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Abstract

Explaining and predicting animal distributions is one of the fundamental objectives in ecolo-
gy and conservation biology. Animal habitat selection can be regulated by top-down and
bottom-up processes, and is mediated by species interactions. Species varying in body
size respond differently to top-down and bottom-up determinants, and hence understanding
these allometric responses to those determinants is important for conservation. In this
study, using two differently sized goose species wintering in the Yangtze floodplain, we test-
ed the predictions derived from three different hypotheses (individual-area relationship,
food resource and disturbance hypothesis) to explain the spatial and temporal variation in
densities of two goose species. Using Generalized Linear Mixed Models with a Markov
Chain Monte Carlo technique, we demonstrated that goose density was positive correlated
with patch area size, suggesting that the individual area-relationship best predicts differ-
ences in goose densities. Moreover, the other predictions, related to food availability and
disturbance, were not significant. Buffalo grazing probably facilitated greater white-fronted
geese, as the number of buffalos was positively correlated to the density of this species. We
concluded that patch area size is the most important factor determining the density of goose
species in our study area. Patch area size is directly determined by water levels in the Yang-
tze floodplain, and hence modifying the hydrological regimes can enlarge the capacity of
these wetlands for migratory birds.

Introduction

Explaining and predicting animal distributions is one of the fundamental objectives in ecology
and conservation biology. Despite intensive research efforts during the past decades, this issue
remains incompletely understood, partly because population density of animals can be deter-
mined by a variety of abiotic and biotic determinants that interact and operate at different spa-
tial scales. Particularly, biotic interactions, such as top-down (i.e., predation) and bottom-up
(i.e., food availability and quality) factors, operate across trophic levels [1] under influence of
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competitive and facilitative interactions [2-4]. The effects of those determinants may vary
among species through allometric responses [5]. Predictions derived from allometric relation-
ships state that animals differing in body size respond differently to top-down and bottom-up
factors based on e.g., physiologic and digestive consequences of body size. Therefore, under-
standing the different responses among species to those determinants is crucial for conserva-
tion. In this paper, using two herbivorous goose species, we aim to answer two questions: if and
how top-down and bottom-up factors affect goose density and if the effects vary between spe-
cies, offering insight into the underlying factors that conservation strategies should cover.

Eastern China supports more than two million migratory waterbirds during the non-breed-
ing seasons, of which more than one million overwinter in the Yangtze River floodplain [6].
Anatidae species such as geese mainly feed on recessional grassland in the Yangtze floodplain
in winter. A primary factor determining goose population density would be the extent of avail-
able habitat. The sizes of the patches of available habitat change with the water level fluctua-
tions and thereby affect the habitat selection of these birds, which can be described by an
individual-area relationship (IAR). The IRA describes the relationship between animal popula-
tion size and area [7]. Positive IRAs are often found [7, 8], which is in line with the resource
concentration hypothesis [9]. The resource concentration hypothesis, introduced by research-
ers on herbivorous insects, states that larger areas of host plants should attract more herbivores
[9]. Movements of consumers between patches are also used to explain IARs [7, 10], as animals
can move to larger or richer patches if this is beneficial in terms of their own net foraging suc-
cess, and thereby affect the availability of resources in patches, often resulting in a positive IAR,
consistent with the ideal free distribution [11]. Hence, the capacity of the Yangtze floodplains
to accommodate migratory birds might be negatively affected if the availability or the size of
these recessional grasslands is reduced.

Forage quantity and structural heterogeneity play an important role in determining the ani-
mal’s patch selection as animals select patches offering the highest forage intake such as pre-
dicted by the optimal foraging theory [12-17]. Goose species generally display a Type IV
functional response, which is a dome-shaped curve with a maximum intake rate at intermedi-
ate forage biomass, and a decreasing intake at higher biomass densities. Smaller species tend to
select lower biomass areas as their maximum intake is reached earlier than for larger species
[12, 18]. In addition, habitat heterogeneity, such as horizontal variation in available forage bio-
mass, tend to increase species richness [19, 20], but the effect of habitat heterogeneity differs
among species [21]. Habitat heterogeneity can also negatively affect the forage efficiency of
grazers by increasing searching and handling times [22, 23]. Herbivores, such as many over-
wintering waterbird species (e.g., Anser spp., Anas spp.), generally have a lower intake rate and
consequently reach lower population size while feeding on heterogeneous swards compared to
homogenous swards [12, 24, 25].

These ecological factors are important in determining animal distribution and density. In
addition, anthropogenic activities (e.g., agriculture, aquaculture and livestock breeding) are
playing an increasing role [26-29]. Such activities are found to be strongly correlated with
habitat selection of geese, and can have both negative or positive effects on geese densities [17,
30-33].

Species normally react differently to ecological and anthropogenic factors, and this reaction
is often mediated by differences in body size as indicated by allometric scaling laws [34, 35].
The effect of forage quantity and structural heterogeneity is influenced by body size, as smaller
sized species generally select areas with a lower forage quantity but with more homogenous re-
sources [12]. Larger species are more sensitive to human disturbances [26, 36]. However, spe-
cies can also react positively to human factors, for instance, the grazing by domestic larger
grazers such as cattle or buffalo, can facilitate resource availability for smaller grazer species by
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changing resource structure and nutrient content [37-40]. For instance, it has been reported
that the density of geese was higher in areas with a higher sheep density [41].

In this paper, we analysed the effects of anthropogenic and ecological determinants on
goose species density in wetland in China, using two migratory grazing goose species, namely
bean goose (Anser fabalis, body weight: 3100 g) and greater white-fronted goose (Anser albi-
frons, body weight: 2400 g), which both rely on the same food resource and habitat in the same
period. We tested several hypotheses:

o the individual-area relationship hypothesis: we predicted that goose density increases with an
increasing area of the exposed land;

« the food resource hypothesis: we predicted that goose density increases with increasing for-
age quantity until a certain threshold. Habitat heterogeneity is expected to negatively affect
goose density, and the smaller species would be more sensitive to such heterogeneity than the
larger one;

« the disturbance hypothesis: we predicted a negative effect of human disturbance (i.e., the
presence of domestic geese and boats) on wild goose density for both species, but with a
stronger reaction for the larger species, and a positive, facilitative effect by the number of
water buffalo.

Materials and Methods

Study area

Shengjin Lake National Nature Reserve (30°16'-30°25'N, 116°59'-117°12E), located on the
southern bank of the Yangtze River, is an important wetland in the Yangtze floodplain for win-
tering waterfowl. In summer, the maximum lake area is about 14,000 ha, in winter, as the water
levels decline, the lake area decreases to about 3,400 ha. Water comes from three smaller rivers
flowing directly into the lake and from the Yangtze River via the Huangpen Sluice built in 1965
(Cheng and Xu, 2005). The sluice was built to regulate the water level for facilitating agricultur-
al activities and to control floods. The average annual rainfall is about 1600 mm, with most
rain falling from March to August, and the average annual temperature is 16.1°C, with an aver-
age January temperature of 4.0°C.

Ethics statement

Field permit of this research was granted by the Shengjin Lake National Reserve, Anhui Prov-
ince, China. This study was approved by the Animal ethics committee University of Science
and Technology of China (Approval number: USTCACUC1205052).

Survey methods

Shengjin Lake was divided into five discrete survey areas (Fig 1). The major factors considered
in deciding the size of a survey area was that it had clear boundaries, defined by natural and ar-
tificial features and the entire lake could be adequately surveyed by two teams of 2 persons in
two days. Within each survey area, discrete sub-areas were identified by natural boundaries
and features which enabled sub-areas to be completely surveyed. Each sub-area could be sur-
veyed from a fixed counting location (Fig 1). The lake was surveyed every 16 days from 2008 to
2013 in winter, depending on the satellite passing and on local weather conditions. Survey
areas A and B were surveyed on the same day by one group of observers, while area C was sur-
veyed at the same time by another group. Areas E and F were surveyed by the two groups of
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Fig 1. Map of Shengjin Lake and the five discrete survey areas. The white circles indicate the 56 counting
points and the white lines indicate the counting area boundary (Source:http://eros.usgs.gov/#).

doi:10.1371/journal.pone.0124972.g001

observers simultaneously, one surveying the west side and the other the east side of the lake. To
avoid double counting, cell phone communication was used during the survey. In case of poor
weather conditions, with e.g., fog or rain, an additional day was needed to complete the survey
(7 out of 22 surveys). The “look-see” counting method is commonly used to count waterbirds
[42] and was therefore used in this study. For each sub-area, the number of bean goose and
number of greater white-fronted goose was recorded. In case of geese moving within the sub-
area, we waited until all geese had settled and no geese were flying around anymore. For both
species, we recorded the sizes of the different sub-flocks as this method can reduce the error
when counting large numbers of birds [43]. Time spent on each counting point was different,
from 5-20 min, except four counting sub-area F where around 60 min was needed to count all
birds. In addition, potential disturbance factors (Table 1) were also recorded for each sub-area.
After each survey, a distribution map was drawn with reference to species, bird numbers,

Table 1. The potential predictor variables and their abbreviations used to analyse differences in goose densities. H indicates expected relationship.
+: positive; -: negative. NDVI: Normalized Difference Vegetation Index.

Hypothesis Variables Unit Explanation Range Abbreviations H,
Individual-area Patch area km?  Calculated from satellite images 0.004 ~ 4.867 PA +
hypothesis
Food resource Total biomass g/ Calculated from NDVI data using built equation 0.000 ~ BIO +
hypothesis m? 122.928
Square of total biomass g/ BIO? -
m2
Coefficient of variation ~ no Calculated by standard deviation of NDVI divided by 0.000 ~ 1.011 CV -
mean NDVI
Disturbance hypothesis Number of buffaloes no 0 ~ 461 BUFF +
Number of boats at no 0~55 BA -
anchor
Number of domestic no 0 ~ 4000 GOOSE -

goose

doi:10.1371/journal.pone.0124972.1001
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location and date and time. A detailed description of the survey methodology can be found in
Cao et al [44].

Satellite image processing

Normalized Difference Vegetation Index (NDVI) was calculated to represent forage quantity
using Multispectral HJ-1A, Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper
+ (ETM+) images (with a consistent spatial resolution of 30 m). We selected the images (with
less than 10% cloud cover) that were recorded around our survey dates (S1 and S2 Tables). Due
to the sensor failure of Landsat 7 in 2003, parts of the data were lost on the edges of the ETM
+ image (USGS, 2013). Fortunately, such data loss only accounted for about 5% of our study
area, and a gap-filling method based on local linear histogram matching (Scaramuzza 2004)
was used to fix the missing data.

After fixing the missing ETM+ data, we conducted image calibration (converting digital
numbers to radiance) and atmospheric correction (using a Fast Line-of-sight Atmospheric
Analysis of Hypercubes, FLAASH) [45]. Geometric correction was applied using second-order
polynomials with an accuracy of less than 0.5 pixels Square Mean Root Error (SMRE). Pseudo
Invariant Features (PIF) was used to normalize all images to allow for comparison between
datasets [46].

We adopted the Supported Vector Machines (SVMs) method to discriminate between
water and land within our study area because of their proven efficiency and accuracy in binary
classification [47]. Further, we applied a NDVI threshold to distinguish between bare soil and
meadows. To determine this threshold value, NDVI values were plotted against log-trans-
formed vegetation biomass, which was measured in each winter month during 2010-2012.
Eventually we selected 0.18 as the threshold to distinguish between bare soil and meadows (S1
Fig). Image processing was performed in ENVI 4.8 and ArcGIS 10.0 software.

Statistical analysis

The independent variables that potentially affected geese habitat selection and density, their ab-
breviations and predicted effects are given in Table 1.

Vegetation biomass of the grassland is a direct indicator of forage quantity. However, field
measurement of biomass is not available for each survey date, but we found a strong empirical
relationship between measured total biomass (log transformed g/m?) and NDVI (including
both linear and quadratic term) using regression analysis (see Results). Hence, we calculated
vegetation biomass based on NDVI data.

Generalized Linear Mixed Models using Markov Chain Monte Carlo techniques
(MCMCglmm) [48] were performed to separately test our predictions. A total of 22 surveys’
data across five wintering periods were used depending on the satellite images quality and the
passing data (S2 Table). Because both goose species wintered in our research area from late
September to the end of March, we only used the survey data from within this wintering peri-
od. The number of birds on the water was excluded from the counts, as we intended to measure
the effect of the size of the patch area. We ran the analysis using zero-inflated models
(family = zipoisson) and nonzero-inflated models (family = poisson) for both species separate-
ly and compared the model fit using the deviance information criterion (DIC). The model with
lowest DIC was considered as the appropriate model [49]. We performed 30,000 iterations as
burn-in, followed by 300,000 runs with a thinning interval of 100. The density of bean goose
and greater white-fronted goose were dependent variables. The independent variables are listed
in Table 1. Survey time (year and month) and site (counting points) were random factors. We
checked for autocorrelation between samples, but found that autocorrelation was of little
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Table 2. Comparison of the values for the deviance information criterion (DIC) between models (MCMCglmm) that were built using a zero-inflated
(zipoisson) and nonzero-inflated (poisson) distribution.

Hypothesis DIC value
Bean goose Greater white-fronted goose
zero-inflated nonzero-inflated zero-inflated nonzero-inflated
Individual-area relationship hypothesis 3796.6 3369.3 1858.8 1428.5
Food resource hypothesis 4215.5 3365.6 1874.4 1428.6
Disturbance hypothesis 41841 3368.3 1862.6 1426.3

doi:10.1371/journal.pone.0124972.t002

influence (all positive values were close to zero). We also tested for spatial autocorrelation of
the residuals using Moran’s I index, and found little evidence for spatial autocorrelation (S3
Table). Correlation between pairs of independent variables was weak (all pairwise correlations,
|r] < 0.01), indicating that there was no multicollinearity problem. Statistical analyses were
conducted in R 2.13.0 with the package MCMCglmm.

Results

A strong positive relationship was found between total biomass (g/m?) and NDVT as: log(g/
m?+1) = 15.57 * NDVI-9.77 * NDVI?~1.26 (R?,g; = 0.56, F, 53, = 152.1, P < 0.001), which indi-
cated that NDVI was a good proxy of forage biomass.

The nonzero-inflated model fitted our data best for both species according to the DIC value
(Table 2) and was therefore used in further analysis. The predictions derived from the individu-
al area relationship hypothesis were confirmed as patch area size (PA) had a significantly posi-
tive effect on the geese density for both species (Tables 3 and 4), whereas food and disturbance
variables were not significant. Also the number of buffalos had a positive effect on the density
of greater white-fronted goose (Table 4).

Discussion

In this study, we tested the predictions derived from three hypotheses in explaining the varia-
tion in densities of two grazing goose species in Yangtze wetlands. We demonstrated that the
patch area size (PA) was positively correlated with the density of both goose species, indicated
that our data strongly supported the individual-area relationship. For both species, we failed to
detect any support for the food resource and disturbance hypothesis, as all food and distur-
bance variables were not significant, although the number of domesticated buffalos had a

Table 3. Summary of the effects of dependent variables on bean goose density as generated by the MCMCgimm model for each of the hypotheses
and independent variables, with coefficients and p-values.

Hypothesis Variables Coefficient Lower 95% ClI Upper 95% CI P-value
Individual-area hypothesis PA 0.962 0.106 1.866 0.036
Food resource hypothesis BIO -0.034 -0.108 0.045 0.373
BIO? 0.000 -0.001 0.001 0.496
Ccv -1.828 -8.550 3.974 0.568
Disturbance hypothesis BA 0.066 -0.081 0.210 0.356
GOOSE -0.000 -0.003 0.002 0.801
BUFF 0.012 -0.002 0.025 0.077

Cl = confidence interval of the coefficient. For abbreviation of dependent variables see Table 1.

doi:10.1371/journal.pone.0124972.t1003
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Table 4. Summary of the effects of dependent variables on greater white-fronted goose density as generated by the MCMCglmm model for each of
the hypotheses and independent variables, with coefficients and p-values.

Hypothesis

Individual-area hypothesis
Food resource hypothesis

Disturbance hypothesis

Variables Coefficient Lower 95% CI Upper 95% ClI P-value
PA 1.739 0.669 2.939 0.003
BIO -0.005 -0.116 0.096 0.930
BIO? -0.000 -0.001 0.001 0.704
CcVv -0.358 -10.140 8.890 0.936
BA -0.169 -0.531 0.170 0.302
GOOSE -0.000 -0.003 0.002 0.768
BUFF 0.020 0.005 0.035 0.005

Cl = confidence interval of the coefficient. For abbreviation of dependent variables see Table 1.

doi:10.1371/journal.pone.0124972.t004

positive effect on the density of greater white-fronted goose. Our results showed that patch
area size is the most important factor in explaining spatial differences in bird distribution and
densities, supporting the individual-area hypothesis, which is in line with the findings of Con-
nor and co-workers [7]. Connor et al. [7] discussed that their analyses may be biased. We con-
ducted our bird censuses in a systemic way, using point counts. The counting points were
selected carefully to cover a certain sub-area, determined by natural and artificial boundaries.
Both our study species are larger herbivores which are easily detectable. The resource concen-
tration hypothesis, first introduced for herbivorous insects [9], is often employed to explain
IARs. The hypothesis states that larger areas of host plants should attract more herbivores, be-
cause the animals are more likely to find the plants and stay longer. An alternative explana-
tion for this relationship is that predation risk is higher in smaller patches than in larger ones
[9, 50].

Our study did not find any support for the food resource hypothesis; biomass was even neg-
atively, but not significantly, correlated with the bird densities of both species (Tables 3 and 4).
These results are not consistent with the ideal free distribution which predicts that consumer
density is positively related to resource availability. This may be explained by differences in for-
age quality and the animal’s digestion system. Plant quality generally decreases over the grow-
ing season with increasing biomass [51]. Grazing wildfowl are sensitive to variation in forage
quantity and quality [52]. Goose species have a poor digestion system and may not be able to
tolerate low forage quality, Vegetation heterogeneity (CV) was also negatively correlated with
bean goose and greater white-fronted goose density, but this was also not significant (Tables 3
and 4). Foraging on more homogeneous area can reduce searching time [23] and hence offer a
higher peck rate to satisfy the relatively high daily energy demands of these goose species. How-
ever, the weak negative effect indicated that vegetation heterogeneity is not the main factor that
determines goose species density in these wetlands.

We also failed to detect a significant effect of disturbance related factors. As Shengjin lake
is a national nature reserve in China and also one of the Ramsar wetlands, it is also relatively
better managed. However, we still found negative slopes for the effects of domestic goose
(GOOSE) and boats at anchor (BA) for both species, suggesting that these factors might play a
weaker role in determining goose densities. Water buffalo (BUFF), the dominant livestock spe-
cies in the study area, also forage on these grasslands. A positive correlation between number
of buffalos and goose density was found for both species, suggested that goose density increased
with number of water buffalo especially for greater white-fronted goose, indicating that water
buffalos can facilitate geese. A Type IV functional response for these two goose species was
found in previous studies [12, 53], which suggests that their density is expected to decrease
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once a certain optimal level of forage biomass has been surpassed. Grazing livestock such as
buffalos may reduce forage biomass, change the vegetation structure and increase the availabili-
ty of nutritious regrowth, and thereafter facilitate goose species grazing [39, 54]. Moreover, for-
aging with buffalos may also lead to an earlier detection of predators, such as dogs.

Our study generated strong support for the individual-area relationship, and temporal and
spatial differences in resource availability or disturbance seem to play no role in determining
the differences in goose density. This result highlights the importance of patch area size in de-
termining the animal’s habitat choice. To safeguard China’s wetlands biological diversity, con-
servation biologists and policymakers often face a dilemma in prioritizing conservations
actions, as habitat selection of wetlands birds is complex, assumed to be regulated by ecological
and anthropogenic factors. Our results indicate that simply increasing patch area size is an em-
inent management action, as one larger exposed grassland area is more attractive for migratory
goose than several smaller areas with the same total area. The exposure of recessional grass-
lands is directly determined by fluctuations of water level. Hence, in order to enlarge the capac-
ity of the Yangtze wetlands and better protect wintering wildfowl, hydrological regimes could
be optimized. Moreover, our results support the knowledge that habitat fragmentation may
negatively affect animal densities. Hence, we suggest that water level management schemes
should be optimized to both address the factors that determine the wetland suitability for mi-
gratory birds, such as through a reduction in habitat fragmentation and an increase in the area
of recessional grasslands, while also addressing the need for water for irrigation and aquacul-
tural purposes and flood protection.

Supporting Information

S1 Fig. Scatterplot of vegetation total biomass (g/m2) and NDVI. Vegetation total biomass
was In-transformed.
(DOCX)

S1 Table. Date of acquired satellite images and total biomass data used in the analysis for
predicting forage total biomass from differences in NDVI.
(DOCX)

$2 Table. Image date and information of acquired satellite images and their corresponding
survey date.
(DOCX)

S3 Table. Moran’s I values of residuals for the test of spatial autocorrelation in the final
model both for each survey. BG = bean goose; GWFG = greater white-fronted goose.

* P< 0.05;** p < 0.01; *** p < 0.001.

(DOCX)
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