±5 s based on
the outcome of the attended speaker decoding in the previous
trial. If the current trial was classified correctly, the evaluation
interval for the next trial was shortened by 5 s. An incorrect
classification resulted in an extension of the next trial evaluation
interval by 5 s. The lower edge of the staircase procedure was
defined as an evaluation interval of 5 s, while the upper edge was
not restricted. During the testing phase (2nd–6th presentation
block), the staircase procedure was automatically stopped at the
end of each presentation block and the value used for the first trial
of the subsequent block, in order to derive a continuous attended
speaker decoding profile over time.

To test the feasibility of an auditory neurofeedback
application, the AAD performance reflected by the blockwise
outcome of the staircase procedure was condensed into a single
feedback value. The visual feedback was presented as a bar to the
participant, after completing the content related questionnaires
and subjective ratings of the previous presentation block. Given
the infrequent presentation of the feedback value, we did not
expect a benefit of the feedback on subsequent block performance
and therefore did not analyze the feedback further.

Offline Validation of the Online AAD
Processing Pipeline
Grand Average EEG Impulse Response
In order to explore whether attention influenced the neural
tracking, corresponding EEG impulse responses were extracted
from the EEG data collected during the testing phase (5 testing
blocks, 3000 s in total). The EEG data were pre-processed
identically to the online procedure and automatic EEG artifact
attenuation was applied. Impulse responses to the to-be-attended
and to-be-ignored speech were calculated at each EEG channel
using 30 s evaluation intervals (100 trials in total) and averaged
across trials for each participant. The grand average EEG impulse
response to the attended and ignored speech envelope was used to
identify the main positive and negative deflections (P1crosscorr,
N1crosscorr, P2crosscorr, and N2crosscorr) and corresponding
topographies reflecting which electrode sites contributed most to
the neural tracking of the speech envelope.

Grand Average Attended Speaker Decoding Profile
To derive a grand average attended speaker decoding profile
the individual profiles determined by the 1-up, 1-down online
staircase procedure were interpolated over the complete time
course of the testing phase (5 testing blocks, 3000 s in total)
in steps of 5 s and averaged across participants. A chance level
attended speaker decoding profile was calculated in the offline
analysis to identify at which time points the grand average
profiles significantly differ from chance performance. To derive a
chance level for AAD combined with the 1-up, 1-down staircase
procedure we used a permutation approach. For this, individual
spatial filter weights and corresponding analysis time windows
extracted during the training procedure in the online phase
were kept identical, while the attended speaker decoding profile
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was calculated offline by using the to-be-attended and to-be-
ignored speech envelope from a randomly assigned part of
the speech material. We repeated this procedure 10 times for
each participant to derive a valid chance level decoding profile.
Attended speaker decoding profiles were tested with a running
Wilcoxon signed rank test across participants. The resulting p
values were corrected for multiple-comparisons using the False
Discovery Rate (FDR) method (Benjamini and Hochberg, 1995).

AAD With Mean Evaluation Intervals and Fixed Trial
Lengths
For further validation of the attended speaker decoding
performance, we compared the outcome of the 1-up, 1-down
staircase procedure reflected in the mean evaluation interval to a
traditional classification method with fixed evaluation segments.
Mean evaluation intervals in each testing block were transformed
to normal distribution by using inverse transformation. The
transformed evaluation intervals were averaged across blocks
to derive a single evaluation interval for each participant
reflecting the mean performance over time. Furthermore, for
each participant we calculated the accuracy of correctly classified
trials offline while keeping the evaluation segment at a fixed
length of 30 s. Fixed trial length decoding accuracy was correlated
with the transformed mean evaluation interval by using a Pearson
correlation. Across participants we hypothesized that high AAD
performance on fixed 30 s intervals would be related to shorter
mean evaluation intervals derived from the staircase procedure
and expected a negative relationship between the variables.

Influence of Online EEG Artifact Attenuation on AAD
Performance
A possible benefit of applying automated online EEG artifact
attenuation (ASR) on AAD performance was explored by
comparing the attended speaker decoding profiles against
decoding profiles derived from the ASR – uncorrected EEG
data. The AAD training and testing procedure was performed
identically to the online processing. We expected that the
implemented online EEG artifact attenuation procedure (ASR)
would result in a better decoding performance, which should be
reflected in shorter evaluation intervals.

Evaluation of Behavioral Performance
and Decoding Performance Parameters
Behavioral Performance Across Testing Blocks
After completing each testing block participants were asked to
fill out a multiple-choice questionnaire containing 10 questions
related to the content of each speech stream in the previous
block. For each participant and testing block a sensitivity index
(d’) was calculated considering the z-transformed proportion of
correctly answered questions to the attended story (hits) minus
the z-transformed proportion of correctly answered questions
to the ignored story (false alarms). We hypothesized that
differences in selective attention ability over the time course of
the experiment are reflected in the sensitivity index (d’). Effects
of time on behavioral performance were tested by conducting
a 1 × 5 repeated measures ANOVA on the sensitivity index
(d’). The factor “time” (5 levels: testing blocks 1, 2, 3, 4, 5)

was defined as within-subject factor and the repeated measures
ANOVA was conducted by using a general linear model. The
significance level was set at p < 0.05. Paired-sample t-tests were
performed as post hoc analyses and the False Discovery Rate
method (Benjamini and Hochberg, 1995) was applied to correct
for multiple comparisons.

Decoding Performance Across Testing Blocks
Parameters describing the individual attended speaker decoding
performance in each testing block were extracted from the
attended speaker decoding profile derived in the online
experiment. We analyzed the mean evaluation interval and
the standard deviation as descriptive parameters for the mean
decoding performance and decoding fluctuation over time,
respectively. Both parameters were transformed to normal
distribution by using inverse transformation. We hypothesized
fluctuations in the extracted parameters over the time course of
the experiment. Effects of time on attended speaker decoding
performance were tested by conducting 1× 5 repeated measures
ANOVAs (5 levels: testing blocks 1, 2, 3, 4, 5). Again, paired-
sample t-tests were used to follow up effects and corrections for
multiple comparisons were applied where necessary (FDR).

Decoding Performance and Subjective Ratings of
Listening Effort
A median split based on attended speaker decoding in the EEG
was used to explore a possible relationship between individual
attended speaker decoding performance and subjective ratings of
listening effort, motivation and fatigue. In challenging listening
situations these subjective ratings may indicate differences
in selective attention ability across participants even when
speech comprehension is still high and does not indicate
significant differences in behavioral performance. Since no
explicit hypotheses could be tested this analysis was exploratory
and may help to tailor future studies. Participants were divided
into two groups based on their transformed mean evaluation
intervals averaged across all testing blocks. The 10 participants
showing the best attended speaker decoding performance in
the EEG were assigned to a group of “good performers,”
while the remaining 10 participants formed a group of “poor
performers.” Since a non-parametric Friedman test did not
indicate significant differences in the subjective ratings of
listening effort [χ2(4) = 2.84, p = 0.58, n = 20], motivation [χ2(4)
= 3.54, p = 0.47, n = 20] and fatigue [χ2(4) = 1.99, p = 0.74, n = 20]
over testing blocks these values were averaged across the testing
blocks and compared between performance groups by using a
non-parametric Mann-Whitney U-test.

RESULTS

Offline Validation of the Online AAD
Processing Pipeline
Grand Average EEG Impulse Response
In order to verify that attention manipulation influenced the
neural tracking of the attended and ignored speech stream,
corresponding EEG impulse responses were extracted from the
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FIGURE 2 | Group average EEG impulse response and corresponding topographies. (A) Topographies of the main positive and negative deflections (P1crosscorr,
N1crosscorr, P2crosscorr, and N2crosscorr) of the group average EEG impulse response reflect which electrode sites contribute most to the neural tracking of the
attended and ignored speech envelope. (B) EEG impulse response with ±1 SEM (shaded area) is plotted as a function of time lag separately for the attended and
ignored speech envelope at EEG channel Cz.

EEG data collected during the testing phase based on 30 s
intervals. In Figure 2 the grand average EEG impulse response
is shown for the attended and ignored speech envelope. Based
on cross-correlation we found robust responses to the attended
speech envelope with peaks in correlation values at time lag
48, 80, 172, and 292 ms corresponding to the P1crosscorr,
N1crosscorr, P2crosscorr and N2crosscorr components from
recent speech envelope tracking literature (Horton et al., 2013;
Kong et al., 2014; Petersen et al., 2017; Mirkovic et al.,
2019). The scalp distributions at the peak latency correlations
to the attended speech envelope showed bilateral foci over
temporal and frontal electrode sites (Figure 2A). Inspection
of the EEG impulse response (Figure 2B) to the ignored
speech envelope suggested that selective attention had a major
impact on phase-locking to the ignored speaker stream. While
the EEG impulse response to the ignored speech envelope
showed a clear positive peak at 48 ms corresponding to the

P1crosscorr, all other subsequent deflections were strongly
reduced in amplitude, possibly due to a suppression of the
to-be-ignored speaker. In accordance with Kong et al. (2014)
we found a stronger P1crosscorr amplitude in the EEG
impulse response to the ignored speech envelope compared
to the attended envelope, which was even reflected in time
lags before 0 ms.

Grand Average Attended Speaker Decoding Profile
The group averaged online attended speaker decoding profile,
which was derived by an online AAD processing pipeline
combined with a staircase procedure is shown in Figure 3
(red line) over the entire testing phase of 3000 s. Descriptively,
during the first testing block a decrease in evaluation interval
was visible while from the second testing block on, a modest
increase in the group-mean evaluation interval was observable.
The estimated chance level decoding performance is represented
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FIGURE 3 | Group mean attended speaker decoding profile (red line) with ±1 SEM (red shaded area) plotted as a function of time. Single subject results are given
for the worst and best performing participant. Black line and gray shaded area indicates the chance level with ±1 SEM determined by the permutation approach.
The horizontal blue line marks a significant difference between attended speaker decoding profiles and chance level (running Wilcoxon signed rank test, p < 0.05,
False Discovery Rate corrected). Red vertical lines mark pause intervals between testing blocks.

as a black line, which showed a gradual increase in the length
of the evaluation interval across testing blocks over time as
well. A running Wilcoxon signed rank test revealed a significant
difference between chance level and attended speaker decoding
performance from 125 s on and persisted throughout the
remaining testing phase. Notably, attended speaker decoding
performance differed strongly across participants, as illustrated
by showing two individual profiles representing the best (yellow
line) and worst (brown line) performance.

AAD With Mean Evaluation Intervals and Fixed Trial
Lengths
To prove the validity of the developed AAD processing
pipeline further, we compared the outcome of the adaptive
staircase procedure reflected in the mean evaluation interval
to a traditional classification method with fixed evaluation
segments. It was expected that both methods should provide
comparable decoding performance on an individual level.
Averaged across participants the mean length of the evaluation
interval determined by the staircase procedure was 12.2 s (range
8.3–67.6 s). The offline analysis using a fixed trial length of 30
s resulted in a group mean decoding accuracy of 67% (range
44–83%). In Figure 4, individual mean evaluation intervals are
plotted as a function of individual fixed trial length decoding
accuracy. A Pearson correlation revealed a strong negative linear
relationship between the variables [r(18) = −0.93, p< 0.001]. In
other words, participants with high fixed trial length decoding

accuracy reached smaller mean evaluation intervals determined
by the staircase procedure.

Influence of Online EEG Artifact Attenuation on AAD
Performance
A possible benefit of applying automated online EEG artifact
attenuation (ASR) on AAD performance was explored by
comparing the attended speaker decoding profiles against
decoding profiles derived from the ASR – uncorrected EEG
data. In Figure 5 the grand average attended speaker decoding
profile is shown for corrected (with ASR – red) and uncorrected
(without ASR – black) EEG data. As expected, we found that the
implemented online EEG artifact attenuation procedure resulted
in a better decoding performance. On a descriptive level this
performance benefit is reflected in 5–10 s shorter evaluation
intervals derived by the adaptive staircase procedure. Especially,
in the last testing block the EEG artifact attenuation seemed to
outperform the uncorrected processing. A possible explanation
may be that participants fatigued earlier toward the end of the
experimental duration which is often accompanied by an increase
in EEG artifact (i.e., eye blinks and movements) occurrence.

Evaluation of Behavioral Performance
and Decoding Performance Parameters
Behavioral Performance Across Testing Blocks
On the behavioral level the analysis of the questionnaire
data revealed that all participants followed the instructions
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FIGURE 4 | Correlation between individual mean evaluation intervals
determined by the staircase procedure and attended speaker decoding
accuracy calculated at fixed evaluation intervals of 30 s (r_Pearson = -0.93,
p < 0.001).

by attending to the indicated speech stream. On average,
participants correctly answered 81.25% of the questions on
content presented in the to-be-attended speech stream and
only 1% of questions on the to-be-ignored speech stream.
For each participant and testing block a sensitivity index (d’)
based on the content related questionnaire was calculated to
identify differences in behavioral performance across testing
blocks (Figure 6A). On a descriptive level, the mean behavioral
performance increased from testing block 1–2, as reflected in
a steep increase in the sensitivity index (d’), and gradually
decreased over time from testing block 2–5. Effects of time
on behavioral performance were tested by conducting a 1 × 5
repeated measures ANOVA on the sensitivity index (d’) across
testing blocks. The 1 × 5 repeated measures ANOVA revealed a
significant main effect of time [F(4, 19) = 7.06, p< 0.0001]. Post
hoc comparisons using two-tailed paired-sample t-tests identified
a significant difference in the sensitivity index (d’) between testing
blocks 1 and 2 [t(19) = −5.49, p < 0.001], testing blocks 1 and
3 [t(19) = −4.59, p < 0.01] as well as between testing blocks
1 and 4 [t(19) = −2.72, p < 0.05] while a significant decrease
in behavioral performance from testing blocks 2–5 was evident
[t(19) = 3.96, p < 0.01].

Decoding Performance Across Testing Blocks
Based on the online attended speaker decoding profiles we
extracted the mean evaluation interval and the standard deviation
evaluation interval in each testing block as descriptive parameters
reflecting the individual decoding performance and its variation
over time. We hypothesized those differences in selective
attention ability over the time course of the experiment to
be reflected in the extracted descriptive parameters. Separate

repeated measures ANOVA’s were conducted on the mean
evaluation intervals (Figure 6B) and its standard deviation
(Figure 6C). Descriptively, both parameters showed a similar
behavior over testing blocks. The best attended speaker decoding
performance was achieved in testing block 2 reflected in the
smallest mean evaluation interval and standard deviation. From
testing block 2–5 a gradual increase in mean evaluation interval
and standard deviation was apparent. The 1 × 5 repeated
measures ANOVA on transformed mean evaluation intervals
with the factor ‘time’ revealed a significant main effect of time
[F(4, 19) = 4.62, p< 0.01]. Post hoc comparisons using two-
tailed paired-sample t tests identified a significant decrease
in mean evaluation interval from testing blocks 1–2 [t(19) =
3.37, p < 0.05] and a significant increase in mean evaluation
interval from testing blocks 2–5 [t(19) = −3.74, p < 0.05].
A similar behavior in the time course was visible for the standard
deviation of the evaluation intervals across testing blocks. Here,
the 1 × 5 repeated measures ANOVA revealed a significant
main effect of time [F(4, 19) = 6.39, p< 0.001] too. Post hoc
comparisons using two-tailed paired-sample t-tests identified a
significant decrease in the standard deviation from testing blocks
1–2 [t(19) = 4.42, p < 0.01] as well as from testing blocks
1–3 [t(19) = 3.86, p < 0.01] while a significant increase in
standard deviation from testing blocks 2–5 was evident [t(19) =
−3.14, p < 0.05].

Attended Speaker Decoding Performance and
Subjective Ratings of Listening Effort
A possible relationship between individual attended speaker
decoding performance and subjective ratings of listening effort,
motivation and fatigue was explored by using a group median
split based on the mean evaluation intervals. Figure 7 shows
the good and poor performers separately for the group averaged
attended speaker decoding profile (Figure 7A), behavioral
performance reflected in the sensitivity index (Figure 7B) and
subjective ratings of listening effort, motivation and fatigue
(Figure 7C). On a descriptive level, the groups differed strongly in
the group averaged attended speaker decoding profile over time.
While good performers showed more stable performance in their
mean evaluation interval over testing blocks the poor performers’
averaged profile indicated more pronounced fluctuations over
time. Note that the group differences in attended speaker
decoding performance were not reflected by differences in
behavioral performance (Z = 0.95, p = 0.34). Interestingly, good
and poor performers differed significantly in their subjective
ratings of listening effort and fatigue. The group of good
performers reported on average less listening effort (Z = −2.04,
p < 0.05) and less fatigue (Z = −2.2, p < 0.05) compared to the
group of poor performers. Subjective ratings of motivation were
descriptively higher in the group of good performers but failed to
reach significance (Z = 1.71, p = 0.09).

DISCUSSION

In this study, we developed an online processing pipeline
performing AAD on short segments of EEG data to detect the
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FIGURE 5 | Group mean attended speaker decoding profile with ±1 SEM (shaded area) plotted as a function of time derived from ASR artifact attenuated EEG data
(red) and ASR uncorrected EEG data (black).

FIGURE 6 | Evaluation of individual behavioral performance and attended speaker decoding performance parameters. Group mean behavioral sensitivity index (d’)
(A), group mean evaluation intervals (B) and group standard deviation evaluation interval (C) are plotted as a function of time (testing block). Asterisks mark a
significant difference between testing blocks (paired-sample t-test, p < 0.05, False Discovery Rate corrected). Error bars represent ±1 SEM.

direction and level of attention in a two competing speaker
paradigm. The implemented AAD method was combined with an
adaptive 1-up, 1-down staircase procedure in order to optimize
the trade-off between the duration of evaluation interval and
the individual decoding performance. The developed AAD
processing pipeline was applied in an online experiment to
capture individual attended speaker decoding profiles over time.
We hypothesized that exploring these profiles may provide new
insights into fluctuations of selective attention and its relation to
behavioral performance.

The offline analysis confirmed that the implemented AAD
method, which was based on EEG impulse responses to the
speech envelope, captured selective auditory attention effects,
as reported previously (Horton et al., 2013; Kong et al., 2014;
Petersen et al., 2017; Mirkovic et al., 2019). Offline validation of
the adaptive procedure revealed a robust relationship between
the mean evaluation intervals derived by the staircase method
and attended speaker decoding accuracy determined by a classical
fixed trial length decoding approach. The implemented online
EEG artifact attenuation procedure (ASR) had a beneficial effect
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FIGURE 7 | Group median split based on attended speaker decoding performance averaged across testing blocks. (A) Group means in performance are plotted as
a function of time. The shaded areas represent ±1 SEM. (B) Box plot contains the behavioral sensitivity index for good and poor performer. (C) Box plots contain
subjective ratings of listening effort, motivation and fatigue averaged across all testing blocks for the good and poor performer. Asterisks mark a significant difference
in mean subjective ratings between groups (Mann–Whitney U-test, p < 0.05).

on the attended speaker decoding performance resulting in
5–10 s shorter evaluation intervals compared to the artifact
uncorrected EEG data, suggesting that the online processing
pipeline was functioning reasonably well. This interpretation
is also supported by our analysis of the attended speaker
decoding profiles over time. For each participant and testing
block we extracted the mean evaluation interval and its standard
deviation from the individual attended speaker decoding profiles.
On the group level the mean evaluation interval and the
standard deviation across testing blocks was closely related to
the behavioral performance (d’). Here, shorter mean evaluation
intervals and fewer fluctuations in the profile were related
to better behavioral performance. Additionally, an exploratory
analysis between groups indicated that individuals with poorer
attended speaker decoding performance experienced higher
listening effort and fatigue over the time course of the experiment.
In the following, the benefits and limitations of these procedures
will be discussed.

Adaptive staircase procedures are frequently used to
determine performance levels (Levitt and Rabiner, 1967).
An adaptive 1-up, 1-down procedure is well suited to target
a performance level of 50% correct responses, i.e., reveals
a detection threshold. This procedure requires careful
consideration, since 50% decoding accuracy in a two-class
classification problem reflects chance-performance. To exclude
the possibility that the captured attended speaker decoding
reflected random decision profiles, we estimated the chance-level
based on permutation tests (Ojala and Garriga, 2010; Combrisson
and Jerbi, 2015). These analyses revealed an increase in the mean
chance-level evaluation interval over time. This increase can be
explained by the definition of the staircase procedure which was
restricted to a minimum length of 5 s for the evaluation interval,
but the maximum evaluation interval was not explicitly limited.
Hence, for individuals performing at chance-level the evaluation
interval would at best fluctuate around the initial evaluation
interval of 30 s, or even increase over time, as observed in the
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permutation tests. Most individuals, however, improved at least
initially from the first to the second testing block, suggesting
that the attended speaker decoding profiles were not driven by
stimulus properties and rather reflected individual profiles of
attentive listening.

Looking at the overall decoding performance of the AAD
processing pipeline a fixed trial length interval of 30 s revealed
in the offline analysis a group average decoding accuracy
of 67%. This accuracy level is considerably lower compared
to other studies using linear spatio-temporal decoders, which
reach decoding accuracies of around 90% (Mirkovic et al.,
2015; O’Sullivan et al., 2015; Das et al., 2016). Two reasons
may explain this performance difference. First, our processing
pipeline followed a strictly chronological approach, that is,
we used only the first 10 min of EEG data as a training
set to derive individual features of selective attention. More
common cross-fold validation strategies may outperform a
chronological approach, as they use much more data for classifier
training (commonly 90% of all data) and, due to cross-fold
sampling, thereby compensate for non-stationarities. However,
for online applications these options do not apply, and therefore a
chronological processing strategy provides a more realistic result.

A second aspect explaining differences in decoding
performance might be the implemented decoding procedure.
State-of-the art attended speaker decoding methods focus on
optimizing multivariate linear regression models to estimate the
speech envelope of the attended speech stream from the EEG
data (Mirkovic et al., 2015; O’Sullivan et al., 2015; Das et al.,
2016, 2018; Biesmans et al., 2017; Fuglsang et al., 2017), or use
deep learning procedures (de Taillez et al., 2017; Ciccarelli et al.,
2019). In these studies, the process of model estimation and
optimization can be computationally heavy and is therefore
not well suited for the near real-time application. Recently, a
framework aiming for real-time AAD based on sparse adaptive
filtering was proposed by Miran et al. (2018) showing promising
results. However, in most online procedures there is a trade-off
between algorithm complexity and computation time. As our
focus was on a near real-time application, we have opted for
a straightforward and low complexity procedure. The chosen
cross-correlation approach fitted to these requirements but
indicated some temporal smearing of the EEG impulse response,
which was visible in the P1crosscorr to the ignored speech
envelope. This temporal smearing is caused by the low frequency
characteristic of the speech envelope which maps to the EEG
signal at overlapping time lags (Crosse et al., 2016). In our study,
individual spatial and temporal information of selective attention
effects were accounted for by extracting spatial filters and analysis
time windows at specific deflections of the EEG impulse response
to the speech envelope. The chosen methods condensed features
of selective attention across EEG channels and relevant time
windows and thereby allowed for a computationally inexpensive
attended speaker decoding.

Offline evaluation included a correlation analysis to explore
whether the mean online evaluation intervals extracted from
the temporal attention profiles are linked to classical decoding
accuracy calculated based on fixed trial length intervals of 30 s.
A strong correlation revealed that the mean evaluation interval

derived by the staircase procedure captured individual decoding
performance in the same way as the classical decoding accuracy,
while not relying on fixed evaluation intervals. Hence, while
the adaptive online procedure does not miss stable individual
differences as typically revealed by offline analysis (Choi et al.,
2014; Bharadwaj et al., 2015; Puschmann et al., 2019) it optimizes
the time interval necessary for attended speaker decoding and
thereby reveals attentive listening profiles.

Individual differences in EEG based AAD performance in
competing speaker scenarios have been observed before (Horton
et al., 2014; Mirkovic et al., 2015, 2016; O’Sullivan et al., 2015).
We hypothesized that these decoding performance differences
might be related to the individual selective attention ability over
time. To reveal more robust interpretations, differences in the
attended speaker decoding profiles over time were related to
the behavioral performance. For each participant and testing
block we extracted the mean evaluation interval and its standard
deviation from the attended speaker decoding profile as well
as the behavioral sensitivity index (d’). Our statistical analysis
revealed that attended speaker decoding performance changed
significantly over the time course of the experiment. Best
decoding performance was evident in the second testing block
followed by a gradual decrease in decoding performance until
the fifth testing block. This decrease in decoding performance
was characterized by longer mean evaluation intervals necessary
for AAD and a higher standard deviation indicating larger
fluctuations in the staircase performance. A possible explanation
might be that attentional lapses or fluctuations in the level
of attention occurred more often toward the end of the
experiment as a result of the monotonic and demanding selective
listening task. Our behavioral data analysis supports this idea
by revealing a similar performance pattern over testing blocks
closely following the attended speaker decoding performance.
A possible link between decoding performance and behavioral
performance is further supported by recent research showing a
clear relationship between the speech envelope tracking in the
neural data and intelligibility scores to the attended speech signal
(Ding and Simon, 2013; Doelling et al., 2014). Taken together,
our method seems to be able to evaluate fluctuations in the level
of attention, as it is based on an objective measure of attended
speaker processing.

As an additional finding, our exploratory analysis indicated
that poor attended speaker decoding individuals reported
significantly higher listening effort and fatigue when compared
to good performing individuals. Note that a group difference
in behavioral performance was not evident. This result is in
line with research proposing that an increase in cognitive
resources (such as working memory) may help to compensate
for individual selective attention modulation deficits (Shinn-
Cunningham and Best, 2008). Over short periods of time,
investment of additional cognitive resources may help to
enhance intelligibility. Unfortunately, we did not find significant
differences in subjective ratings of listening effort, motivation and
fatigue over the time course of the experiment in line with the
found behavioral effects. In contrast, the study of Krueger et al.
(2017) revealed a clear link between the speech-to-noise ratio
determining the speech intelligibility and subjective ratings of
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listening effort. These differences in outcome may be explained
by our study design in which the speech-to-noise ratio was
not explicitly modulated but was rather stable over the time
course of the experiment. Indeed, good and poor performers
differed in their subjective ratings of listening effort and fatigue
already from the first testing block on, which was supported
by the group difference in their attended speaker decoding
profile. We propose that evaluating the selective attention effects
between the attended and ignored speech envelope over time
in the EEG could potentially serve as an objective measure
of listening effort. While theoretical underpinnings and the
clinical meaning of listening effort seem poorly developed, an
objective measure of listening effort and listening related fatigue
would be valuable and complement the variety of methodologies
including self-report, behavioral and physiological measures
(McGarrigle et al., 2014). Especially, in hearing impaired
individuals our procedure may help to capture intra- and inter-
individual differences and could be useful in evaluating assistive
listening devices.

In summary, our results are consistent with other studies
showing that normal-hearing listeners vary widely in their
selective attention abilities (Ruggles and Shinn-Cunningham,
2011; Choi et al., 2014). Individual differences in selective
auditory attention may be directly related to efficacy of executive
cortical processes (Choi et al., 2014) and could be related
to differences in subcortical encoding of relevant temporal
features necessary for auditory object formation (Ruggles
et al., 2011; Bharadwaj et al., 2014). While our analysis
does not allow conclusions about the factors contributing to
individual differences in temporal auditory attention profiles,
we offer an efficient EEG processing pipeline that can help to
capture how selective auditory attention fluctuates in complex
listening scenarios over time. In a future application, our
online AAD processing pipeline could serve as a basis for
the development of an auditory neurofeedback training system.
Providing information about selective attention fluctuations in
near real-time to the participant may help to improve individual
listening performance.
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