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A ferroptosis–based panel 
of prognostic biomarkers for 
Amyotrophic Lateral Sclerosis
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Accurate patient stratification into prognostic categories and targeting Amyotrophic Lateral Sclerosis 
(ALS)-associated pathways may pave the way for promising trials. We evaluated blood-based 
prognostic indicators using an array of pathological markers. Plasma samples were collected as part of 
a large, phase III clinical trial (Mitotarget/TRO19622) at months 1, 6, 12 and 18. The ALSFRS-r score was 
used as a proxy of disease progression to assess the predictive value of candidate biological indicators. 
First, established clinical predictors were evaluated in all 512 patients. Subsequently, pathologic 
markers, such as proxies of neuronal integrity (Neurofilament light chain and phosphorylated 
heavy chain), DNA oxidation (8-oxo-2′-desoxyguanosine), lipid peroxidation (4-hydroxy-2-nonenal, 
isoprostane), inflammation (interleukin-6) and iron status (ferritin, hepcidin, transferrin) were assessed 
in a subset of 109 patients that represented the whole cohort. Markers of neuronal integrity, DNA 
and lipid oxidation, as well as iron status at baseline are accurate predictors of disability at 18-month 
follow-up. The composite scores of these markers in association with established clinical predictors 
enable the accurate forecasting of functional decline. The identified four biomarkers are all closely 
associated with ‘ferroptosis’, a recently discovered form of programmed cell death with promising 
therapeutic targets. The predictive potential of these pathophysiology-based indicators may offer 
superior patient stratification for future trials, individualised patient care and resource allocation.

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative condition with no effective 
disease-modifying therapy. Late recruitment to pharmacological trials, clinical heterogeneity, and lack of specific 
monitoring markers are some of the main barriers to successful drug development. Accurate patient stratifica-
tion into prognostic categories1 and targeting ALS-associated pathways may pave the way for promising phase 
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II trials. Reliance on easily accessible biofluids and the appraisal of markers that are directly implicated in ALS 
pathogenesis is a key strategy for effective biomarker development. Ferroptosis2 in motor neurons is increasingly 
recognised as an important process of ALS3 with lipid and iron accumulation being surrogate markers for this 
type of programmed cell death. Neurofilament light chain (NfL) and phosphorylated heavy chain (pNfH) are well 
established markers of neural integrity in ALS4–9. Oxidised DNA products (oxidation (8-oxo-2′-desoxyguanosine 
(8-oxo-dG))4,10,11, and lipids (4-hydroxy-2-nonenal; 4-HNE and isoprostane)10,12 have also been shown to be con-
sistently elevated in ALS. Lastly, interleukin-6 (IL-6)13,14 as well as ferritin (FT)4,15–19, hepcidin and transferrin are 
accepted markers of inflammation and iron metabolism respectively.

The biomarkers were assessed in the Mitotarget/TRO19622 study, a cohort of 512 ALS patients from 15 
European centers partaking in a negative, randomized, double-blinded, placebo-controlled phase III trial of 
olesoxime (NCT:00868166)20. First we analysed the demographic, clinical and biological safety parameters on 
disease progression (i.e. functional assessment (ALSFRS-r)) for the whole cohort. Then, to enable longitudi-
nal functional assessment we assessed a ferroptosis–based panel of prognostic biomarkers in a subgroup of 109 
patients that was randomly selected from the 286 patients who had completed the 18-month-follow up assess-
ment. We focused on baseline parameters, which are convenient to establish patient stratification into prognostic 
categories. The recently identified candidate predictors1 were modelled to identify a new panel of prognostic 
indicators and contrast them against clinical predictors typically used as a gold standard.

Results
The baseline clinical characteristics of the two study populations, that culminated in an entire trial cohort of 512 
patients and a subset of 109 patients, were comparable (Table e-1). No effect of olesoxime was observed on any of 
the parameters. Safety parameters were not associated with disease progression in the entire trial cohort of 512 
patients or in the subset of 109 patients. Only creatine phosphokinase was associated with ALSFRS-r score at a 
given time-point, without a prognosis value (Tables e-2 and e-3).

The ALSFRS-r scores showed a mean reduction of 0.70 point per month over the 18-month period. NfL, 
pNfH, 4-HNE, 8-oxo-dG and FT at baseline were negatively associated with ALSFRS-r at follow-up (Table 1), 
i.e. higher baseline values indicate a more significant functional disability at 18-month follow-up. Hepcidin, 
Transferrin, IL-6 and isoprostane were not significantly associated (Table 1). Similar results were found after 
adjusting for baseline characteristics (main clinical and biological data). In multivariate analyses, baseline NfL, 
4-HNE, 8-oxo-dG and FT were independently associated with ALSFRS-r decline (Table 2 with the equation 
of prediction). From a subset of patients we next assessed these biomarkers in two groups of disease decline. 
In accordance to a median in the ALSFRS-r score decrease rate from time of inclusion to 18 months, these 
were referred to as ‘slow’ or ‘fast’ progressors. The ‘fast- progressors’ (n = 55 patients, mean monthly reduc-
tion of 0.94 point at ALSFRS-r score) had significantly higher values of NfL, 4-HNE and FT compared to 
‘slow-progressors’ (54 patients, mean monthly reduction of 0.33 point at ALSFRS-r score) at baseline. These dif-
ferences in NfL and 4-HNE progressively decreased with disease progression (Fig. 1). Conversely, the difference 
of FT became higher with a greater variability as disease progressed. No significant difference was observed 
with 8-oxo-dG levels.

At 18 months the cohort had a mean reduction per month of 2 points in MMT, 1.5 points in SVC and 
0.06 points in BMI. NfL and 4-HNE had a negative association with MMT (p < 0.001 and p = 0.021 respec-
tively) i.e. higher values at baseline indicated lower MMT at follow-up. NfL also negatively correlated with SVC 
(p = 0.010). Conversely, baseline FT had a positive association with SVC (p = 0.039) and BMI (p = 0.002) at 
follow-up. No association was identified between disability at follow-up and the inflammatory marker IL-6 at 
baseline.

Factors at baseline

Unadjusted Adjusted*
Coefficient β ± SE P-value Coefficient β ± SE P-value

NfLa −0.05 (0.005) <0.001 −0.03 (0.005) <0.001

pNfHa −0.01 (0.001) <0.001 −0.006 (0.001) <0.001

4-HNEa −0.16 (0.01) <0.001 −0.15 (0.01) <0.001

8-OHdG −0.02 (0.004) <0.001 −0.02 (0.003) <0.001

Ferritina −0.006 (0.002) 0.005 −0.006 (0.002) 0.001

Hepcidinc −0.02 (0.01) 0.083 −0.01 (0.01) 0.27

Transferrinb −0.0001 (0.003) 0.97 −0.0001 (0.003) 0.96

IL-6 0.001 (0.002) 0.65 −0.002 (0.002) 0.46

Isoprostane 0.12 (0.07) 0.073 0.07 (0.06) 0.26

Table 1.  Specific baseline parameters on ALSFRS-r progression. Specific parameters were evaluated on an 
allocated treatment group. Linear mixed models with random intercept before and after adjustment to baseline 
characteristics associate with ALSFRS-r progression (p < 0.10 for their interaction with time in multivariate 
analysis). *Adjusted on treatment and pre-specified baseline factors with their interactions to time (BMI, 
MMT, SVC, sodium and time since the onset of clinical signs). a–cA coefficient corresponding to the effects of a 
respective 10, 1000 and 10000 point increase.
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Discussion
In comparison to established clinical predictors, this longitudinal study demonstrates the predictive value on 
disease progression using four easy quantifiable blood biomarkers. Higher NfL, 4-HNE, 8-oxo-dG and FT levels 
at baseline were associated with greater ALSFRS-r decline over the 18-month follow-up period. Interestingly, the 
changes of these parameters over time preceded functional decline (i.e. difference between ‘fast’ and ‘slow’ pro-
gressors occurred at 6 months, Fig. 1). The persistently elevated values of these markers in the fast-progressor pop-
ulation suggest relentless neuronal degeneration during the 18-month follow-up. Given the possible predictive 

Factors at baseline

Effect on ALSFRS-r progression

Coefficient β ± SE p

NfLa −0.02 (0.005) 0.004

4-HNEa −0.11 (0.02) <0.001

8-OHdG −0.01 (0.004) <0.001

Ferritina −0.01 (0.002) <0.001

Table 2.  A final model of specific baseline parameters associated with ALSFRS-r progression. All parameters 
associated with ALSFRS-r progression from the adjusted models shown in Table 1 (interaction with time < 0.10) 
were included in a multivariable linear mixed model. Neurological parameters were removed manually 
using the same backward selection approach. The multivariate analysis was performed on the population 
for specific parameters using the final mixed model. aa coefficient corresponding to the effects of a 10 point 
increase. Analysis was adjusted for treatment and pre-specified baseline factors with their interactions to time 
(BMI, MMT, SVC, sodium and time since the onset of signs). Examples of prediction of the monthly rate of 
reduction of ALSFRS-r: SVC (70%), diagnosis delay (12 months), BMI (24), MMT (140) (sodium: 140): - NfL 
(100) + 4-HNE (20) + 8-oxo- dG (17) + Ferritin (170) = monthly adjusted rate: −0.72. - NfL (70) + 4-HNE 
(15) + 8-oxo- dG (16) + Ferritin (160) = monthly adjusted rate: −0.65. - NfL (40) + 4-HNE (5) + 8-oxo- dG 
(14) + Ferritin (150) = monthly adjusted rate: −0.56.

Figure 1.  Progression of the specific biomarkers over 18 months in fast versus slow progressors. The association 
of specific parameters at baseline with ALSFRS-r progression was analyzed by considering two groups of disease 
decline; slow and fast. The population was divided according to a median in the ALSFRS-r score decrease rate 
from time of inclusion to 18 months. The distribution of each parameter (means and SEM) over time was 
compared between the two groups of slow (54 patients) and fast progressors (n = 55 patients) using Mann-
Whitney U tests. *p-value < 0.05.
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value of these biomarkers, they may aid patient stratification for future phase trials. From a clinical perspective, 
they may also contribute to precision care planning, resource allocation and management of individual patients.

The nervous system is particularly rich in lipids and products of lipid peroxidation such as 4-HNE may repre-
sent an important and currently under evaluated proxy of disease activity. It is noteworthy that the highly reactive 
cytotoxic 4-HNE irreversibly cross-links proteins such as neurofilaments21. Changes in FT, an indicator of brain 
iron status, may represent an additional aetiological factor promoting free radical production. Increased lipid 
peroxidation and iron accumulation are key components of iron dependent programmed cell death; ferroptosis2.

In conclusion, our findings indicate that markers of ferroptosis in ALS are associated with clinical decline. 
Elevated NfL and 8-oxo-dG levels on the other hand are secondary to axonal skeleton disintegration and DNA 
fragmentation, likely a downstream effect of ferroptosis. These observations need to be replicated in larger pop-
ulations and the predictive value of these markers need to be examined on survival. The characterisation of 
these mechanisms and the development of ferroptosis-based markers is particularly timely, as iron chelation4 
and anti-ferroptotic therapy2,22 are currently under investigation for a range of neurodegenerative conditions 
including ALS.

Methods
Mitotarget/TRO19622 was a negative, randomized, double-blinded, placebo-controlled phase III trial for ole-
soxime (NCT:00868166) that included 512 ALS patients from 15 European centers20. All experiments were per-
formed in accordance with French and European guidelines and regulations. Following approval from a local 
ethics committee at Assistance Publique Hôpital Pitié-Salpêtrière and informed consent from each participant, 
data were collected every 3 months during the 18-month trial period. Participants were diagnosed with either 
‘probable’ or ‘definite’ ALS according to the revised El Escorial criteria, and only patients with symptom duration 
of more than 6 and less than 36 months were enrolled. In addition to riluzole, patients received olesoxime or 
placebo.

A subgroup of 109 patients was randomly selected from the 286 patients that completed the 18-month-follow 
up assessment. This enabled longitudinal functional assessment (ALSFRS-r)23, but precluded survival analyses. 
All recently identified candidate predictors1 (Table e-1) were included in a prediction model with the exception of 
frontotemporal dementia (due to a lack of phenotype in this cohort) and the presence of C9orf72 hexanucleotide 
repeat expansions (data not available).

Finally the population was also divided into two groups of disease decline (i.e. slow and fast), according to a 
median in the ALSFRS-r score decrease rate from time of inclusion to 18 months.

Plasma samples were obtained at 1, 6, 12 and 18 months after enrolment. Standard ‘Safety parameters’ were 
monitored during the trial (Table e-2). The ‘Specific parameters’ were measured in duplicate using commer-
cially available kits for NfL (NF-light Kit Advantage, Quanterix, Lexington, MA, USA), pNfH (Neurofilament 
ELISA, Euroimmun AG, Lübeck, Germany), 8-oxo-dG (ELISA Kit, Abcam, Cambridge, UK: ab201734), 
4-HNE (OxiSelect™ HNE Adduct Competitive ELISA Kit, Cell Biolabs, Inc., San Diego, CA, USA: STA-838), 
8-isoprostane (ELISA Kit, Abcam, Cambridge, UK: ab175819), interleukin-6 (Human Magnetic Luminex 
Screening Assay, R&D Systems - Bio-Techne, Lille, France:HUVF4Lrv), ferritin (human ELISA Kit, Abcam, 
Cambridge, UK: ab108698), transferrin (human ELISA Kit, Abcam, Cambridge, UK: ab108911) and hepcidin 
(Human Quantikine ELISA Kit, R&D Systems - Bio-Techne, Lille, France: DHP250).

Statistical analyses
The predictive value of the clinical and ‘safety parameters’ on the ALSFRS-r score was investigated using bivariate 
linear mixed models with randomized coefficients (Table e-2). The fixed effects in the model included time, base-
line characteristics and their interaction. All baseline characteristics that associated either alone (p < 0.05) or in 
interaction with time (p < 0.10) were included in a multivariable linear mixed model (Table e-3).

The predictive value of the ‘specific parameters’ on the ALSFRS-r score was investigated using linear mixed 
modelling. Random intercept was performed before and after adjustment to the baseline characteristics asso-
ciated with ALSFRS-r progression and allocated treatment group (Table 1). All parameters associated with 
ALSFRS-r progression in the adjusted models (interaction with time < 0.10) were included in the multivariable 
linear mixed model (Table 2).

Finally, the association between specific parameters at baseline and progression of other parameters (e.g 
MMT, SVC, BMI) were investigated by bivariate linear mixed modelling with random intercept.

All statistical tests were performed at the 2-tailed α level of 0.05. Data were analysed using SAS version 9.4 
[SAS Institute Inc., Cary, NC 27513, USA].

Data Availability
All the anonymized data and the statistical analyses will be shared by request from any qualified investigator.
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