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Abstract: Contention exists within the field of oncology with regards to gastroesophageal junction
(GEJ) tumors, as in the past, they have been classified as gastric cancer, esophageal cancer, or
a combination of both. Misclassifications of GEJ tumors ultimately influence treatment options,
which may be rendered ineffective if treating for the wrong cancer attributes. It has been suggested
that misclassification rates were as high as 45%, which is greater than reported for junctional
cancer occurrences. Here, we aimed to use the methylation profiles of GEJ tumors to improve
classifications of GEJ tumors. Four cohorts of DNA methylation profiles, containing ~27,000 (27k)
methylation sites per sample, were collected from the Gene Expression Omnibus and The Cancer
Genome Atlas. Tumor samples were assigned into discovery (nEC = 185, nGC = 395; EC, esophageal
cancer; GC gastric cancer) and validation (nEC = 179, nGC = 369) sets. The optimized Multi-Survival
Screening (MSS) algorithm was used to identify methylation biomarkers capable of distinguishing
GEJ tumors. Three methylation signatures were identified: They were associated with protein binding,
gene expression, and cellular component organization cellular processes, and achieved precision and
recall rates of 94.7% and 99.2%, 97.6% and 96.8%, and 96.8% and 97.6%, respectively, in the validation
dataset. Interestingly, the methylation sites of the signatures were very close (i.e., 170–270 base
pairs) to their downstream transcription start sites (TSSs), suggesting that the methylations near TSSs
play much more important roles in tumorigenesis. Here we presented the first set of methylation
signatures with a higher predictive power for characterizing gastroesophageal tumors. Thus, they
could improve the diagnosis and treatment of gastroesophageal tumors.

Keywords: Multi-Survival Screening Algorithm; MSS; methylation array-based profile; gastroesophageal
junction cancer; predictor; gastric cancer; esophageal cancer; methylation signature; tumor
classification; gastroesophageal cancer diagnosis; tumor characterization

1. Introduction

As each cancer type contains different characteristics and, therefore, requires a unique approach
for treatment, the clinical management process of cancer in patients is highly dependent on how a
cancer is identified. Today, contention exists among both physicians and researchers as to whether
gastroesophageal cancer is the same as gastric or esophageal cancer, if it is a combination of the
two, or if gastroesophageal cancer is a new type altogether [1]. Although gastric, esophageal, and
gastroesophageal junction (GEJ) tumors share some common biological behaviors, they display distinct
risk factors, molecular mechanisms, and histological types [2–5]. Therefore, it is necessary to have a
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better understanding of the unique molecular differences of these tumors as a critical step towards
understanding the biology and improving our currently limited management approaches [6,7].

In the past, anatomical classification systems such as the Siewert’s classification system have been
applied to classify gastroesophageal tumors [2]. Today, the eighth edition of the Union for International
Cancer Control-American Joint Committee on Cancer (UICC-AJCC) classification system associates
gastroesophageal tumors and esophageal tumors within the same group [1,4]. This staging system
directly favors guidelines for the best course of treatment options to revolve around esophageal
tumor management, as opposed to gastric tumor management approaches for patients experiencing
gastroesophageal cancer variants. The concern with treating gastroesophageal tumors with esophageal
tumor treatments is that this may not be the best course of action if the tumor has more gastric tumor
attributes as compared to esophageal. A strong example of this is present in the differences of approach
to chemoradiotherapy treatment of gastric tumors versus esophageal tumors. Only a handful of studies
demonstrate a significant survival advantage for neoadjuvant chemotherapy; in general, post-operative
chemotherapy is not recommended for esophageal tumors [8–10]. Contrastingly, in gastric tumor
treatment there has been a strong push towards the utilization of effective chemotherapy and radiation
regimens to be used with surgical management and various trials have demonstrated a significant
improvement in resectability, progression-free survival, and overall survival in patients with gastric
and GEJ tumors given perioperative chemotherapy compared to surgery alone [11,12]. Thus, treating
gastroesophageal tumors simply as esophageal tumors may have negative consequences on the
effectiveness of the treatment plan the patient receives if the tumor has gastric attributes or if a tumor
diagnosed as gastric has esophageal attributes. Furthermore, the misclassification of tumors has
consequently resulted in a fraction of esophageal and gastric adenocarcinomas being diagnosed as GEJ
tumors and vice versa [13]. Although it is difficult to predict the extent to which misclassification has
affected incidence rates for GEJ carcinoma, a Swedish study estimated that low accuracy in registering
junctional cancers has resulted in true incidence rates being up to 45% greater than reported [13,14].
While an esophageal adenocarcinoma diagnosed as a GEJ tumor would typically not have any
detrimental implications since the general treatments are similar, a gastric adenocarcinoma being
diagnosed as a GEJ tumor and an esophageal tumor being diagnosed as a gastric tumor can have a
consequential impact on the effectiveness of the treatment as therapies for the two vary, with treatments
for GEJ tumors centering around esophageal tumor treatments. The diagnosis of the type of cancer the
patient is diagnosed with has an impact on the prognosis, which subsequently impacts the treatment
plan. Thus, there is a need for an improved method for the characterization and classification of
gastroesophageal tumors found in the gastroesophageal tract in order to provide more accurate and
effective diagnoses to inform prognostic and treatment options.

Molecular characteristics in the form of messenger RNA (mRNA) and microRNA (miRNA)
expression profiles have emerged as valuable biomarkers/tools for tumor signature characterizations of
various cancer types [1,15–17]. Conventionally, gene expression signatures to determine the origin of
the cells have been used for tumor classification [1,18]. However, Spainhour et al. [18] found that, at the
gene level of many cancer types, different methylation patterns can yield similar gene expressions.
Therefore, patterns can be better visualized by analyzing methylation as opposed to gene expression.
While gene expression and miRNA signatures that can distinguish gastric adenocarcinomas from
esophageal carcinomas exist [1,19], methylation profiles are of merit to investigate in order to consolidate
molecular characterizations of gastroesophageal tumors. Robust genetic molecular biomarker(s) of
this variant are yet to be established to serve this purpose. While there are tumor methylation markers
tailored to esophageal and gastric cancer separately, there lacks a robust methylation tissue marker
that can distinguish between the cancer types in GEJ tumors [20–22]. Thus, it is necessary to identify a
universal methylation signature with the goal of pursuing more individualized treatments options
through better classification of gastroesophageal tumors.
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2. Methods

2.1. Data Processing and Normalization

The following four methylation array-based gene expression profiles were collected from
the repositories of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA):
(1) TCGA Esophageal Cancer (ESCA), comprised of 185 samples using the Illumina Infinium
HumanMethylation450 BeadChip (450k array); (2) TCGA Stomach Cancer (STAD), comprised of
395 samples using the Illumina Human Methylation 450k Array; (3) TCGA Stomach Cancer (STAD),
comprised of 48 samples using the Illumina HumanMethylation27 array (27k array). The following
Gene Expression Omnibus (GEO) methylation profile studies were collected: (4) GSE72872 comprised of
125 samples using the Illumina Human Methylation 450k Array (GPL13534); (5) GSE30601, comprised
of 297 samples using the Illumina Human Methylation 27k Array; (6) GSE32925, comprised of 16
samples using the Illumina Human Methylation 27k Array; (7) GSE81334, comprised of 23 samples
using the Illumina Human Methylation 450k Array (GPL13534); (8) GSE25869, comprised of 32 samples
using the Illumina Human Methylation 27k Array; and (9) GSE31788, comprised of 54 samples
using the Illumina Human Methylation 27k Array. In total, 366 samples were labelled as esophageal
adenocarcinomas and 853 were labelled as stomach adenocarcinomas.

The discovery dataset was comprised of the two cohorts, TCGA ESCA 450k and TCGA STAD
450k and 27k. The validation dataset was comprised of the remaining cohorts, GSE72872, GSE30601,
GSE32925, GSE81334, GSE25869, and GSE31788.

We retrieved the TCGA 450k datasets, (1) and (2), in their raw intensity data (IDAT) file format along
with their associated clinical data records. The raw IDAT files were first processed and quality controlled
using the minfi and limma bioconductor packages, and the workflow developed for methylation analysis
by Maksimovic et al. [23]. They were then normalized to create M values and beta values of each probe.
After normalization, each probe was mapped to University of California Santa Cruz (UCSC) Gene IDs
(mapping provided by the minfi bioconductor package). Probes that were not part of the Illumina
Human Methylation 27k array probes were deliberately removed, leaving 18,433 unique probes with
their associated genes. With regards to the remaining cohorts, we retrieved them in their processed
forms (beta values) along with their associated clinical records. To address batch effects, the values of
the samples in all the cohorts were z-scored.

2.2. Multiple Survival Screening (MSS) Methodology and Optimization

Based on the study of Li et al. [6] and the optimizations described by Feng et al. [8], we used the
following random sampling-focused methodology in our discovery dataset (Figure 1).

1. In the discovery dataset, probes that demonstrated significantly differential methylation profiles
between the subgroup of esophageal carcinomas and the subgroup of stomach adenocarcinomas
were selected to form a pool.

a. Significance was first defined by a probe-wise analysis performed using the limma
Bioconductor package pipeline to calculate moderated t-statistics.

b. In original MSS methodology, statistical significance was determined by a p-value less than
0.05 and the application of other hyperparameters in downstream steps, while Feng et al. [8]
suggested to optimize this step and choose the most significant 300–500 genes at this step.
Thus, probes that had a false discovery rate (FDR)-corrected p-value of less than 0.0001 and
a FC (fold change) greater than 3 were selected to form a gene pool of 536 unique probes.

2. Gene pools were annotated for GO (gene ontology) terms by the Database for Annotation,
Visualization and Integrated Discovery (DAVID) [24]. For the given probe pool, we partitioned
genes with replacement into GO-defined subpools. In the subgroup of cellular response to
DNA damage stimulus comprised of 54 genes, similarly, the numbers of genes were as the
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following for other subgroups: Regulation of apoptotic signaling (38), kinase binding (35), protein
ubiquitination (47), cell cycle (87), microtubule skeleton (59), mitotic cell cycle (58), cellular
response to stress (95), cellular metabolic process (377), protein binding (376), cellular component
organization or biogenesis (252), and gene expression (210).

3. Following the optimized MSS methodology proposed by Feng et al. [8], for a given GO-defined
subpool, 500 random gene sets were created for each GO term. We then created 200 random
patient sets (RPS) and to ensure an RPS was not dominated by a single subtype of stomach cancer
we performed the following:

a. We obtained assigned subtypes for samples in the TCGA STAD cohort: Epstein–Barr virus
(EBV), microsatellite instability (MSI), genomic stability, and chromosomal instability (CIN).

b. Twenty-five samples were randomly drawn from each subtype to obtain 100 samples of
evenly distributed subtypes in each RPS.

c. Then, 100 samples of esophageal carcinoma were drawn and added to each RPS to create a
balanced 200 sample RPS ratio of 1:1 stomach adenocarcinoma to esophageal carcinoma.

d. Then, 1,000,000 RPSs were created. A pairwise comparison was then performed to select
the 200 most dissimilar RPSs. This was performed on a standard laptop in <8 hours.

4. Each random gene set (RGS) was then tested against all 200 RPSs: Fisher’s tests were used
to determine if the RGS enriched the RPSs. This took <3 hours on a standard laptop. The
p-values yielded by the Fisher’s tests were recorded and the reciprocal of their average was
considered as the enrichment score of the RGS. For each GO term, the top 50 most significant
RGSs were selected to be “gilded RGSs” based on the enrichment score. According to Feng et
al. [8], the threshold for choosing the genes in the gilded RGSs could be chosen freely as it did not
affect the downstream results.

5. The unique 30 most frequently appearing genes across the gilded RGSs of a GO term were then
drawn as the set of signature genes for the corresponding GO term.
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2.3. Gene Set Selection

Combinations of gene sets were tested using the discovery dataset, consisting of 185 esophageal
cancer samples and 395 gastric cancer samples, and the validation dataset, comprising of 125 esophageal
cancer samples and 370 gastric cancer samples. Prediction of labels for each sample was performed
through the following processes:

1. The sample in question would be removed from the dataset.
2. For each GO term, we used the 30 signature genes to translate methylation profiles of patients in

the training dataset into 1D vectors of shape (30, 1).
3. Centroids of each cluster of samples (esophageal or stomach) were then calculated based on the

GO term vector.
4. The sample was then reintroduced to the dataset and assigned to a centroid based on the GO

term vector.
5. This was performed for each sample in each dataset to evaluate the prediction and recall accuracy

of each signature set.

2.4. Probe Distance to Transcription Start Site Calculation

The best performing signatures were then further investigated to calculate their probes’
chromosomal positions. The nearest downstream transcription start sites (TSS) of each probe was
obtained from the Infinium methylation EPIC Array manifest. Chromosomal map coordinates of each
TSS and probe were determined by the Encyclopedia of DNA Elements (ENCODE) consortium.

1. The midpoint of each transcription start site was calculated and represented the TSS location.
2. The distance from the midpoint of the TSS to the probe in question was calculated.
3. The average distance from TSS to probe for each signature was then calculated.

3. Results

3.1. Methylation Signatures for Differentiation between Gastric and Esophageal Adenocarcinomas

To identify an effective and generalizable methylation signature for predicting whether a tumor
found in the gastroesophageal tract contains gastric carcinoma attributes or esophageal carcinoma
attributes, we constructed a discovery dataset that was comprised of methylation array data by two
cohorts, TCGA ESCA and TCGA STAD, referred to as T1, where in total 628 samples were acquired (nEC
= 185, nGC = 443; EC, esophageal cancer; GC, gastric cancer). Similarly, an independent validation
dataset was formed using the methylation array data from the cohorts of GSE72872, GSE30601,
GSE32925, and GSE81334 (nEC = 164, nGC = 383; referred to as V1). The clinical characteristics of T1
and V1 are shown in Tables 1 and 2. Both T1 and V1 were beta-normalized within each cohort and
then z-score normalization was applied across all cohorts to address batch effects between the cohorts.

We performed a differential methylation analysis of the 5′-...Cytosine-Phosphate-Guanine...-3′

(CpG) probes between gastric cancer samples and esophageal cancer samples (Table 3), which revealed
that over half of the significantly differentially methylated (Fold Change >3, p-value < 0.0001) probes
were gene promoter-associated, making them ideal for filtering with 27k array (a promoter-based
array). Our final pool of probes consisted of 18,433 differentially methylated CpG islands, each of
which was associated with the promoter of a gene.
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Table 1. The Cancer Genome Atlas (TCGA) training set clinical characteristics.

Training Set (N = 628)

Sex

Male 443

Female 185

Unknown 0

Age (yrs.)

Range 27–90

Mean 64.7

Unknown 5

Stage

I 54

II 136

III 286

IV 124

Unknown 28

For additional information pertaining to each study refer to Tables S1 and S2.

Table 2. Validation set clinical characteristics composed of GSE72872, GSE30601, GSE32925, GSE81334,
GSE25869, and GSE31788 datasets.

Validation Set (N = 548)

Sex

Male 391

Female 139

Unknown 18

Age (yrs.)

Range 23–92

Mean 64.5

Unknown (No. of patients) 43

For additional information pertaining to each study refer to Tables S3–S8.

Table 3. Results for the differential expression of methylation probes across TCGA gastric cancer and
esophageal cancer.

Differentially Methylated Probes (DMPs) (FC >3, p-value < 10−4) N = 81814

Differentially Methylated Regions N = 28054
DMPs overlapping with 27k Array N = 536

Regulatory Feature Group Percentage of DMPs
Promoter Associated 81.3%

Gene Associated 0.25%
Gene Associated Cell Specific 0.55%

Relation to Island Percentage of DMPs
OpenSea 18.4%

Island 55.0%
N_Shore 11.5%
S_Shore 9.7%

FC, Fold Change

Implementing a methodology based on Multiple Survival Screening (MSS) [6] and using the
optimizations demonstrated by Feng et al. [8], which is a computational random search scheme that
can identify reliable signature genes, we obtained 12 methylation signatures from T1 corresponding to
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12 groups of GO terms closely associated with critical cellular processes (Table 4). Each signature set
contained 30 unique methylation probes and was used to translate a given methylation profile into a
feature vector. We tested the 12 signatures against T1 and V1 and observed the predictive ability of each
signature using the leave-one-out method. Precision and recall rates for each methylation signature set
were determined, where a true positive prediction was defined as predicting a gastric tumor sample to
be so, and a false positive prediction to be an esophageal cancer tumor (Table 5). Of the 12 methylation
signatures, precision and recall rates for the protein binding, gene expression, and cellular component
organization gene set, methylation signatures performed best against V1, achieving precision and
recall rates of 94.7% and 99.2%, 97.6% and 96.8%, and 96.8% and 97.6%, respectively. These same
signatures also performed best against T1 (Table 5).

Table 4. Gene ontology (GO) analysis of differentially methylated probes to pool together for
signature sets.

GO Term Fold Enrichment FDR GO Accession Number

Single-multicellular organism process 1.0508656015 0.82 × 10−7 0044707
Anatomical structure morphogenesis 1.083136144 3.45 × 10−6 0009653

Single-organism developmental process 1.050520832 6.97 × 10−6 0044767
Anatomical structure development 1.050309311 8.2 × 10−6 0048856

Cell fate commitment 1.281284221 2.60 × 10−5 0045165
Epithelium development 1.1318538 2.65 × 10−5 0060429
Developmental process 1.047949197 1.32 × 10−5 0032502
Organ morphogenesis 1.13549378 3.45 × 10−5 0009887
Tissue development 1.097778353 5.93 × 10−5 0009888

Skeletal system development 1.187655599 1.30 × 10−4 0001501
Multicellular organism development 1.050805467 1.45 × 10−4 0007275

Tube development 1.157944133 0.001406 0035295

Table 5. Methylation signatures’ precision and recall.

Methylation Signature Training Set (nEC = 185,
nGC = 443)

Validation Set (nEC = 164,
nGC = 383)

Protein Binding Precision: 99.5%
Recall: 96.6%

Precision: 94.7%
Recall: 99.2%

Cellular Component Organization Precision: 98.5%
Recall: 98.0%

Precision: 96.8%
Recall: 97.6%

Gene Expression Precision: 98.0%
Recall: 98.5%

Precision: 97.6%
Recall: 96.8%

The best performing signatures were further investigated, and their probes and associated
genes are listed in Table 6. Each probe’s chromosomal position was used to calculate its distance
to its downstream TSS (Tables S9–S11). The methylation sites of the signatures were very close
(i.e., 170–270 base pairs) to their downstream TSSs. Evidently, all 30 of the probes in each methylation
signature either increased or decreased in their methylation, depending on the tumor tissue, indicating
that the genes they are associated with may consequently have their level of expression impacted,
which may contribute to the differentiation of the two types of cancers. Additionally, a boxplot was
generated to visualize differential methylation scores of the methylation probes of the three signatures
between esophageal and gastric cancer types (Figure 2).
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Table 6. Protein binding, cellular component organization, and gene expression methylation signatures’ probes, associated genes, and gene descriptions.

Cellular Component Biogenesis Gene Expression Protein Binding

Probe Gene Gene Description Probe Gene Gene Description Probe Gene Gene Description

cg26117023 LOXL3 Lysyl Oxidase Like 3 cg00901683 CPSF4 Cleavage and Polyadenylation
Specific Factor 4 cg08946989 TBC1D7 TBC1 Domain Family Member 7

cg04020816 MAN2A1 Mannosidase Alpha Class 2A Member 1 cg01491225 ZCCHC9 Zinc Finger CCHC-Type
Containing 9 cg01091448 AMACR Alpha-Methylacyl-CoA Racemase

cg21475255 DAG1 Dystroglycan 1 cg11225935 KDM5A Lysine Demethylase 5A cg09892390 ARHGAP21 Rho GTPase Activating Protein 21

cg23364287 IP6K2 Inositol Hexakisphosphate Kinase 2 cg14576628 PRMT1 Protein Arginine
Methyltransferase 1 cg01107741 CANT1 Calcium Activated Nucleotidase 1

cg01651593 CDC20 Cell Division Cycle 20 cg00155485 MED13L Mediator Complex Subunit 13L cg03887534 BCL2L13 BCL2 Like 13

cg05173789 RPLP0 Ribosomal Protein Lateral Stalk Subunit
P0 cg08587820 BHLHE40 Basic Helix-Loop-Helix Family

Member E40 cg05368762 TMBIM6 Transmembrane BAX Inhibitor Motif
Containing 6

cg09288658 ZAK Mitogen-Activated Protein Kinase
Kinase Kinase 20 cg12403575 TRADD TNFRSF1A Associated Via Death

Domain cg26117023 LOXL3 Lysyl Oxidase Like 3

cg06649520 ARFIP1 ADP Ribosylation Factor Interacting
Protein 1 cg12179044 GCN1L1 GCN1 Activator of EIF2AK4 cg05761032 CCPG1 Cell Cycle Progression 1

cg10384134 RPS9 Ribosomal Protein S9 cg12813922 RAB3GAP1 RAB3 GTPase Activating Protein
Catalytic Subunit 1 cg07448856 ZNF670 Zinc Finger Protein 670

cg10872447 GTF2F2 General Transcription Factor IIF Subunit
2 cg17982504 DDX28 DEAD-Box Helicase 28 cg07628086 AP2B1 Adaptor Related Protein Complex 2

Subunit Beta 1

cg14671453 STX4 Syntaxin 4 cg19846927 MRPL44 Mitochondrial Ribosomal Protein
L44 cg09822001 APOA1BP NAD(P)HX Epimerase

cg17982504 DDX28 DEAD-Box Helicase 28 cg19886179 PSMD14 Proteasome 26S Subunit,
Non-ATPase 14 cg10049968 FAM219A Family with Sequence Similarity 219

Member A

cg21289924 EIF3A Eukaryotic Translation Initiation Factor
3 Subunit A cg02357725 IMP3 IMP U3 Small Nucleolar

Ribonucleoprotein 3 cg11356290 AZI2 5-Azacytidine Induced 2

cg01522721 MIR1181 MicroRNA 1181 cg05141870 MIR423 MicroRNA 423 cg12520111 PPIA Peptidylprolyl Isomerase A

cg03954150 C18orf55 Translocase of Inner Mitochondrial
Membrane 21 cg07483064 ENO1 Enolase 1 cg12675800 TRAPPC6B Trafficking Protein Particle Complex 6B

cg03976567 AKD1 Adenylate Kinase 9 cg09307279 GLT8D1 Glycosyltransferase 8 Domain
Containing 1 cg14874121 HSD17B4 Hydroxysteroid 17-Beta Dehydrogenase

4

cg05369142 ALS2CL ALS2 C-Terminal Like cg10872447 GTF2F2 General Transcription Factor IIF
Subunit 2 cg20218060 CLK1 CDC Like Kinase 1

cg06804431 GNRHR2 Gonadotropin Releasing Hormone
Receptor 2 (Pseudogene) cg13208492 TSN Translin cg20982583 POLR2F RNA Polymerase II Subunit F

cg10892866 PYGO2 Pygopus Family PHD Finger 2 cg15305343 NSUN4 NOP2/Sun RNA Methyltransferase
4 cg02226871 VPS28 Vacuolar Protein Sorting-Associated

Protein 28 Homolog

cg12241125 EIF4H Eukaryotic Translation Initiation Factor
4H cg15636365 PNPLA7 Patatin Like Phospholipase

Domain Containing 7 cg02792677 MRPL4 Mitochondrial Ribosomal Protein L4

cg12674192 MAK16 MAK16 Homolog cg16199381 TSTD2 Thiosulfate Sulfurtransferase Like
Domain Containing 2 cg04733989 NAGA Alpha-N-Acetylgalactosaminidase
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Table 6. Cont.

Cellular Component Biogenesis Gene Expression Protein Binding

Probe Gene Gene Description Probe Gene Gene Description Probe Gene Gene Description

cg13057891 ERCC5 ERCC Excision Repair 5, Endonuclease cg16385933 PDCD4 Programmed Cell Death 4 cg05347567 ZC3H10 Zinc Finger CCCH-Type Containing 10

cg13908523 PRKCD Protein Kinase C Delta cg18242682 FOXK2 Forkhead Box K2 cg07772309 NELF
NMDA Receptor Synaptonuclear

Signaling and Neuronal Migration
Factor

cg17165266 KRT18 Keratin 18 cg24342628 KDM1B Lysine Demethylase 1B cg07936037 SSR1 Signal Sequence Receptor Subunit 1
cg17872064 NOP58 NOP58 Ribonucleoprotein cg26117023 LOXL3 Lysyl Oxidase Like 3 cg08525481 OGFR Opioid Growth Factor Receptor

cg22366626 ZFYVE20 Rabenosyn, RAB Effector cg00080012 EED Embryonic Ectoderm
Development cg11023442 PITPNA-AS1 PITPNA antisense RNA 1

cg23311628 RAB8B RAB8B, Member RAS Oncogene Family cg01522721 CDC37 Cell Division Cycle 37 cg12056618 KLF13 Kruppel Like Factor 13

cg23521281 WDR75 WD Repeat Domain 75 cg03196745 ISCU Iron-Sulfur Cluster Assembly
Enzyme cg14279899 IFNGR1 Interferon Gamma Receptor 1

cg24711626 KIAA1012 Trafficking Protein Particle Complex 8 cg04044561 POP7 POP7 Homolog, Ribonuclease
P/MRP Subunit cg14694952 HTT Huntingtin

cg24949344 ANO6 Anoctamin 6 cg05088512 DKKL1 Dickkopf Like Acrosomal Protein 1 cg15133363 HILPDA Hypoxia Inducible Lipid Droplet
Associated



Cancers 2020, 12, 1208 10 of 14Cancers 2020, 12, x 11 of 15 

 

Figure 2. Box plots’ methylation values for all methylation probes in the best performing methylation 

signatures distinguishing esophageal cancer vs. gastric cancer. 

3.2. Utilization of Optimized Methodology to Use Fewer Computational Resources 

The original MSS methodology essentially relied on random searching, which was implemented 

through randomly generating sets of methylation sites, ranking their ability to represent a tumor 

sample, and selecting consensus genes from top-ranked methylation site sets to serve as methylations’ 

signatures in the predictor. This process is incredibly computationally demanding and had undefined 

hyperparameters that accounted for the number of total iterations as well as ranking criteria. 

This is the first study, to our knowledge, to utilize Feng et al.’s optimizations on the MSS [8]. We 

were able to perform the methylation signature discovery on a regular laptop within a reasonable time 

frame. Firstly, we substituted the hyperparameters that determine the base “gene pool” of random 

sampling by simply picking the 500 most significantly differentially methylated sites. We then 

introduced one single threshold (see Section 2. Methods). This dramatically reduced the 1 million 

iterations required by the original methodology to 20,000 iterations, while retaining the same prediction 

power. The implementations of the methodology optimized by Feng et al. [8] are suitable for a small 

computational resource such as a standard laptop with MSS capable of being performed within a day. 

4. Discussion 

The goal of precision medicine is to treat patients on an individual level, taking into consideration 

their individual lifestyle, characteristics, and genetics, rather than a “one-size-fits-all” approach. This 

has been demonstrated in other studies that have used genomic DNA variations to predict phenotypic 

characteristics of tumors [25]. In terms of GEJ cancer, incorporating precision oncology would mean 

moving towards greater molecular characterization of GEJ tumors, allowing for more informed 

decisions by clinicians regarding optimal treatment options for individuals. The development of a 

robust methylation signature for distinguishing cancer types that GEJ tumors could consist of (gastric 

and/or esophageal cancers) could, perhaps, improve accuracy of staging assignments of patients where 

these cancer types can differ based on the staging convention that is used. In this study, we reported 

three robust methylation signature sets that can accurately predict and characterize tumors found in 

the gastroesophageal tract as either of a gastric or esophageal cancer nature. 

In this study, the optimized version of the Multiple Survival Screening (MSS) algorithm was 

used which was initially developed by our group [6,8]. The original MSS algorithm was developed 

to identify cancer prognostic markers with flagship sensitivity and specificity [6]. However, by 
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signatures distinguishing esophageal cancer vs. gastric cancer.

3.2. Utilization of Optimized Methodology to Use Fewer Computational Resources

The original MSS methodology essentially relied on random searching, which was implemented
through randomly generating sets of methylation sites, ranking their ability to represent a tumor
sample, and selecting consensus genes from top-ranked methylation site sets to serve as methylations’
signatures in the predictor. This process is incredibly computationally demanding and had undefined
hyperparameters that accounted for the number of total iterations as well as ranking criteria.

This is the first study, to our knowledge, to utilize Feng et al.’s optimizations on the MSS [8].
We were able to perform the methylation signature discovery on a regular laptop within a reasonable
time frame. Firstly, we substituted the hyperparameters that determine the base “gene pool” of
random sampling by simply picking the 500 most significantly differentially methylated sites. We then
introduced one single threshold (see Section 2. Methods). This dramatically reduced the 1 million
iterations required by the original methodology to 20,000 iterations, while retaining the same prediction
power. The implementations of the methodology optimized by Feng et al. [8] are suitable for a small
computational resource such as a standard laptop with MSS capable of being performed within a day.

4. Discussion

The goal of precision medicine is to treat patients on an individual level, taking into consideration
their individual lifestyle, characteristics, and genetics, rather than a “one-size-fits-all” approach.
This has been demonstrated in other studies that have used genomic DNA variations to predict
phenotypic characteristics of tumors [25]. In terms of GEJ cancer, incorporating precision oncology
would mean moving towards greater molecular characterization of GEJ tumors, allowing for more
informed decisions by clinicians regarding optimal treatment options for individuals. The development
of a robust methylation signature for distinguishing cancer types that GEJ tumors could consist of
(gastric and/or esophageal cancers) could, perhaps, improve accuracy of staging assignments of patients
where these cancer types can differ based on the staging convention that is used. In this study, we
reported three robust methylation signature sets that can accurately predict and characterize tumors
found in the gastroesophageal tract as either of a gastric or esophageal cancer nature.

In this study, the optimized version of the Multiple Survival Screening (MSS) algorithm was
used which was initially developed by our group [6,8]. The original MSS algorithm was developed to
identify cancer prognostic markers with flagship sensitivity and specificity [6]. However, by amending
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and optimizing steps to the algorithm pipeline, an improvement to processing speeds was shown
along with the production of robust sets of markers comparable to markers generated by the original
algorithm [8]. The algorithm was employed to nine DNA methylation datasets which were curated
and partitioned into both a training and a validation set to identify methylation signatures capable of
characterizing GEJ tumors using methylation profiles. While 12 methylation signatures were identified,
each with its own associated gene sets of critical cellular processes, most did not perform to practical
use standards on the validation set. However, three of the signatures performed well on both the
discovery and validation sets. Protein binding, gene expression, and cellular component organization
gene set methylation signatures performed best against unseen data, achieving very high precision and
recall rates, indicating their high accuracy and demonstrating their high predictive power. In terms of
precision, the gene expression gene set methylation signature performed best against the validation
data, achieving a precision rate of 97.6%. In terms of recall rate, protein binding gene set methylation
signature performed best against the validation data, achieving a recall rate of 99.5%. With precision
and recall rates aligning with their conventional definitions, the gene expression methylation signature
is the best in terms of determining if a tumor in the gastroesophageal tract contained more gastric
attributes and, thus, could be treated as so, which is what the methodology originally set out to do.
However, the protein binding signature also performed well in terms of precision, with a rate of 94.7%,
and was near flawless in its ability to correctly distinguish the tumor types.

For all three signatures, each probe corresponded to a CpG dyad located somewhere along the
promoter region of a gene. The methylation sites of the signatures were very close (i.e., 170–270 bp)
to their downstream transcription start sites (TSS), suggesting that the methylations near TSSs play
much more important roles in tumorigenesis. With the methylation levels of these promoter-associated
dyads changing between the different types of cancer, this may impact the associated gene’s expression
levels. Thus, the role of the associated genes in their contribution to differentiating between different
cancer types warrants investigation in future studies. This could prove to be useful in understanding
the nature of gastroesophageal cancers as well as providing potential novel therapeutic targets.

The methylation signatures identified in this study showcased a novel approach to characterizing
and predicting GEJ tumors through methylation profiles with a high predictive power, which have
been largely understudied altogether. As methylation technology improves and becomes more
popular, methylation signatures will become more widely used and, consequently, this signature
could have an impact in a clinical setting. The shift from conventional tumor staging and diagnostic
techniques towards more objective and precise molecular characterizations presents the need for
sensitive and accurate molecular characterizations of gastroesophageal tumors for use in the clinical
setting. Under the conventions of UICC-AJCC, all GEJ tumors would be characterized under esophageal
tumors, hindering the efficacy and specificity of a treatment and therapy. Therefore, our signatures
provide a large improvement to clinical misclassifications and corresponding treatments considering
correct molecular characterizations of GEJ tumors through personalized oncology. Each of the identified
signatures have a high predictive power and accuracy to classify a GEJ tumor as gastric or esophageal.
Each signature includes 30 methylation probes associated with CpG sites on the promoter regions of
genes associated with protein binding, cellular component organization, or gene expression, which were
discovered using the less computationally taxing version of the Multiple Survival Screening algorithm,
as described previously [6]. To our knowledge, this is the first study to provide a methylation signature
to characterize gastroesophageal tumors in the gastroesophageal tract. Furthermore, this is the first
study to provide precision and recall rates of a molecular signature to characterize gastroesophageal
tumors. The benefit of a classification tool such as this is that a correct classification of the tumor
can lead to a correct diagnosis, which will inform a more accurate prognosis and a more effective
treatment plan.

The signature can be used in a clinical setting in a relatively quick manner to help inform clinicians
of the predicted type of gastroesophageal tumor and, consequently, the best course of therapy to
provide. A tumor sample will be obtained and have its DNA derived and then sequenced using a
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targeted DNA methylation approach [26]. A targeted methylation panel can be designed to interrogate
only the probes corresponding to those in our three signatures to provide a more informative, rapid,
and cost-effective test. It is necessary that a tumor sample contains a high fraction (i.e., >70%) of cancer
cells as opposed to a mix with normal tissue to ensure the reliability of our signatures’ predictions.
This is a similar requirement of many common commercial molecular sequencing-based oncology
tests [27,28]. The methylation scores of the specific probes that belong to the signatures can be obtained
and then compared to an existing database of esophageal cancer and gastric cancer tumor samples.
The signature will predict whether a tumor is more likely of gastric or esophageal cancer origin, aiding
the clinicians in a consequent determination of therapy.

The robustness of our signatures was demonstrated through their consistently strong precision
and recall rates across a total of eight independent studies. Our differential methylation analysis of the
probes revealed that over 50% of the significantly differentially methylated probes (p < 0.0001 and
FC > 3) were promoter associated, justifying the filtering of the probes to contain only probes found in
the 27k array. The benefit of having the probes in our signature in the 27k array is that the signature
can be applied to the three most popular methylation arrays including the Illumina 450k, the Illumina
27k, and the EPIC 850k. While utilizing probes only found in the 27k array decreases the number of
differentially methylated probes we were able to use, we aimed to create a very generalized signature
that allows the use of any of the aforementioned methylation arrays when assessing a tumor without
straining a clinician for resources, including the Illumina 27k methylation array, which is still in use.
As the 450k array grows in popularity and the use of the 27k array becomes obsolete, an improved
signature can be investigated with the use of all 450k probes as opposed to just the 27k. However,
with a growing use of methylation arrays, the signature can be validated on future datasets to test
its robustness.

5. Conclusions

In conclusion, we identified the first sets of methylation signatures with a high predictive power
for the classification of gastroesophageal tumors to suggest the inclusion of an additional criterion to
categorize these tumors for the improvement of diagnosis for individual patients. With the greater
confidence in diagnosis of the cancer tumor type, more accurate prognosis and treatments will follow
as a result.
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