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Parkinson’s disease is characterised by the presence in brain tissue of aberrant inclusions

known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein

and a variety of other cellular components, including in particular lipid membranes. The

dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is

therefore likely to be closely involved in the onset and progression of Parkinson’s disease

and related synucleinopathies. As our understanding of this balance is increasing,

we describe recent advances in the characterisation of the role of post-translational

modifications in modulating the interactions of α-synuclein with lipid membranes. We

then discuss the impact of these advances on the development of novel diagnostic and

therapeutic tools for synucleinopathies.

Keywords: Parkinson’s disease, protein aggregation, lipid membranes, post-translational modifications, lipid

homeostasis, protein homeostais

INTRODUCTION

Physiological Functions of α-Synuclein That Involve the Binding
to Lipid Membranes
α-Synuclein is a 140-residue protein encoded by the SCNA gene and comprised of three domains,
an N-terminal amphipathic region (residues 1-60), a central aggregation-prone region (residues
61-95) known as the non-Aβ component (NAC), and a negatively charged C-terminal domain
(residues 96-140) (1). In the cellular environment, α-synuclein can populate different states,
including a disordered monomer in solution (2–4), and a partially structured α-helical state at the
surface of lipid membranes (5, 6). Many of the synaptic functions that have been proposed for α-
synuclein involve its association with cell membranes, including regulation of synaptic plasticity,
dopamine levels, and synaptic vesicle trafficking (Figure 1) (7, 9).

The regulation of synaptic vesicles by α-synuclein may include the coordination of their
availability for neurotransmitter release by binding, ordering, localizing, and sequestering them
(10). The N-terminal amphipathic domain is crucial for the interaction of α-synuclein with lipid
membranes. Upon interacting with highly curved lipid membranes, the N-terminal and NAC
regions can form an antiparallel broken α-helical conformation, with the two α-helices comprising
residues 1-37 and 45-94, respectively (11). In the presence of lipidmembranes with lower curvature,
the two α-helices can merge into a continuous one (12). A more recent study has shown that upon
binding to small unilamellar lipid vesicles (SUVs) the first 25 residues of α-synuclein tend to be
anchored to the vesicle surfaces, while the central region (residues 26-98) can transiently bind
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FIGURE 1 | Schematic illustration of currently known functions of α-synuclein at synapses. The functions of α-synuclein are still to be fully elucidated, but at synapses

they may include lipid-related functions, such as regulation of synaptic vesicle pools via sorting and clustering, remodelling of lipid membranes, in particular tubulation

and biogenesis, and promotion of SNARE complex assembly and synaptic vesicle release, as well as non-lipid related functions, including modulation of dopamine

synthesis via tyrosine hydroxylase (TH) that converts tyrosine into L-3,4-dihydroxyphenylalanine (L-DOPA) and regulation of dopamine transport through dopamine

transporter (DAT) and vesicular monoamine transporter (VMAT2) (7, 8).

other vesicles in a “double anchor” mechanism, with the C-
terminal residues remaining disordered (5, 13).

Abbreviations: AA, Arachidonic acid; ALA, α-lipoic acid; α-syn, α-synuclein;
BOG, β-octyl-glucoside; CD, circular dichroism; Chol, cholesterol; DHA,
docosahexaenoic acid 22:6(n-3); DMPS, 1,2-dimyristoyl-sn-glycero-3-phospho-
L-serine; DAT, dopamine transporter; DOPC, 1,2-dioleoyl-sn-glycero-3-
phosphocholine; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine;
DOPS, 1,2-dioleoyl-sn-glycero-3-phospho-L-serine; GMPV, giant cell-
membrane derived plasma vesicle; LUV, large unilamellar vesicle; L-DOPA,
L-3,4-dihydroxyphenylalanine; MUFA, mono-unsaturated fatty acid; GlcNAc,
N-acetylglucosamine; NMR, nuclear magnetic resonance; OGT, O-GlcNAc
transferase; OA, oleic acid; PL, phospholipids; PA, phosphatidic acid; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS,
phosphatidylserine; POPA, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate; POPC,
1-palmitoyl-2-oleoyl-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleoyl-sn-
glycero-3-phospho-(1′-rac-glycerol); POPS, 1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-L-serine; PUFA, poly-unsaturated fatty acid; PTM, post-translational
modification; SUMO, small ubiquitin-like modifier; SUV, small unilamellar vesicle;
SDS, sodium dodecyl sulphate; SM, sphingomyelin; SN, substantia nigra; TH,
tyrosine hydroxylase; Ub, ubiquitin; VMAT2, vesicular monoamine transporter;
WT, wild-type.

Cell membranes exhibit complex and heterogeneous
compositions, with the prime constituents being phospholipids
(14), which are molecules composed of a glycerol head group
esterified by two fatty acid chains with varying degrees of
unsaturation (14, 15). The most abundant phospholipids in the
outer leaflets of cell membranes are phosphatidic acid (PA),
phosphatidylcholine (PC), phosphatidylethanolamine (PE),
sphingomyelin (SM), and cholesterol (14), while in the inner
leaflets phosphatidylinositol (PI), and phosphatidylserine (PS)
are most abundant (10). The composition of phospholipids
in lipid membranes alters their interactions with proteins
(16), and in particular the acidic non-bulky head groups of
phospholipids tend to attract the positively charged N-terminus
of α-synuclein (17).

α-Synuclein in Parkinson’s Disease
Parkinson’s disease is the most prevalent neurodegenerative
movement disorder, effecting over 6 million individuals
worldwide (18, 19). This disease is characterised by a loss
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of dopaminergic neurons in the substantia nigra and by the
presence of Lewy body and Lewy neurites, which are deposits
containing α-synuclein (20) as well as a variety of other cellular
components (21, 22). Mutations within the SNCA gene (A53T/E,
A30P, E46K, H50Q, and G51D) have linked α-synuclein to
familial Parkinson’s disease and related synucleinopathies (23–
28). In addition, SNCA duplication and triplication were also
found to promote the early onset form of the disease (29–31).

These considerations firmly link α-synuclein to Parkinson’s
disease (8, 32–34), in particular through its interactions
with lipid membranes (15, 35). This protein thus represents
a primary therapeutic target for this disease and related
synucleinopathies (36–41).

Aggregation of α-Synuclein
α-Synuclein is an amyloidogenic protein that can forms
characteristic cross-β amyloid fibrils (42). The aggregation
process of α-synuclein can be followed in vitro as a function
of time by measuring the fluorescence of amyloid-binding dyes,
and appears a sigmoidal curve with lag, exponential and plateau
phases. This macroscopic behaviour is the result of a complex
interplay between different microscopic processes, which include
primary nucleation, which is usually promoted by the presence
of lipid membranes, fibril elongation, and secondary nucleation
whereby the surfaces of existing fibrils catalyse the formation of
new seeds (Figure 2) (45, 48). Since aggregates of α-synuclein
are toxic and enhance the formation of further aggregates,
blocking this process is a promising therapeutic route (39).
Amyloid aggregation is toxic in multiple ways, including in
particular through the formation of misfolded oligomers, which
can disrupt mitochondrial and synaptic functions, and induce
endoplasmic reticulum (ER) stress and membrane damage (49–
52). In addition, larger α-synuclein deposits can sequester key
cellular proteins and with consequential loss of function (21, 22,
53), and travel from cell to cell (54).

α-Synuclein does not readily aggregate spontaneously (55, 56)
and this process is affected by the environmental conditions (57–
59). The binding to lipid membranes offers a possible interface
for primary nucleation events to initiate the toxic cascade of α-
synuclein aggregation (47, 55). For example, aggregation has been
shown to be accelerated by exosomes (60–62).

Intersection of α-Synuclein Homeostasis
and Lipid Homeostasis
Although Parkinson’s disease is often described a proteinopathy,
emerging evidence suggests that it could be considered as a
lipidopathy, or most likely as a combination of the two (63).
Multiple links between lipid homeostasis and genes associated
with Parkinson’s disease have been reported (64). An analysis
of three genome-wide association studies (GWAS) revealed four
major processes relevant to Parkinson’s disease—oxidative stress
response, endosomal-lysosomal functions, ER stress response,
and immune response, with lipids and lipoproteins being key
to all four processes (65). A link has also been uncovered
between Parkinson’s disease and PLA2G6 (PARK14), the gene
encoding phospholipase A2 group VI (PLA2G6). This enzyme
catalyses glycerophospholipid and phospholipid hydrolysis to

produce free fatty acid and lysophospholipids (66). Mutations
in the GBA gene, encoding β-glucocerebrosidase (GBA), are a
common risk factor for Parkinson’s disease for both homozygous
and heterozygous carriers. GBA catalyses the breakdown of
glucocerebroside into glucose and ceramide, and a loss of
function leads to the accumulation of glycosphingolipids (67, 68),
influencing the sensitivity of neurons to α-synuclein aggregation
and spreading (69).

In knock-out mice models, loss of α-synuclein function is not
particularly detrimental, but SCNA triplication or α-synuclein
mutations that affect its expression have been linked with
Parkinson’s disease (8). Although a gain of toxic function by α-
synuclein was initially thought to involve primarily the processes
of amyloid aggregation, recent studies have shown an increasing
role for lipid homeostasis in α-synuclein induced toxicity
(Figure 3). In this perspective, all the known familial mutations
of α-synuclein occur within its lipid membrane binding region. A
study in yeast found that α-synuclein toxicity was not dependent
on fibril formation, and that mutations that lead to defective lipid
membrane binding were less toxic, suggesting toxicity was caused
by interaction with cell membranes (71). Another study observed
α-synuclein toxicity correlated with accumulation of lipid vesicles
in yeast, which induced ER to Golgi trafficking defects, suggesting
that the reliance of neurons on lipid vesicle transport may be the
reason they are so vulnerable to α-synuclein toxicity (72).

The existence of a soluble conformation of α-synuclein with α-
helical secondary structure was recently reported and suggested
to originate from transient interaction with lipid vesicles and
may be the species that initiates aggregation (73). In the familial
mutant E46K, one of the KTKEGV motifs important for lipid
membrane binding is disrupted, and so this mutation has been
utilised to study the effects of α-synuclein membrane binding.
Two further mutations of E to K within other KTKEGV motifs
have beenmade in E46K α-synuclein to create a binding-deficient
α-synuclein form termed 3K (74, 75). In neurons, 3K α-synuclein
led to increased inclusion formation (74) and in mice to a
Parkinson’s disease-like phenotype with inclusions containing
α-synuclein and lipid vesicles (75).

Recently, it was observed that α-synuclein overexpression
in yeast, rodent neurons and induced pluripotent stem cells
(IPSCs) led to changes in cellular lipid profiles by increasing the
formation of mono-unsaturated fatty acids (MUFAs). Surplus
MUFAs, specifically oleic acid, subsequently induced enhanced
α-synuclein toxicity by altering the equilibrium of membrane
bound to soluble α-synuclein. These findings revealed a new
therapeutic target for ameliorating Parkinson’s disease, as
stearoyl-CoA-desaturase inhibition could reduce biosynthesis of
MUFAs and lead to reduced α-synuclein cytotoxicity (63, 76).
α-Synuclein oligomerisation was found to be regulated by poly-
unsaturated FA (PUFA) levels in neural cells, and deletion of
the SNCA gene in mice led to a decrease in docosahexaenoic
acid (DHA) and α-linolenic acid (ALA) (77). Free fatty acids,
specifically DHA and ALA, have been shown to bind to α-
synuclein and increase its aggregation at low ratios, but to reduce
it at high ratios. α-Synuclein binding to DHA and ALA was
protective against oxidative damage induced by fatty acids (15,
78–80). Altered levels of PE, PI, PS, and PC have been observed
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FIGURE 2 | Role of lipid membranes in α-synuclein aggregation and its links with Parkinson’s disease. The figure shows a schematic illustration of a kinetic network

model for the aggregation of α-synuclein into amyloid fibrils. Initially, α-synuclein monomers combine to form oligomers, in a heterogeneous nucleation process

promoted by lipid membranes (43). These oligomers can then either redissolve or mature and elongate into highly structured amyloid fibrils (44). Once fibrils have been

formed, secondary processes, including fragmentation and secondary nucleation, accelerate the aggregation process (45). Downstream to fibril formation, the

mechanism of Lewy body formation and maturation remains to be established, although it is likely to involve interaction of different α-synuclein species with lipid

membranes (21, 22, 46). The post-translational modifications of α-synuclein can affect essentially all the steps in the aggregation process, including by modulating the

binding of α-synuclein to lipid membranes, which may increase the local concentration of α-synuclein and facilitate the initial nucleation events, compared to the slow

nucleation rate of free monomers in solution (47).

in Parkinson’s disease patients (63). Under the oxidative stress
conditions seen in Parkinson’s disease, the balance between the
cholesterol derivatives 24-hydroxysterol and 27-hydroxysterol
can become disrupted (15, 81–83). These results suggest that the
levels, modifications and toxicity of α-synuclein are intricately
linked with lipids in vivo.

α-Synuclein has been shown to bind to mitochondrial
membranes and stimulate mitochondrial tubulation,
fragmentation and dysfunction (84–86). Mitochondrial
dysfunction caused by α-synuclein leads to an increase in
reactive oxygen species which may in turn lead to increased
toxicity of α-synuclein (86). More generally, α-synuclein can
remodel lipid membranes, for example POPG vesicles were

remodelled into tubules (87), POPC/POPA bilayers were
thinned (88), POPG vesicles remodelled into nanoparticles
(89), sphingomyelin was remodelled into nanodiscs (90), and
arachidonic acid was released from liposomes (91), upon
interaction with α-synuclein.

Modulation of the Interactions Between
α-Synuclein and Lipid Membranes
The interaction of α-synuclein with lipid membranes is
modulated by the properties of the phospholipid head groups.
For example, 27-hydroxycholesterol, a product of cholesterol
oxidation, induces expression and accumulation of α-synuclein
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FIGURE 3 | Effects of post-translational modifications on the relationship between α-synuclein homeostasis and lipid homeostasis. Lipid binding is associated with

the cellular functions of α-synuclein, but it is also with its toxicity upon aggregation. Different species of α-synuclein can interact with cell membranes, lipid vesicles,

and free fatty acids. The interactions of aggregated species of α-synuclein with lipid membranes can lead to altered structure, composition, function, and integrity of

the membranes themselves (73–75, 77, 84–88, 90, 91). The binding of α-synuclein to lipids and lipid membranes can also impact its aggregation, toxicity, expression,

and localisation. Post-translational modifications can alter the interaction of α-synuclein species with lipid species, modulate the binding, and dissociation of

α-synuclein with lipid membranes and influence the aggregation propensity of α-synuclein (15, 16, 47, 55, 80–83, 92, 94).

in human dopaminergic neurons via transcription (82), dioleoyl-
PA induces aggregation of α-synuclein (92), docosahexaenoic
acid (DHA) can induce oligomerisation (80), and cholesterol
modulates the binding of α-synuclein to vesicles (16). The
lipid composition of cell membranes can affect the way in
which α-synuclein interacts with the membranes themselves,
as demonstrated by the findings that cardiolipin can promote
the pore-forming activity of α-synuclein oligomers (93). The
familial mutants of α-synuclein have been shown to have different
membrane interaction properties (94), so small chemical changes
can have an impact on how α-synuclein binds and responds to
lipid membranes.

POST-TRANSLATIONAL MODIFICATIONS
OF α-SYNUCLEIN

α-Synuclein is subject to multiple post-translational
modifications (Figure 4) including acetylation, phosphorylation,
ubiquitination, SUMOylation, nitration, truncation, and
glycation (49, 95–97). Much work has been undertaken to

understand how these post-translational modifications affect
the aggregation of α-synuclein (98). By contrast, the impact of
post-translational modifications on the affinity of α-synuclein
for biological membranes requires further study.

N-Terminal Acetylation
N-terminal acetylation is a common co-translational and post-
translational modification, which affects about 70–90% of the
proteins in eukaryote proteomes (99, 100). In humans, there
are 7 types of N-terminal acetyltransferases (NatA-F and NatH),
which are enzymes that catalyse the covalent attachment of an
acetyl group (CH3CO) to the free α-amino group (NH+

3 ) of the
N-terminal residue of a protein, depending on its N-terminal
dipeptide (101). This post-translational modification impacts a
wide range of properties of proteins, including their stability,
folding, interactions and subcellular localisation, and has been
implicated in a wide range of human disorders, including cancer
and developmental diseases (102).

It has been estimated that over 80% of α-synuclein molecules
are constitutively N-terminal acetylated (103), the large majority
of which by the N-acetyltransferase B (NatB) complex (104)
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(Figures 4A,B). The addition of the acetyl group to the amine
group of the N-terminus results in the loss of a positive charge
in an area of poor solubility (105). Given that phospholipid
headgroups tend to be negatively charged, modifications in this
region impact the binding behaviour of α-synuclein to cell
membranes. In a recent mass spectrometric analysis, Lewy bodies
have been found to be enriched in N-terminal acetylated α-
synuclein (106).

In addition, as N-terminal acetylation induces more α-helical
structure in monomeric α-synuclein in solution (107), the
entropic barrier from intrinsically disordered free α-synuclein
to a membrane bound α-helical α-synuclein may be lowered.
Indeed, N-terminal acetylation has been shown to generally
enhance the affinity of α-synuclein for lipid membrane binding
(Table 1). Recently, it was shown by nuclear magnetic resonance
(NMR) spectroscopy that N-terminal acetylation increases the
binding affinity but does not alter not structure of the bound form
α-synuclein to synaptic vesicle mimics (DOPE:DOPS:DOPC
SUVs, 5:3:2 w/w) (108). Similarly, an enhanced binding affinity
to synaptic-like vesicles has been reported, when α-synuclein
is N-terminally acetylated (111, 112). N-terminal acetylation
was observed to not only effect the interaction of the N-
terminus of α-synuclein with phospholipid vesicles, but also
to impact the entire protein (112). However, no significant
difference was observed in the membrane binding affinity
in acetylated and non-acetylated α-synuclein with synaptic
vesicle mimics (POPC/POPS/Chol large unilamellar vesicles,
LUVs) (113).

A study of LUVs comprised of POPG and mouse
synaptosomes found no significant effects of N-terminal
acetylation on α-synuclein membrane binding (113). Binding
to SDS micelles was also examined, but again no significant
effect was detected, although this modification induced a new
conformation of α-synuclein when bound to β-octyl-glucoside
(BOG) vesicles (111). It was also found that acetylation of
α-synuclein enhances binding to phospholipid vesicles that
have similar size and high curvature to synaptic vesicles
(15:0, 12:0 lyso-, and 16:0 lyso-PC SUVs). A decrease in
binding affinity to DPPC vesicles containing cholesterol
was also observed when α-synuclein is acetylated, and
enhanced binding to lipid raft SUVs with high curvature
(DOPC/SM/Chol) (109). An investigation of the effects of
N-terminal acetylation on α-synuclein in yeast revealed
that N-terminal acetylation was required for proper plasma
membrane targeting (129). N-terminal acetylation has
been shown to increase the binding affinity of N-terminus
of α-synuclein to giant cell membrane-derived plasma
vesicles (110).

Phosphorylation
Phosphorylation is the most common post-translational
modification of eukaryotic proteins, which acts as a molecular
switch to regulate protein interactions (130, 131). This process
is carried out by kinases, which are a large class of enzymes
(132) and reversed by phosphatases (133). The phosphorylation
of proteins is an esterification reaction that involves the
attachment of a phosphoryl group to the hydroxyl group

of the side-chains of specific amino acids, most commonly
serine, threonine and tyrosine, and in some cases arginine,
lysine, aspartic acid, glutamic acid and cysteine (130, 134).
The dysregulation of protein phosphorylation is associated
with a wide range of human diseases, and kinases are a major
target for pharmacological intervention, in particular for cancer
(135, 136).

α-Synuclein can be most commonly phosphorylated
at serine and tyrosine residues (Figures 4A,C) and it is
typically phosphorylated at S129 and S87 in Lewy bodies
(103). The impact of phosphorylation can be studied by
co-expressing kinases to phosphorylate α-synuclein, or by
using phosphomimetics such as mutations to aspartic acid
or glutamic acid. Alternatively, since kinases may lead to
unspecific phosphorylation, semi-synthetic strategies (137),
or post-translational chemical mutagenesis (138) can enable
site-specific phosphorylation.

Phosphorylation at S129 (pS129) is closely linked to
Parkinson’s disease (139–141) and increases to about 90% levels
in Lewy bodies from the 5% levels observed in healthy brains
(142). However, it still remains to be established whether
phosphorylation at S129 precedes Lewy body formation or
follows it as a downstream event, whether it inhibits or promotes
α-synuclein aggregation, and whether it enhances or reduces
α-synuclein binding to lipid membranes. In vitro studies have
offered conflicting conclusions about the effect of pS129 on
α-synuclein aggregation (114, 143). By co-expressing polo-like
kinase 2 (PLK2) with α-synuclein to phosphorylate S129, an
increased rate pS129-α-synuclein aggregation was observed,
but synaptosome membrane binding was not affected (114).
However, the mutants A30P and A53T were affected, as A30P-
α-synuclein binding increased and A53T-α-synuclein binding
was lowered by the presence of pS129. The internalisation of
pS129-α-synuclein fibrils was not significantly different with
respect to unmodified α-synuclein in dopaminergic neurons
in the ventral tegmental area but was increased in those
in the substantia nigra. Disruption of lipid membranes was
also increased by S129 phosphorylation of A30P-α-synuclein
(114). By synthetic phosphorylation at S129 it was found that
this modification induced a different strain and increased the
toxicity of fibrils, as pS129-α-synuclein fibrils more readily
ruptured POPG vesicles (117). Monomeric pS129-α-synuclein
bound to POPG vesicles exhibited less α-helical secondary
structure, suggesting that phosphorylation may impede lipid
membrane binding (117). Aggregates of pS129-α-synuclein
were found to co-localise with mitochondria, impairing their
function (144).

A study of the influence of phosphorylation of Y39 on
synaptic vesicle mimics (DOPS/DOPC/DOPE SUVs) revealed
that pY39 disrupted binding but had no effect when binding
to SDS micelles. It was also found the phosphomimetic
Y39E perturbed peripheral lipid membrane localisation
compared to wild-type α-synuclein in yeast. The effects
of pY39 were similar to that of the familial mutation
G51D (115). An analysis of the effects of phosphorylation
at S87 showed that pS87 enhanced conformational
flexibility, reduced aggregation, and decreased α-synuclein
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TABLE 1 | Summary of the known post-translational modifications of α-synuclein, and of their effects on its binding to lipid membranes.

Post-translational

modifications

Position Lipid membranes Reported effects on lipid

membranes

Reported functional impact References

Acetylation M1 DOPE/DOPS/DOPC

synaptic-like vesicles

Increases the affinity but

does not affect the structure

Regulates the binding to synaptic vesicles (108)

High-curvature synaptic-like

vesicle

“ “ (109)

SUVs with lipid rafts

(DOPC/SM/Chol)

“ “

Giant cell membrane-derived

plasma vesicles

“ “ (110)

DOPE/DOPS/DOPC

synaptic-like vesicles

“ “ (111)

Non-ionic detergent BOG “ “ (112)

DOPE/DOPS/DOPC

synaptic-like vesicles

“ “

Synaptosomal membranes No difference (113)

POPG LUVs “

POPC/POPS/Chol LUVs

synaptic-like vesicles

“

HeLa cell cellular membranes “

Phosphorylation S129 Synaptosomes from mouse

brains

Does not affect the

wild-type, but affects A30P

(increase) and A53T

(decrease) membrane

binding

(114)

SN dopaminergic neurons

internalised vesicles

Disruption of vesicles

increased by fibrils with

pS129

Upregulation of the pathology

Y39 SUV synaptic vesicle mimic Disruption of the helix-2

binding region

May lead to interaction with other proteins

and vesicles, resulting in aggregation

(115)

S87 POPG vesicles and SDS micelles Decreases binding affinity “ (116)

S129 POPG vesicles and SDS micelles No difference

S129 POPG Fibril-induced rupture of lipid

membranes

Upregulation of pathology (117)

Ubiquitination K63 Endosomal membranes Increases internalization and

localisation

Regulation of degradation (118)

K6 POPG vesicles No difference (119)

SUMOylation Unspecific Extracellular vesicles Enhances binding May enhance spreading (120)

Nitration Y39 POPG Decreases binding affinity May increase interactions with other

proteins and lipid vesicles, leading to

aggregation

(121)

Y125

Non-specific POPC/POPA UVs “ “ (122)

Y39 POPC/POPS 1:1 “ “ (123)

Truncation 1-119 DMPS SUVs Aggregates an order

magnitude faster with SUVs

Increased aggregation (124)

1-103 DMPS SUVs Aggregates form mature

fibrils rather than kinetically

trapped protofibrils

Possible competent seed for secondary

nucleation in vivo

1-121 POPG vesicles

erythrocytes

Decreases the ability to

disturb lipid membranes

Protective in pathogenesis (125)

Glycation S87 POPG No effect on binding affinity (126)

S87 POPS “

T72 POPG “ (127)

T72 POPS “

T75 POPG “ (128)

(Continued)
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TABLE 1 | Continued

Post-translational

modifications

Position Lipid membranes Reported effects on lipid

membranes

Reported functional impact References

T81 POPG “

S87 POPG “

T72 POPG “

T72/75/81 POPG Slight decrease in affinity Possible regulation of membrane binding

FIGURE 4 | List of currently known post-translational modifications of α-synuclein. (A) The amino acid sequence of α-synuclein comprises an N-terminal amphipathic

region (residues 1-60), a non-Aβ component (NAC) region (residues 61-95), and an acidic C-terminal region (residue 96-140). Post-translation modification sites are

labelled; *indicates post-translation modifications within low-solubility areas using CamSol (70). (B) N-terminal acetylation, which is carried out by N-acetyltransferases

(Nat). (C) Phosphorylation, which occurs by the esterification by a phosphate group of the side-chain hydroxyl moiety of serine or threonine residues; shown here is

the phosphorylation of a serine residue. (D) Ubiquitination, where ubiquitin is added to lysine residues via an isopeptide bond, catalysed by sequential action of 3

enzymes, E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin ligase). (E) SUMOylation, where SUMO is added to lysine residues via

a thioester bond, catalysed by sequential action of 3 enzymes, E1 (SUMO-activating enzyme), E2 (SUMO-conjugating enzyme), and E3 (SUMO ligase). (F) Nitration,

where tyrosine residues are nitrated by peroxynitrite; the phenolic R group is converted to 3-nitro-tyrosine, by the addition of a nitro (NO2) group onto the ortho

position of the ring by peroxynitrite. (G) O-GlcNAcylation, where the enzyme O-GlcNAc transferase (OGT) catalyses the addition of N-acetylglucosamine (GlcNAc) to

the hydroxyl group (O-linked) of the side-chains of serine and threonine residues; shown here is the O-GlcNAcylation of a threonine residue.

binding to lipid membranes (SDS micelles and POPG
vesicles) (116).

Phosphorylation at different residues may impact in distinct
manners the interaction of N-terminus of α-synuclein with
phospholipid membranes. Since residues S87 and Y39 lie within
the α-helical domain when α-synuclein binds to membranes
(5, 11) and in an areas of low solubility (Figure 4A), they may
have more of an effect on the binding affinity of the N-terminus

of α-synuclein and the resulting aggregation of the protein. It
is still unclear when phosphorylation occurs in the aggregation
process, but it has been suggested to happen during or post
aggregation, rather than before (116, 145–147). The disruption
of phosphorylation is linked with Parkinson’s disease, with the
mutation of PARK6 encoding an protein kinase PINK1 being
the second most common cause of autosomal recessive familial
Parkinson’s disease (148).
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Ubiquitination
Ubiquitination is a reversible post-translational modification that
is essential for themaintenance of protein homeostasis. Ubiquitin
is a 76-residue protein that is added via an isopeptide bond
to lysine residues to its target as a marker for degradation
or to alter the targets interactions (149) (Figure 4D). The
process is mediated by three enzymes E1 (ubiquitin-activating
enzyme), E2 (ubiquitin-conjugating enzyme), and E3 (ubiquitin
ligase) and ubiquitin can be removed by deubiquitinating
enzymes (150). Poly-ubiquitin chains can be built up on a
protein via sequential addition of ubiquitin to one of the
seven lysine residues within the previous ubiquitin molecule
(151). The specificity of the ubiquitin-lysine linked chains
influences the effect that ubiquitination has on the target,
for example K48-linked ubiquitin chains trigger degradation
of the target, whereas K63-linked ubiquitin chains regulate
the formation of complexes (149). The ubiquitination system
is known to be deregulated in diseases such as cancer,
immune disorders, muscle-wasting disorders, diabetes, and
neurodegeneration (152).

Lewy bodies have shown immunoreactivity to anti-ubiquitin
antibodies and contain ubiquitin-α-synuclein (103, 153). α-
Synuclein has eight lysine residues that can be ubiquitinated
(Figure 4A), and ubiquitin has multiple internal lysine residues
fromwhich poly-ubiquitin chains can form. The combinations of
ubiquitin-α-synuclein sites and linkages are vast, and so there is
much more to learn about the effects of different ubiquitination
on α-synuclein, especially on the interactions of N-terminus of
α-synuclein with phospholipid membranes.

Multiple groups have found that ubiquitination of α-synuclein
affects the aggregation. Tetra- ubiquitinated K-48 linked chains
at K12 of α-synuclein was shown to increase aggregation
propensity of α-synuclein, but the aggregates formed were
amorphous, and did not convert into mature fibrils (154). The
effects on mono-ubiquintation at multiple lysine residues in α-
synuclein were investigated by mutating K to C to allow the
addition of ubiquitin via a disulphide-mediated reaction (155).
This study revealed that the ubiquitinated lysine residue was
capable of modulating the aggregation of α-synuclein. K10C-
ubiquitin and K23C-ubiquitin reduced the rate of α-synuclein
fibril formation, and that K6C-ubiquitin, K12C-ubiquitin and
K21C-ubiquitin had a moderate inhibitory effect and K32C-
ubiquitin, K34C-ubiquitin, K43C-ubiquitin, and K96C-ubiquitin
had strong inhibitory effects (155).

In a recent study, mono-ubiquitin was synthetically added
to α-synuclein via a BTA linkage, to allow ubiquitination to
remain in reducing environments (156). This approach revealed
that ubiquitination at K6, K23, K43, and K96 had no effect
on monomeric α-synuclein change to secondary structure via
CD, but all reduced amyloid aggregation. Furthermore, the
ubiquitin-α-synuclein aggregates were less toxic to SH-SY5Y
cells (156). In a related study, lysine residues of α-synuclein
were semi-synthetically modified via disulphide directed mono-
ubiquitination. This approach showed that K6-ubiquitin and
K23-ubiquitin both inhibit fibril formation, but do not alter the
structure of fibrils. However, K96-ubiquitin inhibits aggregation
and also alters structure of aggregates formed (157).

The effect of ubiquitin on the interaction of α-synuclein
with phospholipidmembranes revealed themono-ubiquitination
at position K6 along the sequence of α-synuclein inhibited
aggregation of monomeric α-synuclein, but did not affect
the secondary structure when bound to POPG vesicles (119).
However, it was also found that K63 poly-ubiquitinated α-
synuclein was preferentially internalised and translocated to
endosomes (118). It is worth noting that lysine residues within
the KTKEGV regions are thought to be essential in the
mechanism of α-synuclein binding to anionic membranes, and so
ubiquitination of these residues may prevent membrane binding
of monomers, oligomers, and fibrils (158).

SUMOylation
Related to ubiquitination, the addition of small ubiquitin-
like modifier (SUMO) proteins is a reversible, covalent, post-
translational modification of lysine residues (159). SUMOylation
acts to regulate the function, localization, and interactions of
the modified proteins. There are several SUMO proteins within
the SUMO family, which is highly conserved across eukaryotes,
with the most abundant SUMOylation found in mammalian
cells being SUMO-1 addition (160). Similarly to ubiquitination,
SUMOylation is carried out by the sequential action of three
enzymes, E1, E2, and E3, while de-SUMOylation is catalysed
by SUMO-specific proteases (150, 160). This post-translational
modification is carried out through the conjugation of the ε-
amino group of a lysine residue within the target protein via
a thioester bond to a C-terminal glycine in a SUMO protein
(Figure 4E) (161). SUMOylation of lysine residues occurs at
consensus sequences consisting of Ψ -K-x-D/E, where Ψ is a
branched aliphatic amino acid, x is any amino acid, and K is
the modified lysine (162). Protein SUMOylation has been linked
to a variety of diseases including cancer, heart disease, and
neurodegeneration (160, 163, 164).

SUMOylation of α-synuclein is closely linked to Parkinson’s
disease (165). SUMO proteins have been detected in Lewy
bodies as colocalised with α-synuclein (166). In α-synuclein
there are two major sites for SUMOylation (Figure 4A), K96
and K102 (167), although seven more lysine residues have been
reported to be SUMOylated (168). It was also shown that α-
synuclein aggregation was stimulated by SUMOylation upon
proteasomal inhibition. SUMO proteins have been observed to
co-localise with lysosomes andmay recruit them to aggregated α-
synuclein (169), or target α-synuclein to the autophagy pathway
(170). α-Synuclein mixed with SUMO-α-synuclein was found
to be less prone to aggregation compared to wild-type α-
synuclein, even if a small fraction of α-synuclein monomers
had been SUMOylated, leading to the suggestion that a role
of SUMOylation is to increase the solubility of α-synuclein
(168). Similarly, synthetically SUMOylated α-synuclein at K96
and K102 was observed to reduce amyloid aggregation in a
site-specific manner (156, 171). The amorphous aggregates of
K102-SUMO α-synuclein were also found to be significantly less
toxic to SH-SY5Y cells than the amyloid aggregates of wild-type
α-synuclein (156).

The observation that the release of α-synuclein within
extracellular vesicles is SUMO-dependent led to the suggestion
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that SUMOylation acts as a regulator of α-synuclein sorting
into the extracellular vesicle pathway which may facilitate
the spreading of α-synuclein pathology (120). The affinity
of SUMO for SUVs was shown to vary depending on the
phospholipid makeup, with SUMO having a high affinity for the
phospholipids PI (3)P, PI (3–5)P3, and POPS, but a lower one for
uncharged POPC. SUMOylated-α-synuclein was also found to be
enriched in themouse neuroblastomaN2A cell membrane pellets
compared to that of unmodified α-synuclein, suggesting that
SUMOylation promotes membrane binding (120). Three familial
variants of α-synuclein (A30P, A53T, and E46K) were found to be
more susceptible to PIAS2 (an E3 ligase) mediated SUMOylation
in vitro and in SH-SY5Y cells, and this was associated with
an increase in aggregation and inclusion formation. It was
also observed that SUMOylation of α-synuclein decreased the
ubiquitination both in vitro and in vivo (172).

SUMOylation is an essential, intricate and dynamic process,
the complexities of which are still not fully understood. Although
little is known about how SUMOylation affects the binding and
function of α-synuclein at phospholipid membranes, it is clear
SUMOylation has an impact on α-synuclein aggregation. To fully
understand the role of SUMOylation in Parkinson’s disease, it
will be important to investigate how the membrane binding of α-
synuclein is affected as this is a possible site for aggregation and
key to the function of α-synuclein.

Nitration
Nitration is an irreversible post-translational modification that
occurs on tyrosine residues, in particular in the presence of nitric
oxide radicals (173). In this process, the phenol group of tyrosine
is converted to 3-nitro-tyrosine in a reactionmediated by reactive
nitrogen species, such as peroxynitrite (ONOO−, Figure 4F), an
oxidant formed by the reaction of the nitric oxide and superoxide
radicals (.NO and O−

2 ) (174). These radicals are normally
rapidly removed by superoxide dismutases (SODs), but can
form spontaneously peroxynitrite via a diffusion-limited reaction
(175, 176). Nitration is often highly selective and depends on
the structure and environment surrounding the tyrosine residues
(177). This post-translational modification has been associated
with over 50 diseases, including cancer, cardiovascular disorders,
and neurodegeneration (178) and can affect proteins structure,
function, and other post-translational modifications (179).

α-Synuclein has four tyrosine residues (Y39, Y125, Y133,
and Y136), which can be nitrated to form nitrated-α-synuclein
(Figure 4A) (180). Nitrated α-synuclein is enriched in Lewy
bodies compared to control brains (181, 182). Nitrated tyrosine
residues are reactive and can form dityrosine bonds via cross-
linking, which can induce oligomerisation of α-synuclein (183).
Nitrated α-synuclein has been shown to induce cytotoxicity in
SH-SY5Y cells (184), and in the substantia nigra of rats (185). It
was also found that Y39 is preferentially nitrated (nY39) in a cell
model of Parkinson’s disease overexpressing monoamine oxidase
B (MOA-B), an enzyme involved in dopamine metabolism
and known to create reactive oxygen species, and that this
effect can be abrogated using selegiline, an inhibitor of MOA-
B approved for the treatment of Parkinson’s disease (186).
Furthermore, using the Y39F mutant, it was shown that nY39

is key to dityrosine cross-linking and the subsequent induction
of oligomer formation in α-synuclein (121). Therefore, assessing
the effects of nitration could help develop a better understanding
of the pathogenesis of Parkinson’s disease.

To study the effects of nitration on α-synuclein one can expose
α-synuclein to nitrating substances such as peroxynitrite or
tetranitromethane (122, 187, 188), leading to unspecific nitration.
A study of the effects of non-specific nitration revealed that
in the presence of phospholipid vesicles (POPC/POPA SUVs),
nitrated-α-synuclein bound with lower affinity than wild-type α-
synuclein. It was also observed that nitration induced a change
in secondary structure, an increase in disorder in solution, and a
decreased propensity to adopt α-helical structures in presence of
phospholipid vesicles. The effects of non-specific nitration were
found to be largely due to Y39, as the mutation Y39F ameliorated
them (122).

As an alternative non-specific nitration, one can use semi-
synthetic or mutational approaches to individually modify one
tyrosine residue to examine site-specific effects (121, 123). The
selective nitration at Y39 was obtained by mutating the other
three tyrosine residues in α-synuclein to phenylalanine residues
(123). It was thus demonstrated that nY39 decreased the binding
affinity of α-synuclein to negatively charged lipid vesicles, due
to the electrostatic repulsion of the partial negative charge of
the nitro group. With the mutant Y39F, it was also shown that
although the C-terminus is not directly involved in binding
phospholipid vesicles, but that nitration of Y125, Y133, and Y136
disrupted the binding affinity of α-synuclein. The disruption
of binding by C-terminal nitration was attributed to nitration
leading to a compaction of the C-terminus that may disrupt
the long range contacts and allosterically regulates binding of α-
synuclein to phospholipids (123). Further, by nitrating residues
Y39 or Y125, a significant reduction in the α-helix formation
upon α-synuclein binding to POPG vesicles was observed, while
nitration at Y39 or Y125 lead to the formation of fibrils with
distinct morphology compared to that of wild-type α-synuclein.
It was also found binding to liposome-containing phospholipids
protected α-synuclein against nitration (189).

Proteolytic Cleavage and C-Terminal
Truncations
Protein truncations can result from a variety of causes,
including genetic variations, post-translational modifications, or
incomplete degradation. Truncations can alter the structure and
interactions of proteins, and cause loss or gain of function
(190, 191). Abnormal proteolytic processing is a common feature
of proteins that drive neurodegenerative diseases, which may
be induced by the release of proteases from their cellular
compartments under conditions of stress (192). Notably, the
aberrant proteolytic processing of amyloid precursor protein
(APP) is linked to Alzheimer’s disease by producing an excess of
the aggregation prone 42-residue form of the amyloid-β peptide
(193). Protein truncations are also prevalent in Pick’s disease,
Huntington’s disease, spinocerebellar ataxia, amyotrophic lateral
sclerosis and Parkinson’s disease (192).
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Irreversible truncation of α-synuclein at the N and C
termini is common, with over 15% of α-synuclein in Lewy
bodies being truncated (106, 194–196). Truncation is thought
to occur due to incomplete digestion of α-synuclein by a
number of enzymes, including calpain, plasmin, neurosin, 20S
proteasome, cathepsin D, caspase 1, matrix metallo proteinase-
1, and asparagine endopeptidase (Figure 4A), and may be
promoted by dysfunction of protein homeostasis machinery
such as the lysosomal chaperone-mediated autophagy (194, 197–
205). The N-terminal of α-synuclein is essential for binding to
phospholipid membranes, and so truncation at N-terminal sites
may reduce or inhibit cell membrane binding. Truncation can
stimulate aggregation and toxicity in vitro (198, 206–208) and in
vivo (197, 209–211) and increase prion-like spreading (197, 208).

The impact of C-terminal truncations (α-synuclein 1-
119 and 1-103) on the aggregation of α-synuclein in the
presences of phospholipid vesicles was recently investigated
(124). Similar secondary structures were observed for both
truncated variants and wild-type α-synuclein. α-Synuclein 1-119
aggregated in a comparable way, but an order of magnitude
faster than the wild-type form. However, the α-synuclein 1-
103 variant aggregated following a distinct mechanism forming
morphologically different aggregates that resembled mature
fibrils compared to the protofibrils produced by the aggregation
of wild-type α-synuclein in the presence of DMPS SUVs (124).
An analysis of the biophysical properties of α-synuclein 1-
121 revealed that in the proximity of POPG vesicles both
the secondary structure and aggregation of full-length or
truncated α-synuclein were similar.With both POPG vesicles and
erythrocytes, truncated α-synuclein exhibited a decreased ability
to distort the phospholipid membranes. Conversely, α-synuclein
1-121 was found to have higher toxicity compared to full-
length α-synuclein, possibly following the activation of apoptosis
signalling pathways and upregulation of phosphorylation at S129
of α-synuclein (125).

Truncation can occur at multiple sites along the sequence
of α-synuclein (Figure 4A) (196) but the effects many of
these modifications are not known in detail. In all cases,
C-terminal truncation of α-synuclein reduces the solubility
of α-synuclein in solution and affects its membrane binding
properties. Further research, however, will be required to
fully understand how truncations affect the behaviour of α-
synuclein in the cellular milieu. A distinct species of α-
synuclein, termed p-asyn∗, truncated at both N- and C-
termini and phosphorylated, was detected in Lewy bodies
in mice models of Parkinson’s disease and primary neurons
exposed to α-synuclein fibrils (212). It was found that p-
asyn∗ preferentially associated with mitochondria and ER to
induce toxicity (212).

O-GlcNAcylation
O-GlcNAcylation is a reversible enzymatic post-translational
modification in which N-acetylglucosamine (GlcNAc), an amide
derivative of glucose, is transferred from uridine diphosphate
GlcNAc (UDP-GlcNAc) to the hydroxyl group of a serine or
threonine side-chain in a protein (Figure 4G) (213). Thousands
of proteins in the nucleus, cytoplasm and mitochondria have

been identified to be targets of O-GlcNAcylation, which
modulates their functions, interactions, and maintenance.
The addition and removal of GlcNAc is catalysed by two
enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase
(OGA), respectively (214). The levels of O-GlcNAcylation
depend on environmental stimuli, as well as on the levels
of cellular glucose entering the hexosamine biosynthetic
pathway to produce UDP-GlcNAc (215). O-GlcNAcylation is an
important modification in the brain, and has been observed to
modulate synaptic signalling, memory formation, and neuron
growth (216) and is also key in cellular response to stress
(217). The dysregulation of O-GlcNAcylation has been linked
to metabolic diseases, cancer, cardiovascular diseases, and
neurodegeneration (213).

At least nine residues of α-synuclein have been reported to
be O-GlcNAcylated in vivo (128, 218), five of which are in
the NAC region (Figure 4A). Semi-synthetic O-GlcNAcylation
of α-synuclein at various positions inhibited aggregation,
reduced toxicity of aggregates to both SH-SY5Y cells and
rat primary cortical neurons (127). A study of the impact
of S87 O-GlcNAcylation revealed a 5-fold reduction in fibril
formation, and the formation of shorter fibrils (126). Single
O-GlcNAcylation at T72, S87, T75 or T81, and of triple O-
GlcNAcylation at T72, T75, and T81, reported site-specific
effects (128). All mono-glycations had limited effects on the
binding affinity of α-synuclein to lipid vesicles, whereas the
triple-glycation decreased the helicity of α-synuclein upon
membrane binding. All glycations inhibited seeded aggregation,
with T81 and the triple-glycation having the most profound
effects. Fibrils of both T75 and triple-glycations added to
primary cultured mouse neurons with monomeric α-synuclein,
were less toxic that wild-type α-synuclein (128). T72 and
T75 are both within an area of low solubility in α-synuclein
(Figure 4A) and so glycation at that site may increase the
solubility of α-synuclein. These studies also showed that
this modification has essentially no effect on phospholipid
vesicle binding (126, 128). O-GlcNAcylation also impacted
phosphorylation of α-synuclein, inhibiting S129 phosphorylation
by CK1, PLK3, and GRK5 but increasing S87 phosphorylation
by CK1 (127).

Overall, although O-GlcNAcylation does not affect α-
synuclein binding to certain phospholipid membranes (128),
other mixtures of phospholipids should be analysed, such as
synaptic vesicle mimics, to determine if this effect would remain
the same in vivo.

Post-translational Modifications of
Proteins Interacting With α-Synuclein
The behaviour of α-synuclein can also be affected by post-
translational modifications of other proteins interacting with
it. For example, palmitoylation, which is the post-translational
addition of the fatty acid palmitate to cysteine residues, mediates
the interactions of SNARE proteins with lipid membranes. Thus,
although α-synuclein is not known to be palmitoylated, its
interactions with lipid membranes can be affected indirectly by
this post-translational modification (219).
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POST-TRANSLATIONAL MODIFICATIONS
IN THE DIAGNOSTICS OF PARKINSON’S
DISEASE

Parkinson’s disease has been traditionally diagnosed at the
clinical level by the presence of motor symptoms, including
bradykinesia, rigidity and resting tremor, and a range of non-
motor symptoms, including constipation, anosmia, depression,
and sleep disorder (220, 221). A definitive diagnosis is
performed at the neuropathological level through the post-
mortem detection of Lewy bodies (220). Without a well-
established aetiology of the disease, however, its diagnosis
remains challenging, as othermovement disorders exhibit similar
symptoms, such as multiple system atrophy and progressive
supranuclear palsy (222, 223). Given this situation, it is crucial
to establish accurate diagnostic methods at the molecular level,
and indeed the search for biomarkers for Parkinson’s disease has
been a highly researched topic over the past several years (224).

Neuroimaging techniques offer a promising avenue of
Parkinson’s disease biomarker research (225), in particular
through the use of positron emission tomography (PET) (226),
although further developments are still required (227). In parallel
efforts, many groups have focused on biomarkers present in
biofluids, including cerebrospinal fluid (CSF), blood and saliva,
or biopsies (228). The total levels of α-synuclein and of α-
synuclein aggregate species have been investigated as potential
biomarkers (229), andmanymore have been proposed, including
through genetics, transcriptomics, and proteomics (227, 230,
231). In this review, we focus in particular on the opportunities
offered by the detection and quantification of post-translationally
modified forms of α-synuclein for the development of effective
diagnostic tools (232).

Phosphorylation
As phosphorylation of α-synuclein is highly prevalent in Lewy
bodies, the extent of α-synuclein phosphorylation have been
studied as a potential biomarker for Parkinson’s disease. The
levels of pS129-α-synuclein in CSF have been to be significantly
increased in Parkinson’s patients compared to controls (233–
237). pS129-α-Synuclein levels in CSF have been correlated with
disease progression as measured by clinical assessment through
the Unified Parkinson’s Disease Rating Scale (UPDRS) (233) and
disease duration (238). pS129-α-Synuclein levels in blood plasma
(236), olfactory mucosa (239, 240), salivary glands (241, 242)
colonic biopsies (243), and skin biopsies (232, 244–246) have also
been investigated.

Nitration
Because of the links between α-synuclein nitration and
Parkinson’s disease, this modification has been investigated for
the development of diagnostic tools for this condition. In a
recent study, nitrated α-synuclein in salivary glands was detected
in Parkinson’s disease patients but not observed in healthy
controls (247). Another study found the abundance of nitrated α-
synuclein peripheral blood mononuclear cells to be significantly
higher in Parkinson’s disease patients than in controls. The
levels of nitrated α-synuclein were also correlated with the

those of reactive oxygen species, although no correlation was
found between disease severity or duration (248). Nitrated α-
synuclein levels were detected in colonic tissue and found to
increase during ageing, and a loss of neurons was correlated with
accumulation of both α-synuclein and nitrated α-synuclein (249).

Other Post-translational Modifications
Further post-translational modifications of α-synuclein have
received less attention, however some studies show promise
in using post-translational modifications as biomarkers for
Parkinson’s disease. The abundance of post-translationally
modified α-synuclein was studied in α-synuclein enriched
erythrocytes extracts (250). Phosphorylated Y125, nitrated Y39,
and lysine-glycated α-synuclein levels were found to be increased
in Parkinson’s disease, while SUMOylated α-synuclein levels
were reduced. Combining all the post-translational modifications
led to a predictive score of Parkinson’s disease with increased
sensitivity and specificity. Furthermore, each post-translational
modification alone, and combined correlated with Parkinson’s
disease severity (UPDRS scores) and all but SUMOylation
correlated with duration of disease (250).

The plasma levels of ubiquitin C-terminal hydrolase L1
(UCHL1) were significantly higher in late Parkinson’s disease
patients compared to healthy controls and the amount of UCHL1
correlated to disease severity. UCHL1 is associated with increased
ubiquitin levels and stability in neurons (251). The abundance of
truncated α-synuclein in platelets was also studied, but not found
to be significantly different between Parkinson’s disease patients
and controls (252).

THERAPEUTIC TARGETING OF
POST-TRANSLATIONAL MODIFICATIONS
OF α-SYNUCLEIN

Currently available treatments for Parkinson’s disease are aimed
at managing symptoms, but they do not stop the progression
of the disease (253–256). Therapeutic interventions targeting
α-synuclein aggregation and interactions offer promising
opportunities for developing disease-modifying drugs (257).
Since post-translational modifications modify how α-synuclein
aggregates and interacts with lipid membranes, they offer
promising opportunities for the treatment of Parkinson’s disease
and related synucleinopathies.

Phosphorylation
The modulation of phosphorylation of α-synuclein is an
important therapeutic target, in particular through the
pharmacological modulation of kinases and phosphatases
(258–260). Inhibition of the α-synuclein kinase c-Abl by
nilotinib, an FDA-approved cancer treatment, enhanced
clearance of α-synuclein in mice, protected neurons from
α-synuclein toxicity and improved motor behaviour in a mouse
model of Parkinson’s disease (261). By increasing methylation
of phosphoprotein phosphatase 2A (PP2A), the activity of PP2A
was enhanced leading to decreased α-synuclein phosphorylation
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at S129, which decreased α-synuclein aggregation and toxicity in
mice (262).

Leucine-rich repeat kinase 2 (LRRK2) has emerged from
GWAS as one of the most important risk loci for Parkinson’s
disease (263, 264). LRRK2 is protein kinase that regulates
secretory and endocytic vesicle trafficking by phosphorylating a
group of RAB proteins (265). LRRK2 is associated with both the
familial and sporadic forms of Parkinson’s disease, with G2019S
being the most common mutation, which increases its kinase
activity (266). LRRK2 has been observed to co-localise with α-
synuclein in nigral Lewy bodies (267, 268), and two studies
reported an increase in phosphorylated α-synuclein inclusions
in mice carrying the A53T-α-synuclein and G2019S-LRRK2
mutations (269, 270). Further studies in rodents detected higher
levels of pS129-α-synuclein in the striatum in G2019S-LRRK2
compared to wild-type LRRK2 carriers (271, 272). However,
other studies concluded that LRKK2 is unlikely to directly
phosphorylate α-synuclein (263). Other protein kinases have
also been linked to Parkinson’s disease, including a cyclin G-
associated kinase (GAK) encoded by the GAK gene, which was
identified by GWAS (273). Since GAK has been found to interact
with LRRK2 (274, 275), it may impact its activity. The gene
Rab29, which encodes Ras-related protein Rab-7L1, has also been
linked with risk of Parkinson’s disease (273). Rab-7L1 stimulates
LRKK2 kinase activity (276) and so may also be involved in
regulating LRKK2-induced phosphorylation.

Ubiquitination
As ubiquitination is a process closely involved in the pathology of
Parkinson’s disease, numerous enzymes in the ubiquitin pathway
have been targeted as potential targets for therapies. Mutations
in the Parkin gene, encoding an E3 ligase, can lead to familial
Parkinson’s disease (277, 278). Parkin co-expression with α-
synuclein ameliorated α-synuclein toxicity and neuronal loss
(279). Co-expression of parkin ameliorated toxicity induced by α-
synuclein over expression in substantia nigra neurons of rodents
(279). More recently, antibodies were developed to target and
inhibit the ubiquitin E3 ligase seven in absentia homologue
1 (SIAH-1). Treatment of cells with the antibodies decreased
expression and aggregation of α-synuclein and improved cell
viability (280). Knock-down of USP13, a ubiquitin specific
protease, in a mouse model mitigated α-synuclein-induced
toxicity, as USP13 regulates parkin ubiquitination and therefore
indirectly regulates α-synuclein ubiquitination (281).

Furthermore, PARK6, is also linked to familial Parkinson’s
disease (282, 283), and encodes PINK1 (PTEN-induced putative
kinase protein 1), which has been shown to phosphorylate and
stimulate the E3 ligase activity of parkin (284). The Park5 and
Park15 genes have also been linked to Parkinson’s disease through
their involvement in the ubiquitination process. Park5 encodes a
de-ubiquitinating enzyme UCHL1 (285). Protective effects of a
UCHL1 variant were observed in a mouse model of Parkinson’s
disease, indicating this protein may also serve as a target for
Parkinson’s therapies (286). Park15 encodes F-box only protein
7 (FBXO7), which functions as an adaptor for an E3 ubiquitin
ligase complex (the SKP1/cullin-1/F-box protein), which enables
the E3 complex to recognise and ubiquitinate its substrates (287).

Loss of function mutations of Park15 have been identified as
causative mutations in familial Parkinson’s disease (288), and
have been found to colocalise with α-synuclein in Lewy bodies
(289). A polymorphism of Park15 was found to be a protective
factor against Parkinson’s disease and so targeting FBXO7 may
also be relevant for therapeutics (290).

SUMOylation
SUMOylation may play a role in the intracellular targeting,
cellular levels, membrane binding, propagation and aggregation
of α-synuclein, and so also could be targeted in the search
for a Parkinson’s disease therapeutic (165). A recent study
examined the effects of α-synuclein SUMOylation, finding that
overexpression of a SUMO-conjugase enzyme increased α-
synuclein SUMOylation and reduced the toxicity in Parkinson’s
disease models (291). This finding indicates that increasing
SUMOylation of α-synuclein or preventing SUMO removal may
be viable targets for Parkinson’s disease therapeutics.

Proteolytic Cleavage and C-Terminal
Truncations
Targeting C-terminal truncations could be a viable strategy
in Parkinson’s disease therapeutic research, as this α-synuclein
modification has been observed to be present in Lewy bodies, to
accelerate aggregation in vitro and in vivo, and to enhance prion-
like spreading in Parkinson’s disease models (124, 125, 208, 292).
Antibodies targeting the C-terminus of α-synuclein prevented C-
terminal truncation improved Parkinson’s pathology and motor
symptoms in a mouse model, and reduced propagation of
α-synuclein pathology in a cell system (293). Reducing the
C-terminal truncation by the pharmacological inhibition of
caspase-1, which cleaves α-synuclein at D121, was shown to
mitigated neurodegeneration in a transgenic model of multiple
system atrophy (294).

O-GlcNAcylation
O-GlcNAcylation of α-synuclein may offer novel opportunities
for the treatment of Parkinson’s disease. By building on
the observation that O-GlcNAcylation can inhibit α-synuclein
aggregation and ameliorate its associated toxicity (128), O-
GlcNAcylated α-synuclein peptides from the NAC region were
developed and shown to reduce α-synuclein aggregation (295).
It has also been proposed that the pharmacological inhibition
of O-GlcNAcase can increase the O-GlcNAcylation levels of
α-synuclein, resulting in a lower aggregation propensity and
in a reduced cellular intake of α-synuclein aggregates (296).
O-GlcNAcylation has also been reported to inhibit calpain-
mediated C-terminal α-synuclein truncations, which as discussed
above increase the aggregation propensity of this protein.
Similarly, O-GlcNAcylation competes with phosphorylation
in targeting hydroxyl groups on serine and threonine side-
chains (127), thus protecting α-synuclein from the increase in
aggregation propensity caused by phosphorylation. In a recent
study, the pharmacological inhibition of O-GlcNAcase was
shown to reduce the accumulation of pS129 α-synuclein in the
substantia nigra in a mouse model of Parkinson’s disease (297).
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CONCLUSIONS

α-Synuclein has been associated with Parkinson’s disease over
two decades ago (20). This discovery, however, has not yet led
to the development of effective diagnostic tools and disease-
modifying treatments for this disease. Such a slow progress
can be attributed at least in part to the complexity of the
structure, function, and interactions of α-synuclein with other
cellular constituents.

In particular, the interaction of α-synuclein with cell
membranes is important to determine both the function and the
dysfunction of this protein. While α-synuclein does not readily
spontaneously, lipid membranes provide a surface for the initial
nucleation events (15). Following this observation, compounds
have been identified that reduce the aggregation of α-synuclein
by displacing it from lipid membranes, and reducing oligomer
formation in membranes in vitro, in primary neuronal cells and
in mice models of Parkinson’s disease (298, 299).

In this review, we have discussed the role of post-translational
modifications of α-synuclein in altering the behaviour of this
protein in the presence of lipid membranes (Table 1) (137). N-
terminal acetylation has been shown to regulate the binding of
α-synuclein to phospholipid membranes, particularly to those of
synaptic vesicles (16, 107). Phosphorylation and nitration appear
to aggravate the pathology of α-synuclein by decreasing lipid
membrane interactions, SUMOylation may be involved in the
cell-to-cell spreading of α-synuclein aggregates by enhancing
binding to extracellular vesicles, and α-synuclein truncations

could promote aggregation through either primary or secondary
events (Table 1).

Furthermore, post-translational modifications of α-
synuclein can affect and modulate each other. For example,
O-GlcNAcylation at S87 was found to regulate phosphorylation
of S129 and S87 (126). S87 can be glycated or phosphorylated,
K96 can be SUMOylated or ubiquitinated, and K102 can
be SUMOylated or the site of truncation. Post-translational
modifications might also upregulate other modifications, for
example most of the ubiquitinated α-synuclein in Lewy bodies
was found to be phosphorylated at S129 (103).

In conclusion, we have described how the investigation of the
effects of post-translational modifications on the interaction of α-
synuclein with lipid membranes is increasing our understanding
the molecular origins of Parkinson’s disease, and contributing to
the identification of novel targets for therapeutic (253–256) and
diagnostic (300, 301) interventions.
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