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Abstract
Neurodegenerative diseases occur because of degeneration in brain cells but can manifest as impairment of motor
functions. One of the side effects of this impairment is an abnormality in walking. With the development of sensor technol-
ogies and artificial intelligence applications in recent years, the disease severity of patients can be estimated using their gait
data. In this way, decision support applications for grading the severity of the disease that the patient suffers in the clinic can
be developed. Thus, patients can have treatment methods more suitable for the severity of the disease. The presented
research proposes a deep learning-based approach using gait data represented by a Quick Response code to develop an
effective and reliable disease severity grading system for neurodegenerative diseases such as amyotrophic lateral sclerosis,
Huntington’s disease, and Parkinson’s disease. The two-dimensional Quick Response data set was created by converting
each one-dimensional gait data of the subjects with a novel representation approach to a Quick Response code. This
data set was regressed with the convolutional neural network deep learning method, and a solution was sought for the
problem of grading disease severity. Further, to demonstrate the success of the results obtained with the novel approach,
native machine learning approaches such as Multilayer Perceptron, Random Forest, Extremely Randomized Trees, and K-
Nearest Neighbours, and ensemble machine learning methods, such as voting and stacking, were applied on one-dimen-
sional data. Finally, the results obtained on the prediction of disease severity by testing one-dimensional gait data with a
convolutional neural network architecture that operates on one-dimensional data were included. The results showed that, in
most cases, the two-dimensional convolutional neural network approach performed the best among all methods.
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Introduction
Millions of people worldwide are affected by neurodegenera-
tive diseases. Neurodegenerative disorders emerge whenever
neurons in the brain lose authority over time and gradually
perish. Although some of the physical or mental symptoms
related to neurodegenerative diseases can be reduced by
treatment, there is currently no cure to prevent the progres-
sion of the disease and no proven cure. Neurodegenerative
diseases consist of many different sub-diseases according
to the region where this degeneration occurs in the brain
nerve cells and the affected ability.1–6

Amyotrophic lateral sclerosis (ALS) is a group of rare
neurological diseases that involve nerve cells dedicated to
the authority of muscle movement. ALS is among a larger
group of disorders called neurodegenerative diseases,

defined as motor neuron disorders caused by progressive
degeneration and mortality of neurons. The ALS disease is
progressive, which means that the symptoms get worse
over time. There is currently no cure for ALS and no appro-
priate treatment to stop or avert the disease’s progression.7–10
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Huntington’s disease (HD) is a progressive brain disease
that leads to unmanaged movements, emotional issues, and
deterioration of cognition skills. Huntington’s disease char-
acteristic findings are the loss of brain nerve cells.
Huntington’s disease, which is one of the diseases in the
neurodegenerative disease group like ALS, currently has
no cure or treatment which can halt, slow, or reverse the
progression of the disease.11–13

Parkinson’s disease (PD) is a brain disease that causes
shaking, fatigue, and discomfort gait movement, balancing,
and coordinating issues. Parkinson’s symptoms generally
get progressively worse over time. As the conditions pro-
gress, people may find it difficult to walk and talk.
Parkinson’s disease, like ALS and HD, is included in the
group of neurodegenerative diseases.14–18

Diagnosing ALS, HD, and PD during a medical examin-
ation is an important process to increase the quality of life of
patients in thefight against the disease. Also, after the diagnosis
of the diseases, the follow-up of the relevant patients and the
dosage of the drugs given to relieve the symptoms they experi-
ence are crucial. To complete this follow-up, various grading
scales measure the severity of the disease to determine its pro-
gress. These scales are defined differently for each disease.

The revised ALS functional rating scale (ALSFRS-R) is
an appealing primary predictor in clinical trials of ALS
since it is valid, simple to handle, reduces dropout, lowers
cost, and interacts with survival.19 This scale, which includes
ALSFRS elements to improve the ability to evaluate respira-
tory symptoms, is an examination that grades the degree of
disability of ALS patients to function independently in
daily living activities. To test bulbar function, motor func-
tion, and respiratory function, it consists of 12 items, and
each item is scored from 0 (unable) to 4 (normal).20

For HD, the Unified Huntington Disease Rating Scale
(UHDRS) is the gold standard clinical assessment method.
UHDRS is a clinical rating scale for evaluating four areas
of clinical performance and capacity (cognitive function,
motor function, functional capacity, and behavioural abnor-
malities).21 To assess the severity of limitation in functional
ability and motor symptoms in HD, the UHDRS-TFC can be
used. The UHDRS-TFC is a component of a multi-factor
rating scale initially developed to examine both HD patients
and individuals at risk for HD.22 The UHDRS-TFC scale
varies from 13 (normal) to 0 (severe disability). A higher
score implies better functionality.

Various scales are available to measure the severity of
Parkinson’s symptoms and their effects on daily life. The
Hoehn and Yahr scale (HY) is the gold standard in clinical
evaluation and is widely used in research settings to
measure motor and non-motor symptoms. The Unified
Parkinson’s Disease Rating Scale23 is another common
scale. The HY scale assesses the progression of
Parkinson’s symptoms and the extent of impairment.24

For functional symptoms in PD, the HY scale is the most
used and widely accepted staging system. It is used more

frequently as it assesses the limitations of daily activities
and non-motor symptoms. HY ranges from 0 (normal) to
5 (wheelchair-bound or bedridden unless aided.) A lower
score implies better functionality.

Determining the severity of neurodegenerative diseases is
a costly, time-consuming, and lengthy process that requires a
specialist doctor. Despite the mentioned difficulties, it is crit-
ical to carry out this task for patients to live a more effective
life, participate in daily activities, and improve their quality
of life. More importantly, the correct determination of the
severity of the disease means that the patient receives the
correct dose of the drug. During the determination of
disease severity, differences based on the patient’s statement
and the doctor’s interpretation may be misleading in deter-
mining the correct severity. At this stage, an artificial
intelligence-supported system, which is carried out entirely
on gait data, can provide a more objective assessment and
reduce the cost of traditional methods.

In this study, for disease severity prediction for neurode-
generative diseases such as ALS, HD, and PD, (i) one-
dimensional (1D) raw gait data, (ii) two-dimensional (2D)
Quick Response (QR) transformed gait data were fed by
various machine and deep learning models. In addition to
native machine learning models, such as Multilayer
Perceptron, Random Forest (RF), Extremely Randomized
Trees, K-Nearest Neighbours fed with 1D raw gait data.
It was aimed to increase the regression performance
obtained by the voting and stacking methods. Also, by
using 1D raw gait data, a solution to the problem of
disease severity prediction was sought using 1D convolu-
tional neural network (CNN) deep learning modelling.
Thanks to our method that provides a 2D representation
of gait data by converting it into QR codes, the created
QR dataset has been sought to solve the related regression
problem by feeding the 2D dimensional CNN. The CNN
was designed as a novelty to work with two dimensions
and can exhibit all its advantages. Although there are differ-
ent grading methods in the literature, within the scope of
this study, to grade the disease, the duration for ALS,
UHDRS-TFC for HD, and HY for PD were used.

Related studies
The studies added to the literature in the recent past have
proven that the act of gait in various tasks is meaningful
and informative. Specifically, the studies in the field of
fall detection have revealed the importance of the phenom-
enon of gait.25,26

Sadeeh et al.25 proposed a prototype of a patient-specific
fall prediction and detection system with a single sensor. It
would notify the patient to act if a fall case is predicted, but
if a fall incident occurs, it would communicate with the
health care providers. The detected fall events would be
alarmed to the health care providers through Clouds to
provide immediate help to the fallen elder. In another study,
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according to the findings of Sadeeh et al.,26 a mono triaxial
accelerometer sensor bonded to a person’s thigh is used to
predict and detect fall incidents and saves their data for
in-depth follow-up by a healthcare professional. If a fall inci-
dent is predicted, the patient will be informed, and the inci-
dence of a fall occurrence would also send an alert to the
concerned healthcare professionals via the internet.

With the use of gait data in different fields, several studies
have been conducted to detect neurodegenerative diseases
and rate disease severity. These studies were generally con-
ducted on a single disease such as ALS, HD, or PD.

Du et al.27 represented an evaluation of the longitudinal
support vector regression (LSVR) to predict ALS’s severity
from demographic data. They advocate a unique longitudi-
nal machine learning algorithm that monitors subjects by
estimating additional weighted parameters at various time
stamps. It enables the assessment of the SVR hyperplane
parameters as well as the temporal trend parameters. The
apparent need for methods that combine longitudinal mod-
elling and machine learning paradigms motivated their
development of LSVR.

Zhang et al.28 assessed the usage of numerous electromyo-
graphy (EMG) interference indicators for the discovery of
surface EMG variations in ALS, thereby assisting the diagno-
sis of the disease. A newly developed clustering index, the
kurtosis of the surface EMG amplitude distribution, and the
kurtosis of the crossing rate were also among the indicators.
Their research only focused on distinguishing ALS patients
from neurologically intact patients. It remains to be seen
whether the combined approach improves discrimination
between myopathic and neurologically intact subjects.
Furthermore, it is unclear whether the surface EMG examin-
ation can differentiate ALS from other neurogenic disorders.

Benassar et al.29 aimed to apply machine learning and
signal processing techniques to the development and evalu-
ation of a low-cost, objective automated system for asses-
sing the impairment of upper limb movement in HD.
They introduce a framework for unbiased and ongoing
assessment of motor impairment in HD patients while per-
forming a novel upper limb task. The system focused on
data gathered from tri-axial accelerometers worn during in
the Money Box Test (MBT), a recently suggested assessment
of bilateral, upper motor function. The recorded accelerom-
eter signals were processed using signal processing and
machine learning methods to generate an automatic
Movement Impairment Score intended to reflect the degree
of movement impairment during the MBT performance.

Gaßner et al.30 aimed at objectively identifying the char-
acteristics of the gait in HD patients utilizing a sensor-based
gait analysis. The goal of this research was to compare gait
characteristics in HD patients to age- and gender-matched
controls using mobile sensor-based gait analysis. To clinic-
ally validate these objective parameters, gait parameters
were correlated with clinical scores total motor score
(TMS) and total functional capacity (TFC). The main

finding showed that gait variability parameters representing
disease-characteristic irregularity of gait were the most rele-
vant parameters correlating with TMS and TFC.

Açıcı et al.31 proposed to derive from their gait signals a
set of time-domain and frequency-domain characteristics
that would be useful in distinguishing normal and diseased
individuals. They discuss a specific dilemma in which they
seek a solution to classify whether an individual has PD or
not, using signals obtained from a set of ground reaction
force (GRF) sensors padded under the foot. They introduce
an ensemble classification system that uses a variety of
time-domain and frequency-domain features derived from
pre-processed sensor signals.

Aşuroğlu et al.32 introduced a machine learning model
fed by GRF data collected from these gait sensors. They
offered a hybrid model, named Locally Weighted
Random Forest (LWRF), that provided for regression ana-
lysis on the numerical characteristics derived from an input
signal. They offer a computational solution for quantifying
PD motor symptoms. Their methodology, in particular, can
deliver effective prognosis solutions based on gait analysis
using multiple foot-worn sensors that measure GRF. To that
end, they provide an LWRF regression model to predict the
precise value of the severity of PD symptoms. The pro-
posed local weighting scheme contributes to the elimination
of the effects of interpatient variability in gait patterns.

As in the study by Saadeh et al.,33 studies which tested a
model on more than one disease and were successful are
very limited in the literature. The main objectives of their
study are to investigate and distinguish the gait dynamics of
neurodegenerative disease patients and compare them to
healthy individuals. They specifically evaluate how the three
different types of neurodegenerative diseases (PD, HD, and
ALS) impair the patient’s ability to control the movement of
their feet. They propose a wearable gait dynamics detection
system that uses foot sensors implanted in the patient’s shoe
to analyse gait dynamics and identify the corresponding neuro-
degenerative disease. They propose a unique wearable neuro-
degenerative disease detection framework for ALS, HD, and
PD. The suggested framework is based on minimal features,
allowing for lower power and area requirements while main-
taining overall detection accuracy. This framework is appropri-
ate for the next generation of miniaturized wearable devices
and can detect neurodegenerative disease at an early stage,
potentially reducing its severity.

Materials and methods

Dataset

Within the scope of the studies, a data set made public by
PhysioNet was used to test the algorithms developed so
far. The data set created by Hausdorff et al.34 consists of
a total of 15,092 gait samples obtained from 64 participants
consisting of 13 ALS patients, 20 Huntington patients, 15

Erdaş et al. 3



Parkinson’s patients, and 16 healthy individuals. Using
force-sensitive resistors the raw data were acquired, with
the output roughly proportional to the force underneath
the foot. Stride-to-stride measurements of footfall contact
instances were derived from these indicators.35 At the end
of this process, a total of 13 features are obtained and repre-
sented in Table 1.

The duration feature containing time step information was
not used in this study, apart from the original data set. The 12
features mentioned are demonstrated on the right leg and
shown in Figure 1, which includes phases of the normal
gait cycle. The description criteria are the same as the right
leg for the features obtained with the left leg.

The data set also contains demographic data on each
subject, which can be seen in Table 2, such as age, gender,
weight, height, body mass index, walking speed, and
disease severity or duration. Disease severity or duration
values vary according to the diseases. For ALS, the time
(months) since the disease was diagnosed, UHDRS-TFC
value for HD and HY for PD were used. For control, a
value of 0 was assigned if it would be used in the ALS
and Parkinson subsets, and a value of 13 if it would be
used in the Huntington subset, based on the rules in the
disease severity/duration disease scales. Data were obtained
from power-sensitive pads located on the shoes of the sub-
jects. At a measurement rate of 300 Hz, these sensors mea-
sured for the force differences utilized to the ground
throughout walking. According to the information documen-
tation, individuals were instructed to walk along the 77-m
corridor for five minutes at their normal pace.34

Data are stated as mean± standart deviation. ALS:
amyotrophic lateral sclerosis, HD: Huntington’s disease,
PD: Parkinson’s disease, Control: healthy control, BMI:
body mass index.

General framework

The overview of the proposed method can be seen in
Figure 2. Accordingly, studies conducted can be grouped
under two different subtitles as 1D and 2D representation.

For 1D representation solutions, 15,092 1D samples
containing 12 features were regressed with machine

Table 1. The features of gait.

Index Contents

0 Elapsed Time (sec)

1 Left Stride Interval (sec)

2 Right Stride Interval (sec)

3 Left Swing Interval (sec)

4 Right Swing Interval (sec)

5 Left Swing Interval (% of stride)

6 Right Swing Interval (% of stride)

7 Left Stance Interval (sec)

8 Right Stance Interval (sec)

9 Left Stance Interval (% of stride)

10 Right Stance Interval (% of stride)

11 Double Support Interval (sec)

12 Double Support Interval (% of stride)

Figure 1. Phases of the normal gait cycle.36
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learning algorithms such as Multilayer Perceptron,
Extremely Randomized Trees, RF, and K-Nearest
Neighbors (KNNs) as well as 1D CNN deep learning algo-
rithm. To increase the performance of the native models,
voting and stacking methods were applied with two
native models showing the best performance for each
sub-problem.

For the 2D CNN solution, all features except Elapsed
Time from the gait samples obtained with the GRF sensor
were first converted into QR codes and their 2D representa-
tion was achieved. Then, the solution to the regression
problem was sought by using the obtained QR codes.
Each of the 15,092 samples (2550 from ALS, 4846 from
Huntington patients, 3620 from the PD, and 4076 from
the control group) in the data set were converted to QR
codes of 100× 100 in the version 10 standard and thus a
new QR code data set was created. The QR code generation

process was completed using PYPI’s QRcode library,
which is an extension of Python for each line after all the
gait data were concatenated. During this creation process,
the version was selected as 10 standards, the error correc-
tion parameter was specified as ‘m’. An illustration of the
QR dataset creation is shown in Figure 3. Note that in
Figure 3, each line corresponds to 1D data of GRF, and
its QR codes generated are illustrated.

Methods

In this study, regression methods were used as a solution to
the problem of grading the severity of neurodegenerative
diseases. In this context, the disease severity grades of
Parkinson’s patients belonging to the HY scale, which is
one of the international scales, and The TFC degree of
Huntington patients, which is included in the UHDRS

Table 2. Demographic data of the subjects.

ALS (n= 13) HD (n= 20) PD (n= 15) Control (n= 16)

Age (years) 55.62± 12.83 47.37± 12.51 67.20± 10.69 38.69± 18.73

Gender (Male %) 66.7% 76.9% 30.0% 12.5%

Weight (kg) 77.12± 21.15 73.47± 16.24 75.07± 16.90 66.81± 11.08

Height (m) 1.7446± 0.950 1.8437± 0.089 1.87± 0.152 1.833± 0.087

BMI (kg/m2) 25.21± 5.35 21.55± 4.44 21.21± 2.64 19.87± 2.71

Walking speed (m/s) 1.054± 0.218 1.15± 0.349 0.999± 0.202 1.354± 0.160

Disease severity or duration 19.474± 17.817 6.9± 3.837 2.8± 0.862 0-13

ALS: amyotrophic lateral sclerosis; HD: Huntington’s disease; PD, Parkinson’s disease.

Figure 2. General framework of the proposed method.
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scale that shows the symptom severity, was tried to be
estimated. Due to there is no information about disease
degree for subjects with ALS, the number of months
since the diagnosis of the disease has been tried to be esti-
mated. Since ALS is a disease with progressive character-
istics, there is no known treatment and available drugs
only slow the progression of the disease. The number of
months since diagnosis can be associated with the severity
of the disease. The methods used in the experiments con-
ducted to predict the disease severity of these diseases are
grouped under three subheadings: Pure Machine Learning
Regressors methods, Ensemble methods.

Machine learning regressors. One of the well-researched
types of artificial neural networks is multilayer perceptron.
Multilayer perceptron, which can be shortened as MLP, is
a supervised, feed-forward, and hetero associative para-
digm. In MLP, the weighted sum of the inputs and bias
term is passed to the activation stage to estimate the
actual value via a transfer function, and the units are orga-
nized in a layered as according to feed-forward neural
network topology. MLP consists of three layers as input,
hidden, and output and the connections between these
layers. The number of neurons used in these layers, the
weight of the connections, and the activation function
can affect the working performance of the MLP.37,38

This research includes two random decision tree-based
averaging algorithms, such as RF and Extremely
Randomized Trees algorithms.39 In both algorithms, the
perturb-and-combine technique which is specially devel-
oped for trees is used. This technique is aimed to create a
diverse classifier collection by adding randomness to the
classifier structure. The ensemble’s prediction is given as
the average prediction of the individual classifiers.40

The methods based on the decision tree can serve as
precise and effective means of analyzing motion signals.
In particular, the RF approach, an advanced implementation
of decision trees, has outperformed many powerful learning
techniques which have proven themselves to be popular in
other fields.41 Each tree in the ensemble is constructed from
a sample drawn with a replacement from the training set in
RFs. Besides, during the construction of a tree, when split-
ting each node, the best split is found either from all input
features or from a random size subset. These two para-
meters of randomness aim to reduce the forest estimator’s
variance. Nevertheless, individual decision trees generally
produce an increased variance and attempt to overfit. In
forests, the injected randomness yields decision trees with
prediction errors rather than decoupled. Some errors can
be avoided by taking an average of those predictions. By
integrating diverse trees, RFs obtain a decreased variance,
often at the expense of a small rise in bias. In practice,
the reduction in variance is always important, resulting in
a better overall model.42

Extremely Randomized Trees, which can be named
Extra Trees (XT), generates numerous trees and splits
nodes using random subsets of features. Randomness
expands further in the way splits are calculated in extremely
randomized trees.43 Parallel with RFs, a subset of candidate
features is used randomly, but thresholds are drawn at
random for each candidate feature in place of searching
for the most discriminatory thresholds, and the greatest
one of these randomly created thresholds is chosen as the
splitting principle. This typically helps the variance of the
model to be minimized a little more, at the cost of a some-
what higher increase in bias.44

K-Nearest Neighbors is such an approach and tends to
work reasonably well for large training sets, considering

Figure 3. Quick Response (QR) dataset creation.
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its simplicity. In essence, it relies only on a simple concept
behind all predictions: experiments with similar characteris-
tics would appear to have similar effects. In the training,
Nearest Neighbor approaches allot a predicted value to a
new observation based on the plurality or mean of its k
‘Nearest Neighbors’. One of the key points of this approach
is to choose the most optimal value for K. Choosing the
wrong K value may degrade performance relatively. Since
it decreases average noise, a greater K value is more accur-
ate; but the consensus is that the various boundaries within
the property domain are blurred. The correct selection of
distance functions used to measure the relative proximity
of the samples to each other is vital as well as the K
value. Euclidean, Manhattan, and Minkowski are some of
the distance functions that can be used.45

A CNN is one of the most popular algorithms for deep
learning. It is a type of machine learning where a model
learns to do classification tasks from pictures, video, text, or
audio. CNNs are particularly useful for identifying patterns
in images to recognize objects, faces, and scenes.46 It can
work directly on image files, uses patterns of image classifica-
tion, and eliminates the need for manual feature extraction. For
image recognition and pattern detection, CNN offers the most
appropriate architecture.47–49 There may be hundreds of layers
in a CNN that detect and learn about various properties of an
image or data. In each training step, filters are applied at
various resolutions, and each layer’s output is used as the
input to the next layer. CNN architecture layers perform opera-
tions that modify data with data-specific learning characteris-
tics. Convolution, Pooling, and Fully Connected are four of
the most common layers. Convolution brings the images of
the input into a sequence of convolution filters, each of
which activates those image properties. Activation delivers
faster and more effective preparation by mapping negative
values to zero and retaining positive values. Thus, only
active features are advanced to the next layer.50 Pooling sim-
plifies the output by conducting non-linear downsampling,
thereby reducing the number of parameters that the network

must learn. Transforming the 2D feature maps into a 1D
feature vector is the job of the fully connected layer. These
processes are replicated on tens or hundreds of layers. Each
layer attempts to learn and identify various properties. After
these layers, a single neuron added allows the CNN deep
learning algorithm to predict the actual value.51

In this study, two different CNN architectures such as
1D and 2D were used in the experiments. In 1D CNN archi-
tecture, 12× 1 data were processed by a ‘Conv1D’ layer
with 512 filters using ‘Relu’ as activation, and the resulting
feature maps passed through ‘Flatten’ and ‘Dropout’ layers
and transferred to ‘Dense’ layers. Value estimation is made
for the data passing through three separate ‘Dense’ layers
with 2048, 1024, and 1 neuron, respectively.

The 2DCNN architecture designed for this study is shown
in Figure 4. Each of the 100× 100 single-channel QR codes
in the QR data set was transformed into a 10× 10 feature map
using the architecture shown in Figure 4. With the convolu-
tion layer at the beginning, 64 feature maps were obtained
without distorting the original dimensions given as input.
After that, this feature map with a shape of 64× 100× 100
has been decreased to 64× 33× 33 by using the max pool
layer. This feature map of 64× 33× 33 sizes was first
decreased with a convolutional layer to 64× 31× 31 sizes
and then to 64× 10× 10 with a max-pooling layer. After
this stage, the relevant architecture was supported with two
separate dense layers containing 6400 units and 1 unit.
Besides, the ‘mini-batch’ dimension is 64, the learning rate
is 0.01, and the optimizer is ‘adam’, Both 1D and 2D CNN
architecture have been run as 30 epochs.

Ensemble methods. The voting approach is a model of
ensemble machine learning that incorporates the predictions
of various other models. It is an approach that can be used to
maximize the efficiency of the model, preferably achieving
better performance than any other model used in the ensem-
ble. The voting operates by unifying the predictions from
multiple models. It can be useful for a set of effective

Figure 4. The two-dimensional (2D) convolutional neural network (CNN) architecture used for this study.
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models to balance out their weaknesses.52 All voting
experiments conducted within the scope of this study
were carried out with two of the native models with the
best performance. Voting in regression is performed as
the average of the outputs of the two models with the
highest performance.

Stacking is one of the ensemble methods in the field of
machine learning. The main principle of stacking is to
train numerous models, generally, with varying types of
machine learning algorithms, named as base learners,
instead of selecting the best model or vote models, all
base learner models aggregated final model, named as
meta learner, to estimate predicted value. The meta
learner executes the final prediction, fed by base learner
outputs.53 With two of the native models with the best per-
formance, all stacking experiments performed within the
framework of this study were carried out. In the related
experiments, unlike voting, the stacking process works by
feeding the linear regression model of the outputs of the
two models with the highest performance.

Results

Performance evaluation

A ten-fold cross-validation setup assessed all the regression
models. In the cross-validation technique, the dataset is split
into ten equivalent sections. One of these sections is
reserved for testing, while the remaining nine sections are
used for training by the regression process.49 The technique
used six different metrics to evaluate the performance, cor-
relation coefficient (R), R2 score (coefficient of determin-
ation), mean absolute error (MAE), Median Absolute
Error (MedAE), mean squared error (MSE), and root
mean squared error (RMSE).

The coefficient of correlation, also known as
Pearson’s correlation coefficient, denoted as R, is the
degree of relationship between two values actual and
predicted.32 If both actual and predicted values
moving in unison, there is a correlation between them.
If one tends to increase while the other tends to
decrease, there are opposites between them. The coeffi-
cient of correlation can range from 1 to −1. 1 indicates
that the two variables are moving in unison. They rise
and fall together and have a perfect correlation. −1
means that the two variables are perfect opposites. 1
indicates that there is a perfect correlation between
these two variables, while −1 indicates means that
there are perfect opposites between these two variables.
As can be seen in equation 1, the Coefficient of
Correlation is equal to the division of the covariance
of the actual and predicted value by the product of the
standard deviations of the actual value and the estimated
value. Normally, the R-value, which can vary between
−1 and 1, is considered as strong when its absolute

value is greater than 0.8, and as weak when its absolute
value is less than 0.5.54

R = Sap
SaSp

(1)

where Sap =
∑n

i=1
(actuali− actual) ( predictedi− predicted)

N−1 ,

Sa =
∑n

i=1
(actuali−actual)

2

N−1 , SP =
∑n

i=1
( predictedi− predicted)

2

N−1 ,

and actual = 1
N

∑n
i=1

actuali, predicted = 1
N

∑n
i=1

predictedi

R2 score, denoted as R2, computes the coefficient of
determination. R2 is a metric used for evaluating a regres-
sion model’s performance.55 It reflects the proportion of
variance (of y) that the independent variables in the
model have clarified. It offers an indicator of fit quality
and thus a measure of how well-unseen samples, through
the proportion of explained variance, are likely to be pre-
dicted by the model. R2 must always be between 0 and 1
but higher values indicate a better result.55 If predictedi is
the predicted value of i th sample and actuali is the corre-
sponding true value for whole n samples, the calculated
R2 is specified as equation 2:

R2(a, p) = 1−
∑n

i=1 (actuali − predictedi)
2∑n

i=1 (actuali − actual)
2 (2)

where actual = 1
N

∑n
i=1

actuali.

There are many evaluation criteria for the R2 value, in
which the values vary from the fields used in the litera-
ture.53 Generally, If the R2 value is greater than 0.5 and
less than 0.7, it is considered as medium effect size (moder-
ate), and when it is greater than 0.7, it is considered a strong
effect size (substantial).56

Mean absolute error, which can be abbreviated as
MAE, is one of the most successful loss functions used
for regression models. MAE is generally defined as
the absolute difference between the actual value and the
value that the model predicts.57 For outlier values, the

Table 3. Results obtained with native models on ALS & control.

Regressor R R2 MAE MedAE MSE RMSE

MLP 0.61 0.37 6.29 3.25 110.98 10.53

XT 0.73 0.53 4.01 0.14 85.11 9.23

RF 0.73 0.53 4.02 0.09 82.39 9.08

KNN 0.69 0.39 5.07 1.18 123.69 11.12

ALS: amyotrophic lateral sclerosis; KNN: K-Nearest Neighbor; MAE: mean
absolute error; MedAE: Median Absolute Error; MSE: mean squared error;
RF: Random Forest; RMSE: root mean squared error; XT: Extra Trees.
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MAE is steadier and does not aim to penalize the errors as

heavily as MSE or RMSE. MAE is a linear score that
means that whole the variations between individuals are
weighted equally.57 The MAE formula can be observed
in equation 3:

MAE = 1
N

∑n
i=1

|actuali − predictedi| (3)

Median Absolute Error, which can be truncated as
MedAE, is one of the regression metrics that minimizes
the penalties caused by excessive and potentially errone-
ous outliers.58 In essence, MedAE is robust to outliers.
MedAE can be defined as taking the median value of
the absolute difference of all actual values and the
values predicted by the model corresponding to the
actual values. MedAE formula is given in equation 4:

MedAE = median( |actuali − predictedi|, . . . , |actualn − predictedn| ) (4)

Mean Square Error, which can be abbreviated as MSE, is
one of the most used regression task metrics. In the field
of artificial intelligence, MSE is outlined as the mean of
the square of the difference between actual and predicted
values. In many researches, it is favoured because the
errors are squared first before averaging, which imposes a
high penalty on significant errors.59 Formally, MSE can
be denned as equation 5:

MSE = 1
N

∑n
i=1

(actuali − predictedi)
2 (5)

Root Mean Squared Error, which can be shortened as
RMSE, is generally defined as the square root of the
average squared difference between the model’s expected
target value and value. RMSE is the square root of the
MSE.60 RMSE is useful in situations where massive
errors are not desired, just like MSE. The RMSE formula
is shown in equation 6:

RMSE =
�������������������������������∑n

i=1 (actuali − predictedi)
2

N

2

√
(6)

Empirical results

The studies conducted within the scope of this study were
divided into three groups: (i) Native and Ensemble
machine learning models, (ii) 1D CNN approach, and (iii)
2D CNN technique after using novel 2D representation
which converts one-dimensional data into QR codes.

Machine learning models were tested as Native and
Ensemble with three different subsets formed from the
data set, namely ALS & Control, HD & Control, PD &
Control.

Table 3 shows the regression results obtained by native
machine learning regressors such as MLP, XT, RF, and
KNN belonging to the ALS & Control subset.
Accordingly, the best performance from these four regres-
sors belongs to the RF, which surpasses the XT by a
small margin. The results obtained with RF are 0.73,
0.53, 4.02, 0.09, 82.39, and 9.08 for R, R2, MAE,
MedAE, MSE, and RMSE, respectively.

It is aimed to increase the success of these two successful
regressors by voting and stacking with XT and RF, which
have the best results. As can be seen in Table 4, stacking

Table 4. Results obtained with ensemble models on ALS & control.

Ensembler Models R R2 MAE MedAE MSE RMSE

Voting XT & RF 0.73 0.54 4.00 0.13 81.04 9.00

Stacking XT & RF 0.46 0.21 7.64 5.29 128.50 11.34

ALS: amyotrophic lateral sclerosis; MAE: mean absolute error; MedAE: Median Absolute Error; MSE: mean squared error; RF: Random Forest; RMSE: root
mean squared error; XT: Extra Trees.

Table 5. Results obtained with native models on HD & control.

Regressor R R2 MAE MedAE MSE RMSE

MLP 0.37 0.14 3.48 3.22 17.19 4.15

XT 0.49 0.24 2.93 2.32 15.19 3.90

RF 0.52 0.27 2.09 2.32 14.63 3.82

KNN 0.74 0.54 3.65 2.00 30.77 5.55

HD: Huntington’s disease; ; KNN: K-Nearest Neighbor; MAE: mean absolute
error; MedAE: Median Absolute Error; MSE: mean squared error; RF:
Random Forest; RMSE: root mean squared error; XT: Extra Trees.
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failed, although the results obtained with voting with the
other two native models slightly exceeded. Therefore, the
best performance in the subset of ALS & Control groups
was obtained by voting with XT and RF, and R, R2,
MAE, MedAE, MSE, and RMSE values were measured
as 0.73, 0.54, 4.0, 0.13, 81.04, and 9.002, respectively.

The regression results obtained by MLP, XT, RF, and
KNN from the machine learning regression models belong-
ing to the HD & Control subset can be observed in Table 5.
The best performance of these four regressors belongs to
KNN, which surpasses other models by a large margin.
The best performance in the subset of HD & Control
groups was obtained by KNN, and R, R2, MAE, MedAE,
MSE, and RMSE values were measured 0.74, 0.54, 3.65,
2.00, 30.77, and 5.55, respectively.

The objective is to boost the performance of these two
effective regressors such as KNN and RF by voting and
stacking. As can be seen in Table 6, both voting and stack-
ing failed. Native models are more successful in this
sub-problem.

In Table 7, the regression results obtained by MLP, XT,
RF, and KNN from the machine learning regression models
belonging to the PD & Control subset can be observed.
Accordingly, the one with the best performance of these
four regressors is the RF that surpasses a slightly different
XT.

The aim is to boost the achievement of these two suc-
cessful regressors by voting and stacking XT and RF with
both the best results. As can be seen in Table 8, stacking

struggled, but while the results obtained by voting with
the other two native models were slightly exceeded. The
best performance in the subset of PD & Control groups
was obtained by voting with XT and RF, and R, R2,
MAE, MedAE, MSE, and RMSE values were measured
as 0.79, 0.62, 0.59, 0.30, 0.86, and 0,92, respectively.

Parameters in the methods used within the scope of the
experiments are set according to the ‘grid search’ logic.
In this context, as a result of the studies, in all experiments,
while the number of neurons in the hidden layer in MLP is
determined as 100 and the activation function as ‘tanh’. In
XT, which can reach 100 random trees, Entropy and best
feature are chosen as the separation criteria in all experi-
ments. Some parameters used in all experiments varied in
RF and KNN. According to this, while the division criterion
inRF is selected as Entropy in all experiments, the number of
trees to be randomly generated is set to be 250, 450, 350 for
ALS&CON, HD&CON, PD&CON, respectively. On the
other hand, for KNN, the determined k value – distancemea-
surement pairs are selected as 11 and Minkowski, 3 and
Minkowski, 3 and Euclidean for ALS, HD, and PD,
respectively.

Another method used in experiments on 1D data is the
1D CNN deep learning model. 1D CNN was fed with
subsets in the dataset including ALS & Control, HD &
Control, and PD & Control, just like ML models, and a
solution to the regression-based disease severity prediction
problem was sought. Accordingly, the results obtained
using the subsets mentioned in Table 9 are given.
Considering the results obtained, the performance achieved
in any subset did not exceed the performance success
achieved with the machine learning model. Although the
results obtained in the HD & Control subset are by no
means close to the most successful results achieved with
ML, the results obtained from ALS & Control, and PD &
Control subsets are relatively closer to ML performance.

Using the proposed novel method, which enables 1D data
to be transformed intoQRcodes, expanding the size and repro-
ducing the data, the results obtained with the 2D CNN run on
the QR data are given in Table 10. Looking at the results, the
performance achieved on the ALS & Control, HD &
Control, PD & Control subsets can be observed.

As can be clearly seen in the results obtained within the
scope of all experiments, the performance obtained with the

Table 6. Results obtained with ensemble models on HD & control.

Ensembler Models R R2 MAE MedAE MSE RMSE

Voting KNN & RF 0.32 0.10 3.04 1.92 17.92 4.23

Stacking KNN & RF 0.54 0.29 4.48 4.48 25.70 5.07

HD: Huntington’s disease; KNN: K-Nearest Neighbor; MAE: mean absolute error; MedAE: Median Absolute Error; MSE: mean squared error; RF: Random
Forest; RMSE: root mean squared error.

Table 7. Results obtained with native models on PD & control.

Regressor R R2 MAE MedAE MSE RMSE

MLP 0.68 0.46 0.87 0.70 1.20 1.10

XT 0.78 0.61 0.58 0.28 0.86 0.93

RF 0.78 0.62 0.86 0.28 0.86 0.93

KNN 0.72 0.52 0.72 0.44 1.08 1.04

KNN: K-Nearest Neighbor; MAE: mean absolute error; MedAE: Median
Absolute Error; MSE: mean squared error; PD, Parkinson’s disease; RF:
Random Forest; RMSE: root mean squared error; XT: Extra Trees.
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2D CNN deep learning model fed with data converted into
QR codes by using the proposed novel approach was at
least as successful as other methods such as ML and 1D
CNN in all subsets.

If further elaborated, the best results obtained in the
experiments based on the 1D principle on the ALS &
Control subset are 0.73, 0.54, 4.0, 0.13 respectively, for
the values of R, R2, MAE, MedAE, MSE, RMSE via
voting with XT and RF; while R, R2, MAE, MedAE,
MSE, and RMSE values obtained with 2D CNN were mea-
sured as 0.88, 0.79, 3.96, 2.55, 37.48, and 6.12, respec-
tively. The performance difference between the two
models can be clearly observed.

Similarly, the best results achieved in the experiments
based on the 1D principle on the HD & Control subset
are 0.74, 0.54, 3.65, 2.00, 30.77, and 5.55, for the values
of R, R2, MAE, MedAE, MSE, and RMSE via KNN;
while R, R2, MAE, MedAE, MSE, and RMSE values
obtained with 2D CNN were measured as 0.83, 0.69,
1.86, 1.44, 6.19, and 2.49, respectively. The difference is
noticeable, although not as great as in the ALS & Control
subset.

At the PD & Control subset, the best performance with
1D data was measured with voting using XT and RF as
0.79, 0.62, 0.58, 0.29, 0.85, and 0.92 for R, R2, MAE,
MedAE, MSE, and RMSE, respectively; with 2D CNN,
these values were calculated as 0.79, 0.62, 0.7, 0.58 0.85,
and 0.92, respectively. As can be seen, although there
were no obvious differences in this subset as in the other
subsets, 2D CNN fed with the QR dataset achieved
almost the same performance as the other models.

Discussion
When the results obtained are analyzed, it is observed that
the superiority of 2D CNN over other methods in ALS &
Control and HD & Control subsets is clearly observed, in
the PD & Control subset, it has been observed that 1D
methods have the same performance as XT and RF-based
voting that has the best performance among all 1D-based
approaches. Considering the results obtained in terms of
Coefficient of Correlation with 2D CNN, the R values
obtained for ALS & Control, HD & Control, and PD &
Control were measured as 0.88, 0.83, and 0.79, respec-
tively. In addition, the coefficient of determination, in
other words, R2 value was calculated as 0.79, 0.69, and
0.62 for the corresponding subsets, respectively. Based on
the conditions of a successful evaluation of the criteria
described in the performance evaluation section, R and R2

values obtained for each subset can be considered success-
ful. When MAE, MedAE, MSE, RMSE values are exam-
ined, the reason for the higher values in the ALS &
Control subset compared to the other subsets can be
explained as the related PD values vary between 0 and 4,
HD values vary between 0 and 13, while ALS values
change between 0 and 54. The range of values to be pre-
dicted and the size of the value itself cause the error to be
larger in possible errors.

In addition, it is believed that the proposed QR represen-
tation method will be suitable for other research topics.
Thus, by converting 1D data to two dimensions, the
2D-CNN deep learning method, which has strengths such

Table 8. Results obtained with ensemble models on PD & control.

Ensembler Models Features R R2 MAE MedAE MSE RMSE

Voting XT & RF 0.79 0.62 0.58 0.29 0.85 0.92 0.79

Stacking XT & RF 0.63 0.39 1.03 0.89 1.35 1.16 0.63

MAE: mean absolute error; MedAE: Median Absolute Error; MSE: mean squared error; PD, Parkinson’s disease; RF: Random Forest; RMSE: root mean squared
error; XT: Extra Trees.

Table 9. 1D CNN performance achieved for all subsets.

Subset R R2 MAE MedAE MSE RMSE

ALS & Control 0.61 0.37 6.25 3.48 110.26 10.50

HD & Control 0.39 0.15 3.27 3.05 16.90 4.11

PD & Control 0.7 0.49 0.79 0.56 1.14 1.07

ALS: amyotrophic lateral sclerosis; CNN, convolutional neural network; HD:
Huntington’s disease; MAE: mean absolute error; MedAE: Median Absolute
Error; MSE: mean squared error; PD, Parkinson’s disease; RMSE: root mean
squared error; 1D, one-dimensional.

Table 10. 2D CNN performance achieved for all subsets.

Subset R R2 MAE MedAE MSE RMSE

ALS & Control 0.88 0.79 3.96 2.55 37.48 6.12

HD & Control 0.83 0.69 1.86 1.44 6.19 2.49

PD & Control 0.79 0.62 0.71 0.58 0.85 0.92

ALS: amyotrophic lateral sclerosis; ; CNN, convolutional neural network; HD:
Huntington’s disease; MAE: mean absolute error; MedAE: Median Absolute
Error; MSE: mean squared error; PD, Parkinson’s disease; RMSE: root mean
squared error; 2D, two-dimensional.
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as pattern capture and feature learning, can be used.
Moreover, since the QR transformation is the representation
of the data as a binary, this structure can be fed with a
feature extractor consisting of image metrics and these
metrics can be operated with machine learning algorithms
for classification and regression.

Conclusion
Predicting the severity of neurodegenerative diseases is an
important and challenging task, as well as diagnosis.
Grading the severity of neurodegenerative diseases
depends on the subjectivity of the clinicians and the varia-
bility of the patient’s response, albeit slight. Moreover, the
correct prediction of severity plays a vital role in the treat-
ment of the respective diseases. Since neurodegenerative
diseases manifest themselves as lack or excess of move-
ment, these diseases’ severity can be predicted by using
sensors placed in certain parts of the body without the
need for any specialist supervision. The main purpose of
this study is to estimate the severity of the disease experi-
enced by people suffering from neurodegenerative diseases
such as ALS, HD, and PD using gait data. Although doing
this, the novel representation method, which converts 1D
gait data into two-dimensional QR codes, is used to maxi-
mize the performance of the CNN deep learning algorithm
and, moreover, to work more optimally for pattern recogni-
tion and feature extraction features. In addition, machine
learning methods such as MLP, XT, RF, and KNN were
applied on 1D gait data to compare the prediction results
obtained with 2D CNN and to obtain possible promising
results. Two different ensemble methods such as voting
and stacking have been tried in order to improve the
results obtained by machine learning methods. Moreover,
to make a complete comparison, a solution to the problem
of disease rating was sought by processing data about a
CNN architecture that can operate on one dimension.

In future studies, the success of the proposed method
will be retested by adding samples with other neurodegen-
erative disease labels to the dataset. In addition, classifica-
tion and regression performances will be observed after
applying the QR representation method to 1D data in differ-
ent domains, making it suitable for deep learning methods
that work in two dimensions such as CNN.
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