
deBGR: an efficient and near-exact representation

of the weighted de Bruijn graph

Prashant Pandey1, Michael A. Bender1, Rob Johnson1,2 and Rob Patro1,*

1Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA, 2VMWare, Inc., Palo Alto,

CA 94304

*To whom correspondence should be addressed.

Abstract

Motivation: Almost all de novo short-read genome and transcriptome assemblers start by building

a representation of the de Bruijn Graph of the reads they are given as input. Even when other

approaches are used for subsequent assembly (e.g. when one is using ‘long read’ technologies like

those offered by PacBio or Oxford Nanopore), efficient k-mer processing is still crucial for accurate

assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because

of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for represent-

ing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space.

Further, none of these methods store abundance information, i.e. the number of times that each k-

mer occurs, which is key in transcriptome assemblers.

Results: We present a method for compactly representing the weighted de Bruijn Graph (i.e. with

abundance information) with essentially no errors. Our representation yields zero errors while

increasing the space requirements by less than 18–28% compared to the approximate de Bruijn

graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de

Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most

weighted de Bruijn Graph-based systems.

Availability and implementation: https://github.com/splatlab/debgr.

Contact: rob.patro@cs.stonybrook.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction and related work

The de Bruijn Graph has become a fundamental tool in genomics

(Compeau et al., 2011) and the de Bruijn Graph underlies almost all

short-read genome and transcriptome assemblers—(Chang et al.,

2015; Grabherr et al., 2011; Kannan et al., 2016; Liu et al., 2016;

Pevzner et al., 2001; Simpson et al., 2009; Schulz et al., 2012;

Zerbino and Birney, 2008)—among others. De Bruijn graphs, and

k-mer-based processing in general, have also proven useful, even for

long read sequence analysis (Carvalho et al., 2016; Koren et al.,

2017; Salmela et al., 2016).

Despite the computational benefits that the de Bruijn Graph pro-

vides above the overlap-layout-consensus paradigm, the graph still

tends to require a substantial amount of memory for large datasets.

This has motivated researchers to derive memory-efficient de Bruijn

Graph representations. Many of these representations build upon

approximate membership query (AMQ) data structures (such as

Bloom filters) to achieve an economy of space.

Approximate membership query data structures are set (or multi-

set) representations that achieve small space requirements by allowing

queries, occasionally, to return false positive results. The Bloom filter

(Bloom, 1970) is the archetypal example of an AMQ. Bloom filters

began to gain notoriety in bioinformatics when Melsted and Pritchard

(2011) showed how they can be coupled with traditional hash tables

to vastly reduce the memory required for k-mer counting. By inserting

k-mers into a Bloom filter the first time they are observed, and adding

them to the higher-overhead exact hash table only upon subsequent

observations. Later, Zhang et al. (2014) demonstrated that the count-

min sketch (Cormode and Muthukrishnan, 2005) (a frequency estima-

tion data structure) can be used to approximately answer k-mer pres-

ence and abundance queries when one requires only approximate

counts of k-mers in the input. Such approaches can yield order-of-

magnitude improvements in memory usage over competing methods.

These ideas were soon applied to the construction and representa-

tion of the de Bruijn Graph. For example, Pell et al. (2012) introduce

a completely probabilistic representation of the de Bruijn Graph using

a Bloom filter to represent the underlying set of k-mers. Though this

representation admits false positives in the edge set, they observe that

this has little effect on the large-scale structure of the graph until the

false positive rate becomes very high (i.e. � 0:15).

VC The Author 2017. Published by Oxford University Press. i133

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33, 2017, i133–i141

doi: 10.1093/bioinformatics/btx261

ISMB/ECCB 2017

https://github.com/splatlab/debgr
Deleted Text: R
Deleted Text: W
Deleted Text: ; Grabherr <italic>et<?A3B2 show $146#?>al.</italic>, 2011; Chang <italic>et<?A3B2 show $146#?>al.</italic>, 2015; Liu <italic>et<?A3B2 show $146#?>al.</italic>, 2016; Kannan <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text:
Deleted Text: ,
http://www.oxfordjournals.org/

Building upon this probabilistic representation, Chikhi and Rizk

(2013) introduce an exact de Bruijn Graph representation that cou-

ples a Bloom-filter-based approximate de Bruijn Graph with an

exact table storing critical false positive edges. Chikhi and Rizk’s de

Bruijn Graph representation exploits the fact that, in the de Bruijn

Graph, there are very few edges connecting true-positive k-mers to

false-positive k-mers of the Bloom filter representation of the k-mer

set. Such edges are called critical false positives. Further, they ob-

serve that eliminating these critical false positives is sufficient to pro-

vide an exact (navigational) representation of the de Bruijn Graph.

This compact representation allows large de Bruijn Graphs to be

held in RAM, which enables relatively efficient assembly of even

large and complex genomes.

Subsequently, the representation of Chikhi and Rizk was refined

by Salikhov et al. (2013), who improved the memory requirements

even further by replacing the exact table with a cascading Bloom fil-

ter. The cascading Bloom filter stores an approximate set using

a combination of an approximate (i.e. Bloom filter-based) repre-

sentation of the set and a smaller table to record the relevant

false-positives. This construction can be applied recursively to sub-

stantially reduce the amount of memory required to represent the

original set. Salikhov et al. (2013) provide a representation that re-

quires as little as 8� 9 bits per k-mer, yet remains exact from a navi-

gational perspective. Even more memory-efficient exact

representations of the unweighted de Bruijn Graph are possible. For

example, Bowe et al. (2012) introduced the succinct de Bruijn

Graph (often referred to as the BOSS representation), which pro-

vides an exact navigational representation of the de Bruijn Graph

that uses<5 bits per k-mer, which compares favorably to the lower

bound of �3:24 bits per k-mer on navigational representations

(Chikhi et al., 2014).

While the above approaches used auxiliary data structures to

correct errors in an approximate representation of the de Bruijn

Graph, Pellow et al. (2016) showed how to exploit redundancy in

the de Bruijn Graph itself to correct errors. Essentially, they

observed that true k-mers are not independent—each true k-mer will

have a k–1-base overlap with another true k-mer. If a Bloom filter

representation of the de Bruijn Graph indicates that a particular k-

mer x exists, but that no k-mer overlapping x exists, then x is likely

to be a false positive. Thus, by checking for the existence of all over-

lapping k-mers, they can dramatically reduce the false-positive rate

of a Bloom-filter-based de Bruijn Graph representation. Our repre-

sentation of the weighted de Bruijn Graph can be viewed as an ex-

tension and generalization of this basic idea. See Sections 2.3 and 3

for details.

However, the Bloom filter omits critical information—the fre-

quency of each k-mer—that is necessary when performing assembly

of a transcriptome. Thus, ‘topology-only’ representations are inad-

equate in the case where knowing the abundance of each transcript,

and by extension, each k-mer in the de Bruijn Graph that is part of

this transcript, is essential. In the transcriptomic context, then, one

is interested primarily in the weighted de Bruijn Graph (see

Definition 2). The weighted de Bruijn Graph associates with each k-

mer its abundance in the underlying dataset upon which the de

Bruijn Graph was constructed. Unlike the case of genomic assembly,

we expect the counts in the weighted de Bruijn Graph for transcrip-

tomic data to have a very large dynamic range, and maintaining

exact or near-exact counts for each k-mer can be important for ac-

curately identifying transcripts.

In this paper, we introduce a memory-efficient and essentially

exact representation of the weighted de Bruijn Graph. Our representa-

tion is based upon a recently-introduced counting filter data structure

Pandey et al. (2017a) which, itself, provides an approximate represen-

tation of the weighted de Bruijn Graph. Observing certain

abundance-related invariants that hold in an exact weighted de Bruijn

Graph, we devise an algorithm that uses this approximate data repre-

sentation to iteratively self-correct approximation errors in the struc-

ture. The result is a data structure that takes 18–28% more space

than the approximate representation and has zero errors. This makes

our new representation, which we call deBGR, essentially an exact

representation of the weighted de Bruijn Graph. In datasets with bil-

lions of distinct k-mers, deBGR typically exhibits zero topological

errors. Further, our algorithm corrects not only the topology of the

approximate representation, but also misestimates of abundance that

result from collisions in the underlying counting filter.

Additionally, while existing space-efficient representations of the

de Bruijn Graph, are static, i.e. k-mers cannot easily be deleted from

the graph; our representation supports removal of edges from the de

Bruijn Graph. This capability is enabled by the counting quotient fil-

ter’s ability to delete items (which cannot be done reliably in Bloom

filters). Since aggressive simplification of the de Bruijn Graph (e.g.

to remove spurious topology like bubbles and tips) is typically done

prior to assembly, this deletion capability is important. Previous

approaches avoided the standard simplification step by instead

adopting more complicated traversal algorithms (Chikhi and Rizk,

2013). By removing this limitation of the Bloom filter, our represen-

tation benefits both from simpler traversal algorithms which allow

the in-memory creation of a more manageable simplified weighted

de Bruijn Graph. Recently, Belazzougui et al. (2016) have intro-

duced a dynamic representation of the unweighted de Bruijn Graph

based on perfect hashing, and it will be interesting to explore the

ability of this approach to represent the weighted de Bruijn Graph.

However, to the best of our knowledge, this representation has not

yet been implemented.

We believe that our representation of the weighted de Bruijn

Graph can be successfully applied to considerably reduce the com-

putational requirements for de Bruijn Graph-based transcriptome

assembly (Chang et al., 2015; Grabherr et al., 2011; Kannan et al.,

2016; Liu et al., 2016). One of the major benefits of our approach is

that weighted de Bruijn Graph construction should require consider-

ably less memory than the approaches taken by these other tools.

This will allow for the assembly of larger and more complicated

transcriptomes on smaller and less expensive computers. Further,

since our compact representation of the de Bruijn Graph can be kept

completely in memory, even for relatively large transcriptomes, we

can avoid the ad hoc and potentially complicated step of partition-

ing the de Bruijn Graph for further processing (Kannan et al., 2016;

Pell et al., 2012).

2 Background

deBGR is built on our prototype k-mer counter Squeakr (Pandey

et al., 2017b), which is in turn built on our counting quotient filter

data structure (Pandey et al., 2017a). We explain the key features of

these systems that are needed to understand deBGR. We then review

prior work on exploiting redundancy in de Bruijn Graphs to correct

errors in approximate de Bruijn Graph representations. We also

note that, throughout the paper, we assume a DNA (i.e. 4 character)

alphabet.

2.1 The counting quotient filter
The counting quotient filter (CQF) supports functionality similar to a

counting Bloom filter, but offers much better performance and uses

i134 P.Pandey et al.

Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:
Deleted Text: &hx0025;
Deleted Text: ,
Deleted Text: ,
Deleted Text: Grabherr <italic>et<?A3B2 show $146#?>al.</italic>, 2011;
Deleted Text: Liu <italic>et<?A3B2 show $146#?>al.</italic>, 2016;
Deleted Text: Pell <italic>et<?A3B2 show $146#?>al.</italic>, 2012;
Deleted Text: ,
Deleted Text: C
Deleted Text: Q
Deleted Text: F

far less space (Pandey et al., 2017a) than a counting Bloom filter. The

CQF is essentially an approximate multiset: items can be inserted and

deleted, and queries return the number of instances of an item that are

currently in the multiset. Queries may return an incorrect count with

probability e. Like the counting Bloom filter, errors are one-sided—

the count returned by the CQF is never smaller than the true count.

The CQF stores an approximation of a multiset S � U by storing

a compact, lossless representation of the multiset h(S), where

h : U ! f0; . . . ;2p � 1g is a hash function. To handle a multiset of

up to n distinct items while maintaining a false positive rate of at

most e, the CQF sets p ¼ log2
n
e (see the original quotient filter paper

for the analysis (Bender et al., 2012)).

The counting quotient filter divides h(x) into its first q bits, quo-

tient h0ðxÞ, and its remaining r bits, remainder h1ðxÞ. The counting

quotient filter maintains an array Q of 2q r-bit slots, each of which

can hold a single remainder. When an element x is inserted, the

counting quotient filter attempts to store the remainder h1ðxÞ at

index h0ðxÞ in Q (which we call x’s home slot). If that slot is already

in use, then the counting quotient filter uses a variant of linear prob-

ing, to find an unused slot where it can store h1ðxÞ. The CQF also

maintains a small amount of additional metadata in order to deter-

mine (1) which slots are in use and (2) the home slot of each each re-

mainder stored in Q. The CQF metadata adds 2.125 bits of

overhead per slot. See the CQF paper for details (Pandey et al.,

2017a). In order to maintain good performance, the array of slots

cannot be filled beyond 95%.

Table 1 summarizes the per-element space required in a Bloom

filter, Cuckoo filter (Fan et al., 2014) and CQF, assuming no dupli-

cates (we can’t compare a Bloom filters or Cuckoo filter to a CQF

on multisets, since Bloom and Cuckoo filters do not support track-

ing the number of instances of each item). The CQF is always more

space efficient than the Cuckoo filter and more space-efficient than

the Bloom filter for any false positive rate less than 1/64.

The CQF is an exact representation of h(S)—all false positives

are due to collisions in h. Thus, by choosing h to be an invertible

hash function, we can use a CQF to store S losslessly. We use both

lossy and lossless CQFs in deBGR.

Instead of storing multiple copies of the same item to count, like

a quotient filter, the counting quotient filter employs an encoding

scheme to count the multiplicity of items. The encoding scheme en-

ables the counting quotient filter to maintain variable-sized coun-

ters. This is achieved by using slots originally reserved to store the

remainders to, instead, store count information. The metadata bits

maintained by the counting quotient filter allow this dynamic reuse

of remainder slots for large counters while still ensuring the correct-

ness of all counting quotient filter operations. See the CQF paper for

details (Pandey et al., 2017a).

The variable-sized counters in the counting quotient filter enable the

data structure to handle highly skewed datasets efficiently. By reusing

the allocated space, the counting quotient filter avoids wasting extra

space on counters and naturally and dynamically adapts to the fre-

quency distribution of the input data. The counting quotient filter never

takes more space than a quotient filter for storing the same multiset.

For highly skewed distributions, like those observed in HTS-based data-

sets, it occupies only a small fraction of the space that would be

required by a comparable (in terms of false-positive rate) quotient filter.

In summary, the features of the CQF that we take advantage of

in deBGR are:

• CQFs support insertions of items and queries for the number of

instances of an item,
• queries to a CQF always return a count that is at least as large as

the true count,
• CQFs can be either lossy or lossless,
• when used to represent a set losslessly, they support enumerating

the elements of that set, and
• CQFs are space efficient, even for skewed input distributions.

2.2 Squeakr
Squeakr is a k-mer-counter built on CQFs. Essentially, Squeakr

reads and parses input files containing reads, and inserts the k-mers

into a CQF. It can then write the CQF to disk for later querying.

Squeakr supports two modes: approximate and exact. In exact mode,

Squeakr inserts k-mers using an invertible 2k-bit hash function, and

hence has no false positives. In approximate mode, Squeakr uses a p-bit

hash function, where p is chosen as described above to maintain the

desired error rate while handling the expected number of input k-mers.

Squeakr is competitive or outperforms state-of-the-art k-mer coun-

ters. In exact mode, Squeakr use about half the memory of KMC2 and

roughly the same amount of memory as Jellyfish2 (both of which are

exact k-mer counters). For approximate counts, Squeakr uses consider-

ably less memory (1.5X–4.3X) than Jellyfish2 and KMC2. Squeakr

offers counting performance similar to that of KMC2 and faster than

Jellyfish2. However, Squeakr offers an order-of-magnitude improve-

ment in query performance. Squeakr offers very fast query performance

for both random queries and de Bruijn Graph traversal workloads.

Fast queries turn out to be helpful in downstream data analyses,

such as de Bruijn Graph traversals (Chikhi and Rizk, 2013), inner-

product computations (Murray et al., 2016; Vinga and Almeida,

2003), and searches (Solomon and Kingsford, 2016).

2.3 Prior approximate de Bruijn graph representations
deBGR extends and generalizes an idea first suggested by Pellow

et al. (2016), for correcting errors in approximate de Bruijn Graph

representations.

The Bloom filter false-positive rate is calculated assuming all the

items inserted in the Bloom filter are independent. However, when

we use a Bloom filter to represent a de Bruijn Graph, the items (or k-

mers in this case) are not independent. Each k-mer has a k–1-base

overlap with adjacent k-mers in the sequence.

Pellow et al. (2016) use this redundancy to detect false positives

in a Bloom filter representation of the de Bruijn Graph. Whenever

they want to determine whether a k-mer x is present in the de Bruijn

Graph, they first query the Bloom filter for x. If the Bloom filter in-

dicates that x is not present, then they know that x is not in the de

Bruijn Graph. If, however, the Bloom filter indicates that x might be

in the de Bruijn Graph, they then query the Bloom filter for every

possible k-mer that overlaps x in k–1 bases. If the Bloom filter indi-

cates that none of these k-mers is part of the de Bruijn Graph, then x

Table 1. Space usage of several AMQs, as a function of e, the false

positive rate, and a, the load factor

Filter Bits per element Max a

Bloom log21=e
ln2

N/A

Cuckoo 3þlog21=e
a

0.95

CQF 2:125þlog21=e
a

0.95

Note: The CQF is more space efficient than the cuckoo filter for all false

positive rates and more space efficient than the Bloom filter for false positive

rates less than 1/64. The Cuckoo filter and CQF offer good performance until

95% load factor. A Cuckoo filter or CQF offers good performance up to a

load factor of 0.95.

deBGR i135

Deleted Text: <xref ref-type=
Deleted Text: A
Deleted Text: B
Deleted Text: G
Deleted Text: R
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:

is very likely to be a false positive. If the Bloom filter returns true for

at least one of the k-mers overlapping with x, then they conclude

that x is very likely to be in the de Bruijn Graph.

Pellow et al. (2016) present two versions of the k-mer Bloom filter,

a one-sided k-mer Bloom filter and a two-sided k-mer Bloom filter. The

one-sided k-mer Bloom filter only looks for the presence of a single

overlapping neighbor out of the eight possible neighbors (four on each

side) of a k-mer x. The one-sided k-mer Bloom filter achieves a smaller

false-positive rate than a standard Bloom filter using the same space.

The two-sided k-mer Bloom filter achieves an even lower false-

positive rate by requiring that there is an overlapping k-mer present

on either side of x. However, this approach can result in false-

negative results for k-mers that are at the edges of reads, since the k-

mers at the edges might not have neighbors on both sides.

The two-sided k-mer Bloom filter deals with the k-mers at the

edges of reads (i.e. start and end k-mers) specially. It maintains a

separate list that contains all the k-mers that occur at the beginning

or end of a read. While constructing the k-mer Bloom filter, the first

and last k-mer of each read are stored in separate lists. During a

query for x, if it finds a neighboring k-mer on only one side of x,

then it checks whether x is in the list of edge k-mers. If yes, then it

returns positive; else it returns negative.

2.4 Lower bounds on weighted de Bruijn graph

representation
In the experiments, we perform in Section 4, we find that deBGR is

practically exact from a navigational perspective (i.e. it yields zero

errors in terms of topology or abundance). It is useful, therefore, to

keep in mind some lower bounds for what is achievable in represent-

ing the weighted de Bruijn Graph exactly from a navigational per-

spective. We know that a navigational structure for the unweighted

de Bruijn Graph requires at least 3.24 bits per kmer (Chikhi et al.,

2014), and that exactly representing the counts requires at least

F ¼
P

k2Kd log2ðfkÞe bits where K is the set of k-mers in a dataset

and fk is the frequency of k-mer k, so that a reasonable lower bound

would be 3:24þ F
jKj bits per k-mer. To make such a representation

efficient would likely require more space (e.g. a fast way to index

the encoded, variable-size frequency data).

We consider what this bound implies for the dataset

GSM984609 in Section 4. Here, we have 1 146 347 598 distinct k-

mers and F ¼ 1 119 742 769, yielding a lower bound of �4:217 bits

per k-mer for an exact navigational representation of this weighted

de Bruijn Graph. Approaching such a bound closely, is, of course, a

challenge. For example, the cosmo1 https://github.com/cosmo-team/

cosmo implementation of the BOSS data structure requires �5:995

bits per k-mer on this dataset, but does not encode the weight of

each edge. If we couple this with an array of fixed-size counters large

enough to represent the frequency distribution losslessly (for this

dataset, 23 bits per k-mer), it yields a representation requiring �
28:995 bits per k-mer. deBGR, on the other hand, requires 26.52

bits per k-mer. Thus, this example shows that there is still a consid-

erable gap between what existing approaches achieve and the abso-

lute theoretical lower bound for an exact navigational

representation of a weighted de Bruijn Graph. However, deBGR is

dynamic, supports membership queries, and provides efficient access

(expected Oð1Þ) to k-mer abundances.

3 Materials and methods

We begin by first presenting an invariant of de Bruijn Graphs that we ex-

ploit in our compact de Bruijn Graph representation. We then describe

how we use this invariant to extend Squeakr (Pandey et al., 2017b) to

create a near-exact representation of the weighted de Bruijn Graph.

3.1 A weighted de Bruijn graph invariant
This section explains the structure of weighted de Bruijn Graphs

that we exploit to correct errors in approximate weighted de Bruijn

Graph representations, such as that provided by Squeakr.

Definition 1. For a k-mer x, we will denote its reverse complement

as x�1. The canonical form of a k-mer x, denoted bx, is the lexico-

graphically smaller of x and x�1. For two k-mers x and y, we write

x ’ y if bx ¼ by.

A read is a string of bases over the DNA alphabet A, C, T, and G.

Definition 2. The weighted de Bruijn Graph G of k-mers for a set

of reads R has a node bn for each ðk� 1Þ-mer n that occurs in R.

For each k-mer b1xb2 in R, where b1 and b2 are bases and x is a

ðk� 2Þ-mer, there is an edge db1xb2 connecting the nodes db1x anddxb2 . The abundance of an edge be, denoted aðbeÞ, is the number of

times that be (i.e. e or e�1) occurs in R.

In this formalization, a read of length ‘ corresponds to a walk of

length ‘� k edges in the de Bruijn graph. Figure 1 shows two reads

in the de Bruijn graph before canonicalization, and Figure 2 shows

the edges induced by those reads after canonicalization.

Definition 3. For a node bn and edge be, we say that be is a duplex edge

of bn if there exist bases b and b0 (and possibly b ¼ b0) such that

be ’ bbn and be ’ bnb0. We say that be is a left edge of bn if be is not a du-

plex edge of bn and there exists a base b such that be ’ bbn. Similarly,

be is a right edge of bn if be is not a duplex edge of bn and there exists a

base b such that be ’ bnb.

There are several subtleties to this definition. Left, right, and du-

plex are defined relative to a node bn. An edge be connecting nodes cn1

and cn2 may be a left edge of cn1 and a right edge of cn2 , or a left edge

of both cn1 and cn2 , or any other combination. Note also that left,

right, and duplex are mutually exclusive—every edge of bn is exactly

one of left, right, or duplex, with respect to bn.

Our compact representation of the de Bruijn graph is based on

the following observation:

Observation 1. Let be1 ; be2 ; . . . ; be‘ be the sequence of edges in a walk

corresponding to a read, and cn0 ; . . . ; bn‘ the corresponding sequence

of nodes in the walk. Then for i ¼ 1; . . . ; ‘� 1; bei and deiþ1 cannot

both be left edges of bni , nor can they both be right edges of bni .

In other words, whenever a read arrives at a node bn via a left

edge of bn, it must depart via a right or duplex edge of bn, and when-

ever it arrives via a right edge of bn, it must depart via a left or duplex

edge of bn. (When a walk arrives via a duplex edge, it may leave via

any kind of edge.) This is because two successive edges of the walk

correspond to a substring b1nb2 of the read, where b1 and b2 are

bases and n is a ðk� 1Þ-mer. If bn ¼ n, then db1n is a left (or duplex)

edge of bn and dnb2 is a right (or duplex) edge of bn. If bn ¼ n�1, thendb1n ’ bnb�1
1 is a right (or duplex) edge of bn, and dnb2 ’ b�1

2 bn is a left

(or duplex) edge of bn.

The following lemma implies that duplex edges are rare, since

only nodes of a special form can have duplex edges.

Lemma 1. If a node bn has a duplex edge, then either (1) n ¼ n�1 or (2)

bn is equal to either Ak�1 or Ck�1, where A and C are the DNA bases.

Proof. Suppose node bn has a duplex edge be. Without loss of gen-

erality, we can assume bn ¼ n (by replacing n with n�1 if necessary).

i136 P.Pandey et al.

Deleted Text: ,
Deleted Text: B
Deleted Text: G
Deleted Text: ,
Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text:
https://github.com/cosmo-team/cosmo
https://github.com/cosmo-team/cosmo
Deleted Text:
Deleted Text:
Deleted Text: B
Deleted Text: G
Deleted Text: I
Deleted Text: ,

Then there exist (possibly equal) bases b and b0 such that

bn ’ be ’ nb0, i.e., bn ’ nb0. Let n ¼ n1 � � � nk�1, i.e., ni are the bases

constituting n. Then there are two cases:

• bn ¼ nb0. In this case, b ¼ n1 ¼ n2 ¼ � � � ¼ nk�1 ¼ b0, i.e. n is a

string of equal bases. Thus, n is equivalent to Ak�1 or Ck�1.
• bn ¼ b0�1n�1. Thus, n ¼ n�1.

We call nodes that can have duplex edges duplex nodes, for example

see Figure 2.

We say that a walk, path, or cycle is left-right-alternating if, for

every successive pair of edges be and be0 in the path, walk, or cycle,

one is a left edge of bn and one is a right edge of bn, where bn is the

node common to be and be0 . We say that nodes bn and bn0 have left-

right-alternating distance d if the shortest left-right-alternating path

from bn to bn0 has length d.

We now explain the main invariant used in our compact

weighted de Bruijn Graph representation, as illustrated in Figure 1.

This observation leads to the following invariant.

Theorem 1 (The weighted de Bruijn Graph invariant). Let R be a set

of reads that does not include any duplex edges. Let aðbeÞ be the

number of occurrences of the edge be in a set of reads. Let ‘ðbnÞ be the

number of reads that begin or end with a left edge of bn, and rðbnÞ the

number of reads that begin or end with a right edge of bn. Let sðbeÞ be

1 if be is a self-loop, and 0 otherwise. Let bn be a node and assume,

WLOG, that bn ¼ n. Then

X
b2fA;C;

G;Tg

2sð bbnÞaðcbnÞ

0
BB@

1
CCA�‘ðbnÞ¼

X
b2fA;C;

G;Tg

2sð bnbÞaðcnbÞ

0
BB@

1
CCA�rðbnÞ:

Proof. We argue the invariant for a single read. The overall in-

variant is established by summing over all the reads.

Let W be a read. Since W contains no duplex edges, it corresponds to

a left-right alternating walk in the de Bruijn Graph. Thus, every time W

visits bn, it must arrive via a right edge of bn and depart via a left edge of bn
(or vice versa), unless W starts or ends at bn. We call an arrival at or de-

parture from bn a threshold. Each occurrence of bn in W corresponds to

two thresholds (except with the possible exception of occurrences of bn at

the beginning or end of W). We call an arrival at or departure from bn via

a left edge of bn a left threshold of bn, and define right thresholds similarly.

Thus, ignoring occurrences of bn at the beginning or end of W, the

number of left thresholds of bn must equal the number of right thresh-

olds of bn. Let LWðbnÞ and RWðbnÞ be the number of left and right

thresholds, respectively, of bn in W. Let ‘WðbnÞ be the number of left

thresholds of occurrences of bn at the beginning or end of W, and define

rWðbnÞ analogously for right thresholds of bn. Thus we have the equality

LWðbnÞ � ‘WðbnÞ ¼ RWðbnÞ � rWðbnÞ:
Each occurrence of a left edge be of bn in W corresponds to a single

threshold of bn, unless be is a loop connecting bn to itself, in which case

each occurrence of be corresponds to two thresholds. Note that, since

by assumption be is not a duplex edge, if it is a loop, it corresponds to

two left thresholds or two right thresholds of bn (i.e. it does not cor-

respond to one left and one right threshold of bn). Let aWðbeÞ be the

number of occurrences of be in W. Then

LWðbnÞ ¼ X
b 2 fA;C;

G;Tg

2sð bbnÞaWðcbnÞ

and

RWðbnÞ ¼ X
b 2 fA;C;

G;Tg

2sð bnbÞaWðcnbÞ:

Thus

X
b 2 fA;C;

G;Tg

2sð bbnÞaWðcbnÞ � ‘WðbnÞ ¼ X
b 2 fA;C;

G;Tg

2sð bnbÞaWðcnbÞ � rWðbnÞ:

The final result is obtained by summing over all reads W 2 R. h

3.2 deBGR: a compact de Bruijn graph representation
We now describe our compact weighted de Bruijn Graph representa-

tion. Given a set R of reads, we build counting quotient filters repre-

senting the functions a, ‘, and r. For ‘ and r, we use exact CQFs, so

these tables will have no errors. Since ‘ and r have roughly one entry

for each read, these tables will be relatively small (see Section 3.6).

For a, we build a space-efficient approximate CQF, which we call

aCQF. Since we build exact representations of ‘ and r, we will use ‘

and r to refer to both the actual functions and our tables represent-

ing these functions. The CQF guarantees that, for every edge

be; aCQF½hðbeÞ� � aðbeÞ. We then compute a table c of corrections to

aCQF (we explain how to compute c below). After computing c, a

query for the abundance of an edge be returns gðbeÞ, where g is defined

to be gðbeÞ ¼ aCQF½hðbeÞ� � c½be�. Thus, since c is initially 0, we initially

have that gðbeÞ � aðbeÞ for all be.

Definition 4. We say that g satisfies the weighted de Bruijn Graph in-

variant for bn if

X
b 2 fA;C;

G;Tg

2sð bbnÞgðcbnÞ

0
BB@

1
CCA� ‘½bn� ¼

X
b 2 fA;C;

G;Tg

2sð bnbÞgðcnbÞ

0
BB@

1
CCA� r½bn�:

....CAAAAT....
AAAA

....CAAAAC....

CAAA

AAAT

AAAC

CAAAA AAAAT

AAAAC

READ 1:CAAAAT....

READ 2:CAAAAC....

de Bruijn Graph Invrariant

Num of reads to the left = Num of reads to the right

Fig. 1. Weighted de Bruijn Graph invariant. The nodes are 4-mers and edges

are 5-mers. The nodes and edges are drawn from Read1 and Read2 men-

tioned in the figure. The solid curve shows the read path. The nodes/edges

are not canonicalized

AAAACAAA

CAAAA

AAAAA

AAAT

AAAAT

AAAC

AAAAC

Fig. 2. Types of edges in a de Bruijn Graph. The nodes are 4-mers and edges

are 5-mers. For node AAAA, CAAAA is a left edge and AAAAT, AAAAC are

right edges. We introduced another edge AAAAA in order to show a duplex

edge. All the nodes/edges are canonicalized and the graph is bi-directional

deBGR i137

Deleted Text: ,
Deleted Text: C
Deleted Text: B
Deleted Text: G
Deleted Text: R

3.3 Local error-correction rules
We first describe our local algorithm for correcting errors in g. This

algorithm can be used to answer arbitrary k-mer membership

queries by correcting errors on the fly. Thus this algorithm can be

used to perform queries on a dynamic weighted de Bruijn Graph.

The process for computing c maintains the invariant that gðbeÞ
� aðbeÞ for every edge be in the weighted de Bruijn Graph, while using

the following three rules to correct errors in g.

1. If we know that g is correct for all but one edge of some node bn,

then we can use the weighted de Bruijn Graph invariant to solve

for the true abundance of the remaining edge.

2. Since gðbeÞ � aðbeÞ for all be, if (1) g satisfies the weighted de Bruijn

Graph invariant for some node bn and, (2) we know that g is correct

for all of bn’s left edges, then we can conclude that g is correct for all

of bn’s right edges, as well (and vice versa for ‘left’ and ‘right’).

3. If
P

b2fA;C;G;Tg 2sð bbnÞgðcbnÞ ¼ ‘½bn� and r½bn� ¼ 0, then the abun-

dance of all of bn’s right edges must be 0 (and vice versa for

‘right’ and ‘left’).

Given an initial set C of edges for which we know g is correct, we

can use the above rules to correct errors in g and to expand C. But

how can we get the initial set of edges C that is required to bootstrap

the process? Our algorithm uses two approaches.

First, whenever gðbeÞ ¼ 0, it must be correct. This is because g

can never be smaller than a. Thus, the above rules always apply to

leaves of the approximate weighted de Bruijn Graph and, more gen-

erally, to any nodes that have only left or only right edges.

Leaves and nodes with only right or only left edges are not suffi-

cient to bootstrap the error correction process, however, because

weighted de Bruijn Graphs can contain cycles in which each node

has both left and right edges that are part of the cycle. Starting only

from leaves and one-sided nodes, the above rules are not sufficient

to infer that g is correct on any edge in such a cycle, because each

node in the cycle will always have a left and right edge for which g is

not known to be correct.

We can overcome this problem by exploiting the random nature

of errors in the CQF to infer that g is correct, with very high prob-

ability, on almost all edges of the approximate weighted de Bruijn

Graph, including many edges that are part of cycles.

Theorem 2. Suppose that errors in g are independent and random

with probability e. Suppose bn is not part of a left-right-alternating

cycle of size less than d. Suppose also that g satisfies the weighted de

Bruijn Graph invariant at every node within a left-right-alternating

distance of dd=2e from bn. Then the probability that g is incorrect for

any edge attached to bn is less than ð4eÞd.

Proof. Since g is never smaller than a, if g is incorrect for a left

edge of some node bn and g satisfies the weighted de Bruijn Graph in-

variant at bn, then g must be incorrect for at least one right edge of bn.

(And symmetrically for right/left). Thus, if g is incorrect for some

edge attached to bn, then since g satisfies the weighted de Bruijn

Graph invariant for all nodes within a radius d=2 of bn, it must be

the case that g is incorrect for every edge along some left-right-

alternating path of length at least d edges. Since bn is not part of a

cycle of length less than d, all the edges in this path must be distinct.

Since errors in g are independent and have probability e, the prob-

ability of this occurring along any single path is at most ed.

Since each node of the weighted de Bruijn Graph has at most 4

left and 4 right edges, the total number of left-right-alternating paths

of length d centered on node bn is at most 4d. Hence, by a union

bound, the probability that such a path exists is at most ð4eÞd. h

We can use this theorem to infer, with high probability, that g is

correct for many edges in the graph. We can choose larger or smaller

d to control the probability that we incorrectly infer that g is correct

on an edge. By choosing d � log n= log ð1=4eÞ, where n is the num-

ber of edges in the approximate weighted de Bruijn Graph, we can

make the expected number of such edges less than 1.

On the other hand, we expect many nodes from actual weighted

de Bruijn Graphs to meet the criteria of Theorem 2. The vast major-

ity of nodes in a weighted de Bruijn Graph are simple, i.e., they have

exactly 1 left edge and 1 right edge. Therefore, for most nodes, there

are only O(d) nodes within left-right-alternating distance dd=2e.
Thus, for most nodes, the probability that they fail to meet the crite-

ria is OðdeÞ. When d ¼ log n= log ð1=4eÞ, this becomes

Oðe log n= log ð1=4eÞÞ. This means that for most values of n and e
that arise in practice, the vast majority of nodes will meet the criteria

of Theorem 2. For example, when n � 240 and e � 2�8, the

fraction of nodes expected to fail the criteria of Theorem 2 is less

than 3%.

The above analysis suggests that large cycles (i.e. cycled of length

at least log n= log ð1=4eÞ) in the weighted de Bruijn Graph will have

at least a few nodes that meet the criteria of Theorem 2, so the cor-

rection process can bootstrap from those nodes to correct any other

incorrect edges in the cycle. Small cycles (i.e. of size less than

log n= log ð1=4eÞ), however, still pose a problem, since Theorem 2

explicitly forbids nodes in small cycles.

We can handle small cycles as follows. Any kmer that is part of a

cycle of length q<k must be periodic with periodicity q, i.e. it must

be a substring of a string of the form xdk=qe, where x is a string of

length q. Thus, small cycles are quite rare. We can detect k-mers

that might be involved in a cycle of length less than d during the pro-

cess of building aCQF and record their abundance in a separate, exact

CQF. Since periodic k-mers are rare, this exact CQF will not con-

sume much space. Later, during the correction phase, we can add all

the edges corresponding to these k-mers to the set C.

As mentioned before, the weighted de Bruijn Graph invariant

only applies to nodes without duplex edges. Our weighted de

Bruijn Graph representation handles duplex edges as follows.

Suppose a read corresponds to a walk visiting the sequence of

nodes cn1 ;cn2 ; . . . ;cnq . We treat every time the read visits a duplex

node as the end of one read and the beginning of a new read. By

breaking up reads whenever they visit a duplex node, we ensure

that whenever a walk arrives at a node via a left or right edge, it ei-

ther ends or departs via a left or right edge. Thus we can use the

weighted de Bruijn Graph invariant to correct errors in aCQF as

described above.

3.4 Global, CQF-specific error-correction rules
So far, our error-correction algorithm uses only local information

about discprencies in the weighted de Bruijn Graph invariant to cor-

rect errors. It also uses the CQF in a black-box fashion—the same

algorithm could work with, for example, a counting Bloom filter ap-

proximation of a.

We now describe an extension to our error-correction algorithm

that, in our experiments, enables it to correct all errors in the ap-

proximate weighted de Bruijn Graph. This extension exploits the

fact that the CQF represents a multiset S by storing, exactly, the

multiset h(S), where h is a hash function. It also performs a global

analysis of the graph in order to detect more errors than can be de-

tected by the local algorithm. Thus, this algorithm is appropriate for

applications that need a static, navigational weighted de Bruijn

Graph representation.

i138 P.Pandey et al.

Deleted Text: E
Deleted Text: C
Deleted Text: R
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;).
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;).
Deleted Text: ,
Deleted Text: S
Deleted Text: E
Deleted Text: C
Deleted Text: R

Note that applications can mix-and-match the two error correc-

tion algorithms. Both the local and global algorithms can be run re-

peatedly, in any order, and even intermixed with intervening

modifications to the weighted de Bruijn Graph (e.g. after inserting

additional k-mers).

For a read set R, let K be the set of distinct k-mers occurring in

R. During the k-mer counting phase, every time we see a k-mer e,

we increment the counter associated with hðbeÞ in aCQF. Thus, after

counting is completed, for any edge be,

aCQF½hðbeÞ� ¼ X
bx2K\h�1ðbeÞ

aðbxÞ

where h�1ðbeÞ ¼ fbxjhðbxÞ ¼ hðbeÞg.
The above equation enables us to use knowledge about the abun-

dance of an edge be to infer information about the abundance of

other edges that collide with be under the hash function h. For ex-

ample, if we know that we have inferred the true abundance for all

but one edge in some set h�1ðbeÞ, then we can use this equation to

infer the abundance of the one remaining edge.

Our algorithm implements this idea as follows. Recall that, with

high probability, whenever an edge bx 2 C, then gðbxÞ ¼ aðbxÞ. Thus

we can rewrite the above equation as:

aCQF½hðbeÞ� � X
bx2C\h�1ðbeÞ

gðbxÞ ¼ X
bx2 �C\h�1ðbeÞ

aðbxÞ;

where �C ¼ KnC. For convenience, write zðbeÞ ¼ aCQF½hðbeÞ��Pbx2C\h�1ðbeÞ gðbxÞ. Note that z factors through h, i.e., if hðbxÞ ¼ hðbyÞ,
then zðbxÞ ¼ zðbyÞ, and hence zðbxÞ is the same for all bx in some set

h�1ðbeÞ.
The above equation implies two invariants that our algorithm

can use to infer additional information about edge abundances:

• For all be; aðbeÞ � zðbeÞ. This is because, by definition, aðbeÞ � 0.

Thus, if the algorithm ever finds an edge be such that gðbeÞ > zðbeÞ,
then it can update c½be� so that gðbeÞ ¼ zðbeÞ.

• If, for some be,
Pbx2 �C\h�1ðbeÞ gðbxÞ ¼ zðbeÞ, then gðbxÞ ¼ aðbxÞ for all

x 2 �C \ h�1ðbeÞ. This is because 0 � aðbxÞ � gðbxÞ for all bx.

Thus, in this case, the algorithm can add all the elements of x

2 �C \ h�1ðbeÞ to C.

3.5 An algorithm for computing abundance corrections
Algorithm 1 in the Supplementary Material shows our algorithm for

computing c based on these observations. The algorithm is a stand-

ard work queue algorithm—it creates a work queue of edges that

might have abundance errors and then pulls items off the worklist,

looking for opportunities to apply the above rules. To save RAM,

the algorithm computes the complement M of C, since for typical

error rates C would contain almost all the edges in the weighted de

Bruijn Graph.

The worst-case running time of the algorithm is Oðn1þ1= log ð1=4eÞÞ
but, for real weighted de Bruijn Graphs, the algorithm runs in Oðn
log n= log ð1=4eÞÞ time. The running time is dominated by initializing

M, which requires traversing the graph and and finding any nodes

within distance log n= log ð1=4e) of a weighted de Bruijn Graph in-

variant discrepancy. Since real weighted de Bruijn Graphs have

nodes mostly of degree 2, there will usually be OðdÞ ¼ Oðlog n= log

ð1=4eÞÞ such nodes, giving a total running time of

Oðn log n= log ð1=4eÞÞ.
When used to perform a local correction as part of an abundance

query, we use the same algorithm, but restrict it to examine the re-

gion of the weighted de Bruijn Graph within O(d) hops of the edge

being queried. In the worst case, this could require examining the

entire graph, resulting in the same complexity as above. In the com-

mon case, however, the number of nodes within distance d of the

queried edge is O(d), so the running time of a local correction is

Oðlog n= log ð1=4eÞÞ.
The space for deBGR can be analyzed as follows. To represent a

multiset S with false positive rate e, the CQF takes

OðjSj log21=eþ CðSÞÞ, where C(S) is the sum of the logs of the

counts of the items in S. To represent S exactly, assuming that each

element of S is a b-bit string, takes OðjSj log2b=jSj þ CðSÞÞ. So let K

be the multiset of k-mers, and let E � K be the multiset of k-mer in-

stances in K that occur at the beginning or end of a read or visit a

duplex node. Then the space required to represent aCQF is

OðjKj log 1=eþ CðKÞÞ. The space required for ‘ and r is

OðjEj log 4k=jEj þCðEÞÞ. Note that since E � K, CðEÞ � CðKÞ.
The space required to represent c is OðejKj log 4k=ejKj þ CðKÞÞ.
Thus the total space required for deBGR is

OðjKj log
1

e
þ jEj log

4k

jEj þ ejKj log
4k

ejKj þ CðKÞÞ:

3.6 Implementation
We extended Squeakr to construct the exact CQFs ‘ and r as

described above, in addition to the approximate CQF aCQF that it al-

ready built. We then wrote a second tool to compute c from aCQF; ‘,

and r. Our prototype handles duplex nodes and small cycles as

described. Our current prototype uses a standard hash table to store

M and standard set to store Q. Also, we use a standard hash table to

store c. An exact CQF would be more space efficient, but c is small

enough in our experiments that it doesn’t matter.

3.7 Size of the first and last tables

We explore, through simulation, how the sizes of the first and last

tables ‘ and r grow with the coverage of the underlying data. Here,

for simplicity, we focus on genomic (rather than transcriptomic)

data, as coverage is a well-defined notion. We simulated reads gen-

erated from the Escheria coli (E. coli) (strain E1728) reference gen-

ome at varying levels of coverage, and recorded the number of total

distinct k-mers, as well as the number of distinct k-mers in ‘ and r

(Fig. 3). Reads were simulated using the Art Huang et al. (2012)

read simulator, using the error profiles 125 bp, paired-end reads se-

quences on an Illumina HiSeq 2500. As expected, the number of dis-

tinct k-mers in all of the tables grows with the coverage (due to

sequencing error), Yet, even at 80x coverage, the ‘ and r tables, to-

gether, contain fewer than 25% of total distinct k-mers. On the ex-

perimental data examined in Section 4, the ‘ and r tables, together,

require between than 18–28% of the total space required by the

deBGR structure.

4 Evaluation

In this section, we evaluate deBGR, as described in Section 3.

We evaluate deBGR in terms of space and accuracy. The space is

the size of the data structure(s) needed to represent the weighted de

Bruijn Graph. The accuracy is the measure of how close the

weighted de Bruijn Graph representation is to the actual weighted

de Bruijn Graph. We also report the time taken by deBGR to con-

struct the weighted de Bruijn Graph representation, perform global

abundance correction, and perform local abundance correction for

an edge.

deBGR i139

Deleted Text: ,
Deleted Text: A
Deleted Text: C
Deleted Text: A
Deleted Text: C
Deleted Text: Figure
Deleted Text: &hx0025;
Deleted Text:

As described in Section 3.6, deBGR uses two exact counting quo-

tient filters (‘ and r) in addition to the approximate counting quo-

tient filter that stores the number of occurrences for each k-mer. The

error-correction algorithm then computes a table c of corrections. In

our evaluation we report the total size of all these data structures,

i.e. aCQF; ‘, r, and c.

We measure the accuracy of systems in terms of errors in the

weighted de Bruijn Graph representation. There are two kind of

errors in the weighted de Bruijn Graph, abundance errors and topo-

logical errors. An abundance error is an error when the weighted de

Bruijn Graph representation returns an over-count for the query k-

mer (deBGR never resulted in an undercount in any of our experi-

ments). Topological errors are abundance error for edges whose

true abundance is 0. Topological errors are also known as false-

positives.

In both cases, we report the number of reachable errors. Let G

be the true weighted de Bruijn Graph and G0 our approximation.

Since g is never smaller than a, the set of edges in G0 is a superset of

the set of edges in G. An error on edge be of G0 is reachable if there

exists a path in G0 from be to an edge that is also in G. Note that

reachable false positives are not the same as Chikhi et al.’s notion of

critical false positives (Chikhi and Rizk, 2013). Critical false posi-

tives are false positives that are false positive edges that share a node

with a true positive edge. Reachable false positives, on the other

hand, may be multiple hops away from a true edge of the weighted

de Bruijn Graph.

We compare deBGR to Squeakr in both its approximate and

exact configurations. Recall that the exact version of Squeakr stores

k-mers in a CQF using a 2k-bit invertible hash function, so that it

has no false positives. We use the exact version of Squeakr as the ref-

erence weighted de Bruijn Graph for computing the number of

reachable errors in Squeakr and deBGR.

We do not compare deBGR against other Bloom filter based de

Bruijn Graph representations (Chikhi and Rizk, 2013; Salikhov

et al., 2013) because Bloom filter based de Bruijn Graph representa-

tions do not have abundance information.

4.1 Experimental setup
All experiments use 28-mers. In all our experiments, the counting

quotient filter was configured with a maximum allowable false-

positive rate of 1/256.

All the experiments are performed in-memory. We use several

datasets for our experiments, which are listed in Table 2. All the

experiments were performed on an Intel(R) Xeon(R) CPU (E5-2699

v4 @ 2.20GHz with 44 cores and 56MB L3 cache) with 512GB

RAM and a 4TB TOSHIBA MG03ACA4 ATA HDD.

4.2 Space versus accuracy trade-off
In Table 3, we show the space needed and the accuracy (in terms of

navigational errors) offered in representing the weighted de Bruijn

Graph by deBGR and the exact and approximate versions of

Squeakr. For deBGR, Table 3 gives the final space usage (i.e.

aCQF; ‘, r, and c). deBGR offers 100% accuracy and takes 48–52%

less space than the exact version of Squeakr that also offers 100%

accuracy. deBGR takes 18–28% more space than the approximate

version but the appropriate version has millions of navigational

errors.

The space required by deBGR in Table 3 is the total space of all

data structures (aCQF; ‘, r, and c). In Table 4, we report the max-

imum number of items stored in auxiliary data structures (see

Algorithm 1) while performing abundance correction. This gives an

upper bound on the amount of space needed by deBGR to perform

abundance correction.

4.3 Performance
In Table 5, we report the time taken by deBGR to construct the

weighted de Bruijn Graph representation and perform global abun-

dance correction. The time information for construction and global

abundance correction is averaged over two runs.

We also report the time taken to perform local abundance cor-

rection for an edge. The time for local abundance correction per

edge is averaged over 1M local abundance corrections. After per-

forming abundance correction, computing gðbeÞ ¼ aCQF½hðbeÞ� � c½be�
takes 3.45 microseconds on average.

10 20 30 40 50 60 70 80
0

1 · 107

2 · 107

Coverage

N
um

be
r

of
di

st
in

ct
k

-m
er

s

#Distinct First k-mers
#Distinct Last k-mers
#Distinct Total k-mers

Fig. 3. Total number of distinct k-mers in First QF, Last QF, and Main QF with

increasing coverage of the same dataset. We generate dataset simulations

using Huang et al. (2012)

Table 2. Datasets used in our experiments

Dataset File size #Files #k-mer instances #Distinct k-mers

GSM984609 26 12 19662773 330 1146347598

GSM981256 22 12 16470774825 1118090824

GSM981244 43 4 37897872977 1404643983

SRR1284895 33 2 26235129875 2079889717

Note: The file size is in GB. All the datasets are compressed with gzip

compression.

Table 3. Space versus Accuracy trade-off in Squeakr and deBGR

System Dataset Space Navigational errors

(bits/k-mer) Topological Abundance

Squeakr GSM984609 18.9 14263577 16655318

Squeakr (exact) 50.8 0 0

deBGR 26.5 0 0

Squeakr GSM981256 19.4 13591254 15864754

Squeakr (exact) 52.1 0 0

deBGR 27.1 0 0

Squeakr GSM981244 30.9 10462963 12257261

Squeakr (exact) 79.8 0 0

deBGR 37.0 0 0

Squeakr SRR1284895 20.9 23272114 27200821

Squeakr (exact) 53.95 0 0

deBGR 25.38 0 0

Note: Topological errors are false-positive k-mers. Abundance errors are

k-mers with an over count.

i140 P.Pandey et al.

Deleted Text: ,
Deleted Text: S
Deleted Text: s
Deleted Text: A
Deleted Text: ,
Deleted Text: &hx0025;
Deleted Text: &hx0025;

5 Conclusion

We argue that Squeakr, a space-efficient and approximate represen-

tation of the weighted de Bruijn Graph can be extended to build a

near-exact representation of weighted de Bruijn Graph with almost

no space cost. We demonstrate that abundance information in an

approximate weighted de Bruijn Graph representation can be used

to correct almost all the errors in that representation.

Our representation is based on a simple invariant that all

weighted de Bruijn Graphs must satisfy, so we believe this technique

is likely to be of use in other weighted de Bruijn Graph applications.

We believe precise abundance information can have a real im-

pact on transcriptome assembly. For example, without error cor-

rection, low-abundance transcripts may collide with high-

abundance transcripts, causing the low-abundance transcripts to

become lost in the noise. Accurate abundance information can en-

able applications to detect such faint signals and possibly recover

such transcripts.

Funding

We gratefully acknowledge support from National Science Foundation grants

BBSRC-NSF/BIO-1564917, IIS-1247726, IIS-1251137, CNS-1408695, CCF-

1439084, and CCF-1617618, and from Sandia National Laboratories.

Conflict of Interest: none declared.

References

Belazzougui,D. et al. (2016). Fully Dynamic de Bruijn Graphs. Springer

International Publishing, Cham, pp. 145–152.

Bender,M.A. et al. (2012) Don’t thrash: how to cache your hash on flash.

Proc. VLDB Endowment, 5, 1627–1637.

Bloom,B.H. (1970) Spacetime trade-offs in hash coding with allowable errors.

Commun. ACM, 13, 422–426.

Bowe,A. et al. (2012). Succinct de Bruijn graphs. In: Proceedings of the International

Workshop on Algorithms in Bioinformatics, WABI 2012. Springer. pp. 225–235.

Carvalho,A.B. et al. (2016) Improved assembly of noisy long reads by k-mer

validation. Genome Res., 26, 1710–1720.

Chang,Z. et al. (2015) Bridger: a new framework for de novo transcriptome

assembly using RNA-seq data. Genome Biol., 16, 30.

Chikhi,R. and Rizk,G. (2013) Space-efficient and exact de Bruijn graph repre-

sentation based on a Bloom filter. Algorith. Mol. Biol., 8, 1.

Chikhi,R. et al. (2014). On the representation of de Bruijn graphs. In:

Proceedings of the International Conference on Research in Computational

Molecular Biology, RECOMB 2014. Springer, pp. 35–55.

Compeau,P.E. et al. (2011) How to apply de Bruijn graphs to genome assem-

bly. Nat. Biotechnol., 29, 987–991.

Cormode,G. and Muthukrishnan,S. (2005) An improved data stream sum-

mary: the count-min sketch and its applications. J. Algorith., 55, 58–75.

Fan,B. et al. (2014) Cuckoo filter: Practically better than bloom. In: Proceedings

of the 10th ACM International on Conference on emerging Networking

Experiments and Technologies, pp. 75–88. ACM, New York, USA.

Grabherr,M.G. et al. (2011) Full-length transcriptome assembly from RNA-

seq data without a reference genome. Nat. Biotechnol., 29, 644–652.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593.

Kannan,S. et al. (2016) Shannon: an information-optimal de novo RNA-seq

assembler. bioRxiv, 039230.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via

adaptive k-mer weighting and repeat separation. bioRxiv, 071282.

Liu,J. et al. (2016) Binpacker: packing-based de novo transcriptome assembly

from RNA-seq data. PLOS Comput. Biol., 12, e1004772.

Melsted,P. and Pritchard,J.K. (2011) Efficient counting of k-mers in DNA se-

quences using a Bloom filter. BMC Bioinform., 12, 1.

Murray,K.D. et al. (2016) kWIP: the k-mer weighted inner product, a de novo

estimator of genetic similarity. bioRxiv, 075481.

Pandey,P. et al. (2017a) A General-Purpose Counting Filter: Making Every Bit

Count. In : Proceedings of the 2017 ACM International Conference on

Management of Data, pp. 775–787. ACM, New York, USA

Pandey,P. et al. (2017b). Squeakr: an exact and approximate k-mer counting

system. bioRxiv 122077, http://biorxiv.org/content/early/2017/03/29/

122077 (1 January 2017, date last accessed).

Pell,J. et al. (2012) Scaling metagenome sequence assembly with probabilistic

de Bruijn graphs. Proc. Natl. Acad. Sci., 109, 13272–13277.

Pellow,D. et al. (2016). Improving Bloom filter performance on sequence data

using k-mer Bloom filters. In: International Conference on Research in

Computational Molecular Biology, RECOMB 2016. Springer, Switzerland,

pp. 137–151.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. Proc. Natl. Acad. Sci., 98, 9748–9753.

Salikhov,K. et al. (2013). Using cascading Bloom filters to improve the mem-

ory usage for de Brujin graphs. In: Algorithms in Bioinformatics. Springer,

pp. 364–376.

Salmela,L. et al. (2016) Accurate self-correction of errors in long reads using

de Bruijn graphs. Bioinformatics, btw321.

Schulz,M.H. et al. (2012) Oases: robust de novo RNA-seq assembly across the

dynamic range of expression levels. Bioinformatics, 28, 1086–1092.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence

data. Genome Res., 19, 1117–1123.

Solomon,B. and Kingsford,C. (2016) Fast search of thousands of short-read

sequencing experiments. Nat. Biotechnol., 34, 300–302.

Vinga,S. and Almeida,J. (2003) Alignment-free sequence comparison–a re-

view. Bioinformatics, 19, 513–523.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

Zhang,Q. et al. (2014) These are not the k-mers you are looking for: efficient online

k-mer counting using a probabilistic data structure. PloS One, 9, e101271.

Table 4. The maximum number of items present in auxiliary data

structures, edges (k-mers) in MBI and nodes (ðk � 1Þ-mers) in work

queue as described in the Algorithm 1, during abundance

correction

Dataset #Edges in M #Edges in work queue (Q)

GSM984609 30815799 76178634

GSM981256 29359913 72606572

GSM981244 22674515 56309858

SRR1284895 50320986 124558299

Table 5. Time to construct the weighted de Bruijn Graph, correct

abundances globally in the weighted de Bruijn Graph, and perform

local correction per edge in the weighted de Bruijn Graph (aver-

aged over 1M local corrections)

Dataset Construction Global correction Local correction

(seconds) (seconds) (microseconds)

GSM984609 6605.65 14857.68 12.93

GSM981256 5470.83 15390.56 18.25

GSM981244 13373.78 22266.86 16.50

SRR1284895 8429.17 41218.85 16.62

deBGR i141

	btx261-TF1
	btx261-TF2
	btx261-TF3

