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Abstract

The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and

meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis

and recombination has been enigmatic. Here, we report that this enzyme is required to

proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. ele-

gans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a

known substrate but is unable to remodel it. This mutation results in some non-homologous

synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in

PCH-2’s adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chro-

mosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity

in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its mei-

otic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint,

but requires its adapter to hydrolyze ATP and remodel them.

Author summary

The production of sperm and eggs for sexual reproduction depends on meiosis. During

this specialized cell division, homologous chromosomes pair, synapse and undergo mei-

otic recombination so that they are linked by at least one chiasma to promote their proper

segregation. How homologous chromosomes ensure that these important interactions are

with the correct partner is currently unknown. Here, we show that PCH-2 and its adapter

protein, CMT-1, proofread homolog interactions to promote their fidelity and proper

meiotic chromosome segregation.

Introduction

Sexual reproduction relies on meiosis, the specialized cell division that generates haploid gam-

etes, such as sperm and eggs, from diploid progenitors so that fertilization restores diploidy.

To ensure that gametes inherit the correct number of chromosomes, meiotic chromosome seg-

regation is exquisitely choreographed: Homologous chromosomes segregate in meiosis I and
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sister chromatids segregate in meiosis II. Having an incorrect number of chromosomes, also

called aneuploidy, is associated with infertility, miscarriages and birth defects, underscoring

the importance of understanding this process to human health.

Events in meiotic prophase ensure proper chromosome segregation. During prophase,

homologous chromosomes undergo progressively intimate interactions that culminate in syn-

apsis and crossover recombination (reviewed in [1]). After homologs pair, a macromolecular

complex, called the synaptonemal complex (SC), is assembled between them in a process called

synapsis. Synapsis is a prerequisite for crossover recombination to generate the linkages, or

chiasmata, between homologous chromosomes that direct meiotic chromosome segregation

[2–8]. Defects in any of these events can result in chromosome missegregation during the mei-

otic divisions and gametes, and therefore embryos, with an incorrect number of

chromosomes.

Coordinating the events of pairing, synapsis and crossover recombination is essential for

their proper progression. For example, defects that uncouple pairing and synapsis can produce

situations in which non-homologous chromosomes are inappropriately synapsed and unable

to undergo crossover recombination. Mutations that produce non-homologous synapsis often

identify mechanisms that are important for homolog pairing. For example, in maize, budding

yeast and mice, where the initiation of meiotic recombination plays an integral role in promot-

ing accurate homolog pairing and synapsis, mutations in genes involved in homologous

recombination can produce non-homologous synapsis to varying degrees [9–17]. In Drosoph-
ila and C. elegans, two organisms in which correct pairing and synapsis can occur independent

of recombination events [18, 19], other mechanisms ensure correct homologous synapsis,

including integrity of meiotic chromosome axes [20–23], highly regulated chromosome move-

ment [24, 25], centromere clustering [26] and specific histone modifications [27].

Despite these differences, in most organisms, the conserved AAA-ATPase PCH-2 (Pch2 in

budding yeast, PCH2 in Arabidopsis and Drosophila and TRIP13 in mice) is crucial to coordi-

nate events in meiotic prophase. In vitro and cytological experiments indicate that it does this

by using the energy of ATP hydrolysis to remodel meiotic HORMADs [28–32], chromosomal

proteins that are essential for pairing, synapsis, recombination and checkpoint function [20–

22, 33–41]. HORMADs are a protein family defined by the ability of a domain, the HORMA

domain, to adopt multiple conformations that specify protein function [42–44]. Meiotic HOR-

MADs appear to adopt two conformations: a “closed” version, that forms upon binding a

short peptide within other proteins [45]; and a more extended, or “unlocked,” version [46].

The closed form of meiotic HORMADs assemble on meiotic chromosomes to drive pairing,

synapsis and recombination [45]. The physiological relevance of the unlocked version is

unknown.

Cytological experiments in budding yeast, plants and mice show that PCH-2 removes or

redistributes meiotic HORMADs on chromosomes [28, 30–32]. This change in localization

both contributes to and reflects the progression of meiotic prophase events [28, 30–32]. How-

ever, major events in meiotic prophase, such as pairing, synapsis initiation and recombination,

precede the removal or redistribution of meiotic HORMADs, raising the question of how

PCH-2 affects these events to produce the phenotypes reported in its absence. Indeed, the phe-

notypes associated with loss of PCH2 are inconsistent with its only role being the redistribu-

tion of meiotic HORMADs [47–49]. In C. elegans, PCH-2 regulates meiotic prophase events

but not the localization of meiotic HORMADs [50], indicating that 1) the removal or relocali-

zation of meiotic HORMADs is not essential for PCH-2’s effects on pairing, synapsis and

recombination; and 2) this model organism is particularly relevant to better understand how

PCH-2 regulates these events.

PLOS GENETICS PCH-2 proofreads meiotic homolog interactions

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008904 July 30, 2020 2 / 20

R01GM097144 [N.B.]). Some strains were

provided by the CGC, which is funded by NIH Office

of Research Infrastructure Programs (P40

OD010440). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1008904


We previously showed that in the absence of PCH-2, homolog pairing, synapsis and recom-

bination are accelerated and associated with an increase in meiotic defects, leading us to specu-

late that PCH-2 disassembles molecular intermediates between homologous chromosomes

that underlie these events to ensure their fidelity [50]. Specifically, we hypothesized that these

molecular intermediates involve meiotic HORMADs and PCH-2 remodels meiotic HOR-

MADs to proofread these homolog interactions [50]. To test this model, we generated a

mutant version of PCH-2 that binds ATP, and its substrates, but cannot hydrolyze ATP and

therefore cannot remodel and release its substrates. We reasoned that if our hypothesis is cor-

rect, this mutant protein will “trap,” and allow us to more easily visualize, inappropriate homo-

log interactions that are incorrectly stabilized. This is accurate: pch-2E253Q mutants delay

homolog pairing and accelerate synapsis, producing non-homologous synapsis. Meiotic DNA

repair occurs with normal kinetics but crossover assurance is lost, suggesting that crossover-

specific recombination intermediates between incorrect partners may also be inappropriately

stabilized. Surprisingly, loss of CMT-1, an adapter protein that is thought to be essential for

PCH-2 to bind its substrates, phenotypically resembles pch-2E253Q mutants. Since PCH-2 local-

izes normally to meiotic chromosomes in the absence of CMT-1, these data indicate that

CMT-1 is dispensable for PCH-2 to bind its meiotic substrates on chromosomes but is essen-

tial to hydrolyze ATP and remodel its substrates.

Results

PCH-2E253Q localizes normally during meiotic prophase

We introduced a mutation by CRISPR/Cas9 genomic editing [51, 52] in the Walker B motif

of PCH-2, E253Q, that allows it to bind ATP, but not hydrolyze it. We designated this allele

pch-2(blt5) but will refer to it as pch-2E253Q (pch-2EQ in Figures). In budding yeast, this muta-

tion abolishes PCH-2’s in vivo meiotic function [29]. In vitro, PCH-2E253Q retains high affinity

nucleotide binding, forms stable hexamers and interacts with its substrates [53]. In meiotic

nuclei, PCH-2E253Q localized normally to meiotic chromosomes (Fig 1A, grayscale images in

S4A Fig), appearing as foci just prior to the entry into meiosis (also known as the transition

zone) and co-localizing with the synaptonemal complex once synapsis had initiated (Fig 1B,

grayscale images in S4B Fig). It was also removed from the synaptonemal complex in late

pachytene, similar to wildtype PCH-2 (Fig 1C, grayscale images in S4C Fig).

pch-2E253Q mutants delay pairing

Next, we analyzed pairing in syp-1 mutants. SYP-1 is a component of the synaptonemal com-

plex (SC), and syp-1 mutants fail to assemble SC between paired homologs, allowing us to

more easily visualize pairing intermediates in the absence of synapsis [6]. In C. elegans, cis-act-

ing sites called pairing centers (PCs) are required for pairing and synapsis [54]. In the absence

of synapsis, homologous chromosomes exhibit stable pairing of PC, but not non-PC, ends of

chromosomes [54]. We monitored synapsis-independent pairing at PC sites by performing

immunofluorescence against HIM-8, which binds PCs of X chromosomes [55] (Fig 2B). A sin-

gle focus of HIM-8 indicates paired X chromosomes while two foci indicate unpaired X chro-

mosomes. When we imaged stained germlines, we divided germlines into six equal sized zones

(see cartoon in Fig 2A). Because meiotic nuclei are arranged spatiotemporally in the germline,

this allows us to assess pairing as a function of meiotic progression.

syp-1 mutants initiated pairing in zone 2, maintained pairing at the X chromosome PC in

zones 3,4 and 5 and destabilized pairing in zone 6 (Fig 2C). As we previously reported [50],

syp-1;pch-2Δ double mutants also initiated PC pairing in zone 2 but had significantly more

nuclei with paired HIM-8 signals than syp-1 single mutants (p value< 0.0001, two-tailed
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Fisher’s exact test), indicating that pairing is accelerated in this background. By contrast, syp-1;
pch-2E253Q double mutants had significantly fewer nuclei with paired HIM-8 signals in zone 2

than both syp-1 single (p value < 0.0001, two-tailed Fisher’s exact test) and syp-1;pch-2Δ dou-

ble mutants (p value < 0.0001, two-tailed Fisher’s exact test). In later zones, all three genotypes

closely resembled each other in that chromosomes are paired. However, in zone 4, significantly

fewer X chromosomes were paired in syp-1; pch-2E253Q double mutants than syp-1 single

mutants (p value = 0.0003, two-tailed Fisher’s exact test). Thus, syp-1; pch-2E253Q mutants

delay and exhibit defects in pairing at PCs, consistent with our model that PCH-2 proofreads

homolog pairing intermediates: If pch-2E253Q mutants “trap” incorrect pairing intermediates,

between non-homologous chromosomes, for example, this would affect pairing between

homologous chromosomes.

pch-2E253Q mutants accelerate synapsis and produce non-homologous

synapsis

Next, we assayed synapsis by monitoring the colocalization of two SC components, HTP-3

and SYP-1 [6, 54]. When HTP-3 and SYP-1 colocalize, chromosomes are synapsed while

regions of HTP-3 devoid of SYP-1 are unsynapsed (see arrows in Fig 3A). We evaluated the

Fig 1. PCH-2E253Q localizes to meiotic chromosomes similar to wildtype PCH-2. A. Whole germline images of PCH-2 and DAPI staining in a wildtype and pch-2E253Q

mutant germline. Scale bar indicates 20 microns. Meiotic nuclei in mid-pachytene (B) and late pachytene (C) stained with DAPI and antibodies against PCH-2 in wildtype

animals and pch-2E253Q mutants. Unless otherwise stated, all scale bars indicate 5 microns.

https://doi.org/10.1371/journal.pgen.1008904.g001
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percentage of nuclei that had completed synapsis as a function of meiotic progression (Fig 3B).

In contrast to our analysis of pairing, synapsis in pch-2E253Q mutants was accelerated, similar

to but even more severely than pch-2Δ mutants (Fig 3B and [50]) (p value < 0.0001, two-tailed

Fisher’s exact test): More nuclei had completely synapsed chromosomes when synapsis initi-

ates in zone 3 in pch-2E253Q mutants than control germlines (Fig 3B) (p value < 0.0001, two-

tailed Fisher’s exact test). In contrast to pch-2Δ mutants, pch-2E253Q mutants did not exhibit

defects in SC disassembly in zone 6 (Fig 3B and [50]).

We reasoned that the delay in pairing, combined with the acceleration in synapsis, raised

the possibility that these events, which are typically coupled, had been uncoupled. To test this

possibility, we evaluated whether non-homologous synapsis occurs in pch-2E253Q mutants. We

stained wildtype, pch-2Δ and pch-2E253Q mutant germlines with antibodies against SC compo-

nents HTP-3 and SYP-1 to evaluate synapsis and HIM-8 to assess pairing. All nuclei in wild-

type animals, pch-2Δ, and most nuclei in pch-2E253Q mutants exhibited homologous synapsis

(uncircled nuclei in Fig 3C). However, we identified meiotic nuclei in which all chromosomes

were synapsed but contained two HIM-8 foci, indicating these chromosomes had synapsed

with non-homologous partners (circled nuclei in Fig 3C). We also observed non-homologous

synapsis when we monitored pairing of autosomes using antibodies against ZIM-2, a protein

that binds an autosomal PC [56] (S1A Fig). When we quantified this defect, we detected non-

homologous synapsis of X chromosomes in 2.5% of meiotic nuclei (Fig 3D) and non-homolo-

gous synapsis of Chromosome V in 6% of meiotic nuclei (S1B Fig). Unlike HIM-8 [55], ZIM-2

only stains meiotic chromosomes in a subset of meiotic nuclei [56]. Since fewer nuclei are pos-

itive for ZIM-2 than HIM-8 in all germlines, this explains the higher frequency of non-homol-

ogous synapsis that involves Chromosome V. C. elegans have six pairs of homologous

chromosomes. Therefore, it’s possible that as many as 18% of meiotic nuclei have at least one

pair of chromosomes undergoing non-homologous synapsis in pch-2E253Q mutants. However,

Fig 2. Homolog pairing is delayed in pch-2E253Q mutants. A. Cartoon of C. elegans germline divided into six equivalent zones. B. Images of meiotic nuclei stained with

DAPI and antibodies against HIM-8. C. Timecourse of X chromosome pairing in wildtype, pch-2E253Q and pch-2Δ mutant germlines. Error bars indicate 95% confidence

intervals.

https://doi.org/10.1371/journal.pgen.1008904.g002
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Fig 3. Synapsis is accelerated in pch-2E253Q mutants, producing non-homologous synapsis. A. Images of meiotic nuclei stained with antibodies against HTP-3 and

SYP-1. Color and grey scale images are provided. Arrows indicate unsynapsed chromosomes. B. Timecourse of synapsis in wildtype, pch-2E253Q and pch-2Δ mutant

germlines. C. Images of meiotic nuclei stained with antibodies against HTP-3, SYP-1 and HIM-8 in wildtype animals, pch-2E253Q and pch-2Δ mutants. Circled nuclei have

undergone non-homologous synapsis. D. Quantification of non-homologous synapsis wildtype animals, pch-2E253Q and pch-2Δ mutants. All error bars indicate 95%

confidence intervals. Significance was assessed by performing two-tailed Fisher exact tests. A ��� indicates a p value< 0.0001.

https://doi.org/10.1371/journal.pgen.1008904.g003
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it’s also formally possible that some nuclei contain multiple pairs of chromosomes that are

non-homologously synapsed and that 18% may be an overstatement. Unfortunately, we were

unable to directly test this possibility due to technical limitations.

pch-2E253Q mutants lose crossover assurance

We then monitored meiotic DNA repair and the formation of crossovers. To assess DNA

repair, we monitor the appearance and disappearance of RAD-51 from meiotic chromosomes

as a function of meiotic progression (Fig 4A). RAD-51 is required for all meiotic DNA repair

in C. elegans [57]. Its appearance on chromosomes signals the formation of double strand

breaks (DSBs) that need to be repaired (see zones 3 and 4 in wildtype in Fig 4B) and its disap-

pearance indicates the entry of DSBs into a DNA repair pathway (see zones 5 and 6 in wildtype

in Fig 4B) [3]. The appearance and disappearance of RAD-51 on meiotic chromosomes in pch-
2E253Q mutants was indistinguishable from that in wildtype in zones 1–4. In zone 5, we

detected fewer RAD-51 foci, suggesting that meiotic DNA repair may occur slightly more rap-

idly in pch-2E253Q mutants (p value < 0.0001, two-tailed t- test). However, we observed an

acceleration in DNA repair much earlier in pch-2Δ mutants (see zone 4, Fig 4B and [50] (p

value < 0.0001, two-tailed t-test).

We assayed crossover formation in pch-2E253Q mutants by visualizing GFP::COSA-1 foci

formation in late meiotic prophase. GFP::COSA-1 cytologically marks putative crossovers and

its appearance as robust foci is mechanistically associated with the process of crossover desig-

nation [58]. Almost all nuclei in wildtype worms had six GFP::COSA-1 foci per nucleus, one

per homolog pair (Fig 4C, top, and 4D) [58]. In contrast, pch-2E253Q mutants had a greater

number of nuclei with five GFP::COSA-1 foci, similar to pch-2Δ mutants, indicating a defect

in crossover assurance (Fig 4C, bottom, 4D and [50]). Given the in vitro behavior of the PCH-

2E253Q hexamer [53], this phenotype is likely because inappropriate crossover intermediates

are stabilized at the expense of appropriate ones. Alternatively, these meiotic nuclei may result

from the non-homologous synapsis we also observe in this mutant background. However, we

do not observe a delay in meiotic DNA repair in pch-2E253Q mutants (Fig 4B). Further, pch-
2E253Q mutants do not activate feedback mechanisms, as visualized by the extension of DSB-1

on meiotic chromosomes [59, 60] (S2A and S2B Fig). Therefore, we favor the first

interpretation.

CMT-1 is required for the synapsis checkpoint

During the spindle checkpoint, PCH-2 requires the presence of an adapter protein, CMT-1

(p31comet in mammalian cells), to bind and remodel a HORMAD protein required for the

spindle checkpoint response, Mad2 [53, 61, 62]. Based on a recent report that the rice ortholog

of CMT-1 is an SC component and required for pairing, synapsis and double strand break for-

mation [63], we tested whether cmt-1 had a role in meiotic prophase by assessing whether it

was required for meiotic prophase checkpoints in C. elegans. We introduced a null mutation

of cmt-1 into syp-1 mutants. The absence of SC in syp-1 mutants results in unsynapsed chro-

mosomes, which activate very high levels of germline apoptosis in response to both the synap-

sis and the DNA damage checkpoints [64] (Fig 5A). cmt-1 single mutants had wildtype levels

of apoptosis (Fig 5B). In contrast to syp-1 single mutants, syp-1;cmt-1 double mutants had

intermediate levels of germline apoptosis (Fig 5B), indicating that CMT-1 is required for either

the synapsis or DNA damage checkpoint. To distinguish between these two checkpoints, we

used syp-1;spo-11 double mutants, which do not generate double strand breaks [18]. As a

result, these double mutants do not activate the DNA damage checkpoint (Fig 5A) and pro-

duced an intermediate level of apoptosis (Fig 5B). [64]. When we generate syp-1;spo-11;cmt-1
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triple mutants, we observed wildtype levels of apoptosis, similar to but slightly higher than

cmt-1 single mutants (Fig 5B) (p value < 0.05, two tailed t-test). Therefore, CMT-1 is required

to activate apoptosis in response to the synapsis checkpoint, similar to pch-2Δ mutants.

Fig 4. Meiotic DNA repair is not affected in pch-2E253Q mutants but crossover assurance is. A. Images of meiotic nuclei stained with DAPI and antibodies against

RAD-51. Color and grey scale images are provided. B. Timecourse of the average number of RAD-51 foci per nucleus in wildtype, pch-2E253Q and pch-2Δ mutant

germlines. Error bars indicate 2XSEM. C. Images of meiotic nuclei stained with DAPI and antibodies against GFP. D. Percentage of nuclei with five GFP::COSA-1 foci in

wildtype animals, pch-2E253Q and pch-2Δ mutants. Error bars indicate 95% confidence intervals. Significance was assessed by performing two-tailed Fisher exact tests. A
��� indicates a p value< 0.0001.

https://doi.org/10.1371/journal.pgen.1008904.g004
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cmt-1 mutants phenotypically resemble pch-2E253Q mutants

Based on the requirement for CMT-1 in the synapsis checkpoint, we assessed pairing, synapsis,

meiotic DNA repair and crossover formation in cmt-1 mutants. Similar to our analysis of pch-
2E253Q mutants, pairing was delayed in syp-1;cmt-1 double mutants (see zone 2, Fig 6A) (p

value < 0.0001, two-tailed Fisher’s exact test) and synapsis was accelerated in cmt-1 single

mutants (see zone 3, Fig 6B) (p value < 0.0001, two-tailed Fisher’s exact test). We also detected

Fig 5. CMT-1 is required for the synapsis checkpoint. A. Cartoon of meiotic checkpoint activation in C. elegans. B. Mutation of cmt-1 reduces apoptosis in syp-1 single

mutants and syp-1;spo-11 double mutants. Error bars indicate 2XSEM. C. pch-2E253Q reduces apoptosis in syp-1 and syp-1;spo-11 mutants but not in syp-1;cmt-1 or syp-1;
spo-11;cmt-1 mutants. Significance was assessed by performing two-tailed t-tests. A ��� indicates a p value< 0.0001, a �� indicates a p value< 0.01 and an n.s. indicates not

significant.

https://doi.org/10.1371/journal.pgen.1008904.g005
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non-homologous synapsis at levels similar to that of pch-2E253Q mutants (Figs 6C, 6D and S1).

Meiotic DNA repair in cmt-1 mutants, as visualized by the appearance and disappearance of

RAD-51 (S3A Fig), and meiotic progression, as visualized by the appearance and disappear-

ance of a protein required for DSB formation, DSB-1 (S2A and S2B Fig), closely resembled

that of wildtype germlines. However, we did observe a delay in RAD-51 removal in cmt-1
mutants (zones 5 and 6, p value < 0.0001, two-tailed Fisher’s exact test). It is unclear whether

this delay is biologically relevant, since we only observe a slight delay in DSB-1 removal (S2B

Fig). In addition, crossover assurance was reduced (S3B Fig).

The meiotic phenotypes of cmt-1 mutants are more similar to that of pch-2E253Q mutants

than to that of pch-2Δ mutants, suggesting that PCH-2 can bind its meiotic substrates effectively

in the absence of CMT-1 but CMT-1 is required for PCH-2’s hydrolysis of ATP. This is in con-

trast to PCH-2’s interaction with Mad2, which depends on CMT-1 [53, 61]. Consistent with

this interpretation, cmt-1;pch-2E253Q double mutants had a similar frequency of non-homolo-

gous synapsis (Fig 6D), nuclei with five GFP::COSA-1 foci (S3B Fig), viable offspring and male-

self progeny as either single mutant (Table 1). Finally, syp-1;pch-2E253Q;cmt-1 and syp-1;spo-11;
pch-2E253Q;cmt-1 mutants did not exhibit any further reduction in germline apoptosis than syp-
1;pch-2E253Q and syp-1;spo-11;pch-2E253Q mutants (Fig 5D) (p values = 0.596 and 0.891, respec-

tively, two-tailed t-tests). Further, since cmt-1 mutants result in meiotic phenotypes distinct

from those we reported for spindle checkpoint mutants [65], specifically non-homologous syn-

apsis, CMT-1’s role in meiotic prophase is independent of its regulation of Mad2.

Non-homologous synapsis in cmt-1 mutants relies on PCH-2

We previously showed that CMT-1 is required for PCH-2 to localize to mitotic chromosomes

during the spindle checkpoint [66]. We tested whether this was also true during meiotic pro-

phase and found that CMT-1 was dispensable for PCH-2’s localization to meiotic chromo-

somes (Fig 7A, grayscale images in S4 Fig). Consistent with CMT-1 being required for PCH-

2’s hydrolysis of ATP and release of substrates, we observed that PCH-2 stayed on meiotic

chromosomes slightly longer than in wildtype germlines (Fig 7C).

During mitotic divisions in the C. elegans embryo, loss of CMT-1 partially suppresses the

spindle checkpoint defect observed in pch-2 mutants [66]. Since PCH-2 ensures availability of

the inactive conformer of Mad2 so that it can be converted to the active one during checkpoint

activation [67, 68], we hypothesize that this genetic interaction results because loss of CMT-1

makes more inactive Mad2 available. In this way, PCH-2 and CMT-1 would control the spin-

dle checkpoint by regulating available, soluble pools of inactive and active Mad2. We

Fig 6. cmt-1 mutants delay pairing, accelerate synapsis and exhibit non-homologous synapsis, similar to pch-2E253Q mutants. A.

Timecourse of pairing in wildtype and cmt-1 mutant germlines. B. Timecourse of synapsis in wildtype and cmt-1 mutant germlines. C. Images

of meiotic nuclei stained with antibodies against HTP-3, SYP-1 and HIM-8 in cmt-1 and cmt-1;pch-2Δ mutants. The circled nucleus has

undergone non-homologous synapsis. D. Quantification of non-homologous synapsis wildtype animals, cmt-1, cmt-1;pch-2E253Q and cmt-1;
pch-2Δ mutants. All error bars indicate 95% confidence intervals. Significance was assessed by performing two-tailed Fisher exact tests. A ���

indicates a p value< 0.0001.

https://doi.org/10.1371/journal.pgen.1008904.g006

Table 1. Viability and Him phenotype.

Genotype % viability (total number of progeny) % male self-progeny

wildtype 100% (3949) 0.05%

pch-2E253Q 100% (2349) 0.34%

cmt-1 100% (3654) 0.27%

cmt-1;pch-2E253Q 100% (2721) 0.25%

https://doi.org/10.1371/journal.pgen.1008904.t001
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wondered if there was a similar relationship between PCH-2 and CMT-1 in meiotic prophase.

To test this, we generated cmt-1;pch-2Δ double mutants and assayed non-homologous synap-

sis. Unlike cmt-1 single mutants and similar to pch-2Δ mutants, we did not detect non-homol-

ogous synapsis in cmt-1;pch-2Δ double mutants (Fig 6C and 6D). Thus, PCH-2 is epistatic to

CMT-1 during meiosis, at least in the context of non-homologous synapsis, supporting our

interpretation that PCH-2 can bind its meiotic substrates independent of CMT-1 and suggest-

ing that some of PCH-2’s regulation of its meiotic substrates occurs directly on chromosomes.

Discussion

In vitro, PCH-2E253Q protein binds ATP and its spindle checkpoint substrate, Mad2, but fails

to remodel it, due to an inability to hydrolyze ATP [53]. Here, we show that the meiotic pheno-

types observed in pch-2E253Q mutants are consistent with a role for PCH-2 in disassembling

inappropriate pairing, synapsis and crossover recombination intermediates in C. elegans,

Fig 7. PCH-2 localizes to meiotic chromosomes in cmt-1 mutants. A. Whole germline image of PCH-2 and DAPI staining in a cmt-1 mutant germline. Scale bar

indicates 20 microns. B. Meiotic nuclei in mid-pachytene stained with DAPI and antibodies against PCH-2 in cmt-1 mutants. C. Quantification of percentage of PCH-

2-positive nuclei in wildtype and cmt-1 mutant germlines. Error bars indicate 95% confidence intervals. Significance was assessed by performing two-tailed t-tests. A ��

indicates a p value< 0.01.

https://doi.org/10.1371/journal.pgen.1008904.g007
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resulting in non-homologous synapsis (Figs 3C, 3D and S1) and a loss of crossover assurance

(Fig 4D). The effect we observe on these meiotic prophase events seems limited, affecting a

small proportion of nuclei, but this may reflect either the inherent fidelity of these processes or

the existence of redundant mechanisms that contribute to fidelity in C. elegans. Further, a role

for PCH-2 in proofreading may be more apparent in organisms or situations in which homo-

log interactions are more challenging. Indeed, PCH-2’s involvement in the interchromosomal

effect in Drosophila [69], in which chromosome rearrangements affect crossover control on

other chromosomes, supports this possibility. Nevertheless, our results demonstrate that PCH-

2 proofreads interactions between homologous chromosomes to ensure that they are correct.

We previously showed that PCH-2 decelerates homolog pairing, synapsis and recombination,

coordinating these meiotic prophase events [50]. Here, we argue that PCH-2 acts directly on

chromosomes to proofread meiotic interhomolog interactions and ensure their fidelity. This role

is supported by several pieces of data. First, PCH-2 localizes to meiotic chromosomes, both

before and after synapsis [50]. This localization is functional, as demonstrated by its persistence

on the synaptonemal complex and correlation with an extension of homolog access in mutants

defective in recombination [50, 70]. Second, despite the defects we report, pch-2Δ, pch-2E253Q

and cmt-1 mutants do not show acceleration of meiotic progression, as assayed by SUN-1 phos-

phorylation [50], appearance of transition zone nuclei (Figs 1 and 7 and [50]), ZIM-2 (S1 Fig) or

DSB-1 localization (S2 Fig), indicating that PCH-2 and CMT-1 do not coordinate these meiotic

prophase events indirectly through misregulation of meiotic progression. Finally, meiotic defects

associated with loss of CMT-1 rely on PCH-2 function (Fig 6D), unlike what we observe in mito-

sis [66]. In mitosis, CMT-1 is epistatic to PCH-2, which we attribute to misregulation of soluble

pools of Mad2. Soluble pools of at least one meiotic HORMAD, HTP-1, have been implicated in

ensuring both accurate homolog synapsis and proper meiotic progression [23]. If PCH-2 and

CMT-1 were regulating homolog pairing, synapsis and recombination via control of meiotic

progression, we might predict that CMT-1 would be epistatic to PCH-2 in meiosis, as it is in

mitosis. Taken together, these data favor a model in which PCH-2 and CMT-1 proofread inter-

actions between homologous chromosomes that underlie pairing, synapsis and recombination

in C. elegans. Since pairing, synapsis and recombination depend on meiotic HORMADs adopt-

ing their closed conformations [45], we hypothesize that these interactions between homologous

chromosomes either involve or are stabilized by closed versions of meiotic HORMADs and

PCH-2, in collaboration with CMT-1, remodels them to disassemble or destabilize them. In sys-

tems such as plants, yeast and mice, we propose that PCH-2 plays a similar role in addition to

removing or relocalizing meiotic HORMADs to signal meiotic progression [28, 30–32].

We were surprised to see that PCH-2 localized to meiotic chromosomes in cmt-1 mutants

(Fig 7), unlike what we observe during the spindle checkpoint response [66], and that cmt-1
mutants closely resembled pch-2E253Q mutants in exhibiting non-homologous synapsis and a loss

of crossover assurance (Figs 6 and S2). Since PCH-2’s localization to meiotic chromosomes

depends on synapsis [50], this localization may not accurately represent interaction with its pro-

posed meiotic substrates, meiotic HORMADs. Alternatively, these data may suggest that PCH-2

is competent to bind meiotic HORMADs in the absence of CMT-1 and that CMT-1’s meiotic

function is to promote PCH-2’s ATPase activity and ability to remodel these substrates. This is

unlike its role in the spindle checkpoint, in which CMT-1/p31comet is essential for PCH-2 to bind

its substrate, Mad2 [53, 61, 62, 71]. This difference raises the possibility that the interaction

between PCH-2 and meiotic HORMADs during their remodeling is substantially different than

that with Mad2. This hypothesis is supported by the findings that budding yeast, in which PCH2
was originally identified [72], does not appear to have a CMT-1/p31comet ortholog [73, 74] and

budding yeast Pch2 can directly interact with and remodel the budding yeast meiotic HORMAD,

Hop1, in vitro [29]. However, another possibility is that PCH-2’s ability to remodel meiotic
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HORMADs exists in two modes: 1) a mode that proofreads meiotic interhomolog interactions

during pairing, synapsis and recombination and depends on CMT-1 for ATP hydrolysis, but not

substrate binding; and 2) one that removes meiotic HORMADs during meiotic progression

which relies on CMT-1 for both substrate recognition and ATP hydrolysis. Such a model raises

the immediate question of how these two modes might be regulated in an organism with both.

The PCH-2/HORMAD genetic module is evolutionarily ancient [75, 76], having been iden-

tified as operons in several bacteria [77], suggesting that this pair of proteins has been co-

opted to function in multiple molecular contexts. While we can easily detect an interaction

between PCH-2 and CMT-1, and CMT-1 and Mad2, by two-hybrid experiments [66], we have

not been able to observe a similar interaction between PCH-2 or CMT-1 and any of the four

meiotic HORMADs present in C. elegans, HTP-3, HIM-3, HTP-1 and HTP-2, making it diffi-

cult to identify what regions of these proteins are required to interact with PCH-2. Genetic

mutations, combined with cytological analysis, seems the most straightforward way, at least in

C. elegans, to understand whether and how PCH-2 and meiotic HORMADs interact to regu-

late meiotic pairing, synapsis and recombination.

Materials and Methods

Genetics and worm strains

The C. elegans Bristol N2 [78] was used as the wild-type strain. All strains were maintained at

20˚C under standard conditions unless otherwise stated. Mutations and rearrangements used

were as follows:

LG I: cmt-1(ok2879)

LG II: pch-2(blt5), meIs8 [Ppie-1::GFP::cosa-1 + unc-119(+)]

LG IV: spo-11(ok79), nT1[unc-?(n754) let-?(m435)] (IV, V), nTI [qIs51]

LG V: syp-1(me17), bcIs39 [lim-7p::ced-1::GFP + lin-15(+)]

The pch-2(blt5) allele, referred to as pch-2E253Q, was created by CRISPR-mediated genomic

editing as described in [51, 52]. pDD162 was mutagenized using Q5 mutagenesis (New

England Biolabs) and oligos GTTTTTGTTCTTATCGACGGTTTTAGAGCTAGAAATAGC

AAGT and CAAGACATCTCGCAATAGG. The resulting plasmid was sequenced and two

different correct clones (50ng/ul total) were mixed with pRF4 (100ng/ul) and the repair oligo

CTCGTTCAAAAAATGTTCGATCAAATTGATGAACTAGCTGAAGATGAGAAGTGCAT

GGTTTTTGTGCTCATCGACCAAGTTTGATTTTTTTAAAAAACAATTTTTCTGGTTTT

CATCAGTTTTTATGTCAGGTTGAAT (30ng/ul). Wildtype worms were picked as L4s,

allowed to age 15–20 hours at 20˚C and injected with the described mix. Worms that produced

rolling progeny were identified and F1 rollers, as well as their wildtype siblings, were placed on

plates seeded with OP50, 1–2 rollers per plate and 6–8 non-rolling siblings per plate, and

allowed to produce progeny. PCR and Bsp1286I digestions were performed on these F1s to

identify worms that contained the mutant allele and individual F2s were picked to identify

mutant homozygotes. Multiple homozygotes carrying the pch-2(blt5) mutant allele were back-

crossed against wildtype worms at least three times and analyzed to determine whether they

produced the same mutant phenotype.

Antibodies, Immunostaining and Microscopy

DAPI staining and immunostaining was performed as in [64] 20 to 24 hours post L4 stage. Pri-

mary antibodies were as follows (dilutions are indicated in parentheses): rabbit anti-PCH-2
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(1∶500) [50], rabbit anti-SYP-1 (1:500) [6], chicken anti-HTP-3 (1:250) [54], guinea pig anti-

HTP-3 (1:250) [54], rabbit anti-ZIM-1 (1:1000), guinea pig anti-ZIM-2 (1:2500) [56], guinea

pig anti-HIM-8 (1:250) [55], mouse anti-GFP (1:100) (Invitrogen), guinea pig anti-DSB-1

(1:500) [60] and rabbit anti-RAD-51 (1:1000) (Novus Biologicals). Secondary antibodies were

Cy3 anti-rabbit, anti-guinea pig and anti-chicken (Jackson Immunochemicals) and Alexa-

Fluor 488 anti-guinea pig and anti-rabbit (Invitrogen). All secondary antibodies were used at a

dilution of 1:500.

All images were acquired using a DeltaVision Personal DV system (Applied Precision)

equipped with a 100X N.A. 1.40 oil-immersion objective (Olympus), resulting in an effective

XY pixel spacing of 0.064 or 0.040 μm. Three-dimensional image stacks were collected at 0.2-

μm Z-spacing and processed by constrained, iterative deconvolution. Image scaling and analy-

sis were performed using functions in the softWoRx software package. Projections were calcu-

lated by a maximum intensity algorithm. Composite images were assembled and some false

coloring was performed with Adobe Photoshop.

Scoring of germline apoptosis was performed as previously described in [64] in strains con-

taining bcIs39 [lim-7p::ced-1::GFP + lin-15(+)] with the following exceptions. L4 hermaphro-

dites were allowed to age for 22 hours. They were then mounted under coverslips on 1.5%

agarose pads containing 0.2mM levamisole and scored. A minimum of twenty-five germlines

was analyzed for each genotype.

Quantification of pairing, synapsis, RAD-51 foci, GFP::COSA-1 foci, and DSB-1 positive

nuclei was performed on animals 24 hours post L4 stage and with a minimum of three germ-

lines per genotype. Relevant statistical analysis, as indicated in the Figure Legends, was used to

assess significance. The number of nuclei assayed for each genotype for all figures is shown in

S1 Table.

Supporting information

S1 Fig. Autosomes undergo non-homologous synapsis in pch-2E253Q and cmt-1 mutants. A.

Images of meiotic nuclei stained with antibodies against HTP-3, SYP-1 and ZIM-2 in wildtype

animals, pch-2E253Q and cmt-1 mutants. Circled nuclei have undergone non-homologous syn-

apsis. B. Quantification of non-homologous synapsis wildtype animals, pch-2E253Q and cmt-1
mutants. Error bars indicate 95% confidence intervals. Significance was assessed by perform-

ing two-tailed Fisher exact tests. A ��� indicates a p value < 0.0001.

(TIF)

S2 Fig. Meiotic progression is unaffected in pch-2E253Q and cmt-1 mutants. A. Whole germ-

line images of DSB-1 and DAPI staining in a wildtype, pch-2E253Q and cmt-1 mutant germline.

Scale bar indicates 20 microns. B. Quantification of percentage of DSB-1-positive nuclei in

wildtype, pch-2E253Q and cmt-1 mutant germlines. Error bars indicate 95% confidence inter-

vals. Significance was assessed by performing two-tailed t-tests. A � indicates a p value < 0.05

and an n.s. indicates not significant.

(TIF)

S3 Fig. Meiotic DNA repair is not affected in cmt-1 mutants but crossover assurance is,

similar to pch-2E253Q mutants. A. Timecourse of the average number of RAD-51 foci per

nucleus in wildtype and cmt-1 mutant germlines. Error bars indicate 2XSEM. B. Percentage of

nuclei with five GFP::COSA-1 foci in wildtype animals, cmt-1 single and cmt-1;pch-2E253Q dou-

ble mutants. Error bars indicate 95% confidence intervals. Significance was assessed by per-

forming two-tailed Fisher exact tests. A ��� indicates a p value < 0.0001.

(TIF)
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S4 Fig. Grayscale images of PCH-2 antibody staining in wildtype animals, pch-2E253Q and

cmt-1 mutants. A. Whole germline images. Scale bar indicates 20 microns. B. Meiotic nuclei

in mid-pachytene. C. Meiotic nuclei in late pachytene.

(TIF)

S1 Table. Number of nuclei assayed for each genotype for all figures.
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