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tabolic syndrome is a fast growing public health burden for almost all the

veloped countries and many developing nations. Despite intense efforts from

th biomedical and clinical scientists, many fundamental questions regarding its

tiology and development remain unclear, partly due to the lack of suitable

aging technologies to visualize lipid composition and distribution, insulin

retion, b-cell mass and functions in vivo. Such technologies would not only

pact on our understanding of the complexity of metabolic disorders such as

esity and diabetes, but also aid in their diagnosis, drug development and assess-

nt of treatment efficacy. In this article we discuss and propose several strategies

visualization of physiological and pathological changes that affect pancreas and

ipose tissue as a result of the development of metabolic diseases.
Molecular imaging

For centuries, physicians have been

striving to observe the structures and

functions of the human body without

the need to cut it open or to perform a
biopsy. The discovery of X-rays in 1895 laid the foundation for

the major advances made much later in the 1970s, i.e. taking a

picture of the human body by X-ray to give a detailed image. At

the same time, magnetic resonance imaging (MRI, see Box 1)

was discovered and developed for medical imaging, as was the

use of radioisotopes and ultrasound. A modern radiology

department uses all these techniques for the diagnosis and

therapy evaluation of a range of diseases.

In parallel, life scientists wanted to look inside the living cells to

see the architecture and makeup of life at the molecular level. The

microscope in the first instance, followed by the use of light,

electrons, X-rays andmagnetic signals to observemolecular details

of structure and function in isolated cells have all contributed to

the enormous advances that have been made in understanding

life. Several imaging tools, their resolution and applications in the

biomedical sciences are depicted in Fig 1. In this genomic era,

imaging the working products of the genome inside a living cell, in
ce Technology and

5-6478-9957;
a model organism of human disease (e.g. mouse models) and in

human patients is one of themost powerful approaches to advance

our knowledge. In the field of molecular medicine, imaging is also

a way to link pre-clinical biomedical research and clinical practice.

Imaging biomarkers can provide surrogate endpoints for clinical

trials or shortcuts to drug development.

By definition, molecular imaging is the non-invasive

visualization in space and time of normal as well as abnormal

cellular processes at a molecular or genetic level. It can be used

to characterize and measure particular biological processes in

living organisms. The term ‘molecular imaging’ is used in a

variety of ways to describe (1) the imaging of endogenous

molecules that are present in a living system; (2) the use of

foreign targeted or activatable reporter agents that sense specific

molecular targets or cellular processes; (3) the use of labelled or

natural substrates to follow particular pathways and (4) the

introduction of genes to express protein products that can be

detected directly or indirectly.

In this article, rather than an extensive review of the literature,

we present our own perspective of how an important clinical

problem—the metabolic syndrome—can be tackled using

molecular imaging tools. Our group includes a highly multi-

disciplinary team of engineers, physicists, chemists, biologists
EMBO Mol Med 2, 196–210 www.embomolmed.org
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and medical researchers, working together as a team to bring

individual ideas and technical knowledge. The problemwe chose

to address, metabolic syndrome, describes a group of metabolic

abnormalities that raise the risk of cardiovascular disease and

type 2 diabetes, including hyperinsulinaemia, dyslipidaemia,

central obesity and hypertension (Reaven, 1993). Here we will

consider obesity and type 2 diabetes in particular and will use

these diseases as examples to illustrate how some of the

outstanding questions in the area may be approached by using

novel imaging techniques. We will discuss the limitations of

existing technologies and examine some recent developments

that might provide alternative ways of thinking in the field. It will

become clear that such solutions require close collaboration

between scientists in the engineering and physical sciences with

biomedical and clinician scientists.
Glossary

Arterial spin labelling
A functional magnetic resonance imaging method used in measuring

blood flow.

b-cell
A type of endocrine cell in the pancreas that secretes insulin.

Cardiovascular disease
A class of diseases that involve the heart or blood vessels, e.g. stroke.

Contrast agents
A substance used to enhance the contrast of structures or fluids

within the body in medical imaging.

Dynamic nuclear polarization (DNP)
Results from transferring spin polarization from electrons to nuclei,

thereby aligning the nuclear spins to the extent that electrons are

aligned. DNP is one of several techniques for hyperpolarization.

Dyslipidaemia
A condition with abnormal amount of lipids in the blood. Hyperlipi-

daemia, a form of dyslipidaemia, is often seen in people with

hyperinsulinaemia.

Exocytosis
A process by which a cell directs the contents of secretory vesicles out

of the cell membrane.

Gradient spin echo
A variety of MRI sequences that allow the measurement of diffusion

coefficients.

Hyperinsulinaemia
A condition in which there are excess levels of circulating insulin in

the blood. It is often found in people with type 2 diabetes.

Hypertension
A chronic medical condition in which the blood pressure is elevated.

Persistent hypertension increases the risk for strokes, heart attacks

and heart failure.

Insulin
A hormone released from pancreatic b-cells, which is central to

regulating energy and glucose metabolism in the body.

Isotopomer analysis
It provides the possibility of distinguishing between molecules of the

same compound on which only one atom contains an isotope and

www.embomolmed.org EMBO Mol Med 2, 196–210
Imaging ectopic fat accumulation

Ectopic lipid deposition, i.e. lipid accumulation in tissues/

organs other than white adipose tissue (WAT), such as liver and

muscle, is often associated with metabolic abnormalities,

including insulin and leptin resistance (Muoio & Newgard,

2006). One of the questions in the metabolic disease field is how

lipids are accumulated ectopically, and which particular lipid

species cause the most severe damage leading to insulin and

leptin resistance during diabetes and obesity development.

Arguably, magnetic resonance is probably the most suitable

technology to study the role of lipids non-invasively in vivo (see

Box 2). Although measurement of total fat and three-dimen-

sional (3D) reconstruction and quantification of various fat

depots can be done routinely and reliably with MRI aided with
those with two or more atoms labelled by the same isotope; it allows

the measurement of isotope isomer distributions to calculate the

fluxes through a biochemical network.

Krebs cycle
A series of enzyme-catalysed chemical reactions of central

importance in all living cells that use oxygen for cellular

respiration.

Leptin
A hormone released from white adipose tissue, which is a key

regulator of energy homeostasis. Defective leptin signalling is the

leading biological basis for obesity.

Magnetic resonance spectroscopy
A specialized technique that allows detection of biochemical

reactions non-invasively in vivo, e.g. measurement of ATP and

phosphocreatine levels in phosphorus spectroscopy.

Obesity
A medical condition with excess body fat accumulation. Body mass

index is used to define people as overweight (BMI between 25 and

30 kg/m2) or obese (BMI� 30 kg/m2).

Pancreatic islets
The pancreatic islets contain the endocrine cells in the pancreas,

including glucagon-secreting a-cells and insulin-secreting b-cells.

PET (positron emission tomography)
A nuclear medicine imaging technique which produces a 3D image or

picture of functional processes in the body.

Radioisotope
An atom with an unstable nucleus, characterized by excess energy

that may be imparted to a newly created radiation particle within the

nucleus, or to an atomic electron.

Type 2 diabetes
A disorder that is characterized by high blood glucose in the context

of relative insulin deficiency and insulin resistance. About 6% of the

world population suffers from type 2 diabetes.

Ultrasound
Cyclic sound pressure with a frequency greater than the upper limit of

human hearing, which is approximately 20,000Hz.

X-ray
A form of electromagnetic radiation, with wavelength in the range of

0.01–10 nm, corresponding to frequencies in the range of 3� 1016–

3� 1019Hz.
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BOX 1: Magnetic resonance imaging and magnetic resonance spectroscopy

MRI/MRS is based on a physical phenomenon called nuclear

magnetic resonance (NMR). A positively charged hydrogen

nucleus (proton) exposed to a magnetic field can absorb

energy from themagnetic pulse and radiate this energy out at

a particular frequency (the resonance frequency (RF),

�64MHz at 1.5 T). As the perturbed proton returns to its

equilibrium state (relaxation), the RF wave can be detected

by a radiofrequency coil and the relaxation process can

be described by two-time constants—longitudinal relaxa-

tion time (T1) and transverse relaxation time (T2). T1 and T2

reflect themicro- ormacro-environment of the proton such as

diffusion, magnetic susceptibility, temperature, binding to

proteins and flow. Therefore, pathologies that change these

properties, e.g. haemorrhages, can be detected. The resonance

frequencies of protons in different chemicals are character-

istically ‘shifted’ by the chemical environments of the protons

and therefore spectral analysis of the NMR signal enables

identification and quantification of metabolites in tissues and

in vivo. Besides 1H, nuclei of atoms, including 13C, 23Na and
31P, also have magnetic properties. They can be used to study

a range of chemicals in living systems that contain these

atoms.

198
1D MRS (magnetic resonance spectroscopy) (Liu et al, 2010;

Springer et al, 2010), it remains a challenge to determine the

extent of saturated and unsaturated lipids within a tissue

compartment. In particular, detecting the saturated and

unsaturated lipids of intramyocellular lipid (IMCL) and extra-
Figure 1. Imaging modalities, their spatial resolution and applications. Bioimaging en

analyses from molecules in the angstrom level to human brain and heart in the

Raman scattering; CT, computed tomography; MRI, magnetic resonance imaging

� 2010 EMBO Molecular Medicine
myocellular lipid (EMCL) pools in skeletal muscle is a challenge

because of the small spectral chemical shift between the olefinic

protons of the two lipid pools (Fig 2A). The degree of

unsaturation within the IMCL and EMCL pools is of significant

clinical importance (Boesch, 2007), as the effects of fatty acid on
compasses a range of imaging modalities that provide spatial and functional

centimetre level. NMR, nuclear magnetic resonance; SERS, surface-enhanced

; PET, positron emission tomography.

EMBO Mol Med 2, 196–210 www.embomolmed.org
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BOX 2: The advantages of magnetic resonance to study the role of lipids non-invasively in vivo

MR is well suited for studying lipids non-invasively in

humans or animal models of diabetes or obesity. First, the

signals from fat and water in tissue are relatively easy to

separate in MR images, and it is routine to use MRI in clinical

studies to evaluate fat distribution. Second, 1H magnetic

resonance spectroscopy (MRS) can be used to measure the

amount of ‘liquid lipid’ in triglycerides, i.e. lipids that have

fast movement and not lipids that compose structures

like membranes. Third, signals in the MR spectra from satu-

rated and unsaturated fatty acid chains can be distinguished,

providing a route for the molecular characterization of

in vivo fat. Fourth, intracellular and extracellular lipid signals

in skeletal muscle and possibly in other organs can be

separated by 1H MRS (Boesch et al, 1997). All these

approaches have been used in humans and rodent models

for obesity and diabetes, and thus provide a powerful link

between pre-clinical investigations of animal models and

clinical studies of patients. For example, the signal from IMCL

correlates with insulin resistance in both human (Meex et al,

2010) and animal models such as the Zucker rat (Korach-

Andre et al, 2005).
metabolic signalling and energy metabolism are modulated by

degree of unsaturation (Vessby et al, 2002). To overcome the

limitations of inadequate spectral dispersion in 1D MRS

measurements, one possible solution is to use spatially resolved

2D MRS techniques (Fig 2B). A recent study demonstrated the
Figure 2. Localized 1D and 2D MRS of skeletal muscle.

A. 1D spectrum including the olefinic protons (–CH––CH–) obtained by 1D point-re

IMCL and EMCL pools are seen, along with creatine and trimethyl amine (TM

B. Localized 2D correlation spectrum (L-COSY) recorded from soleus muscle of a no

from various resonances of both IMCL and EMCL pools. The cross-peaks due t

methylene protons (–CH––CH–CH2–CH––CH–) permits estimation of degree of

www.embomolmed.org EMBO Mol Med 2, 196–210
2D approach to estimate the degree of unsaturation within IMCL

pool, and found a direct link between the extent of obesity and

unsaturated IMCL, lending further support to the current

knowledge of dysregulated lipid metabolism in obesity (Velan

et al, 2008).
solved spectroscopy (PRESS) from soleus muscle. The CH3 and (CH2)n from the

A) protons.

rmal weight healthy subject. The spectrum shows the diagonal and cross-peaks

o olefinic (–CH––CH–) and allylic methylene protons (CH2CH––CH) and diallylic

unsaturation.
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Imaging of insulin secretion and insulin granule
exocytosis in model organisms

Understanding insulin secretion and its regulation mechanisms

in vivo as well as being able to measure b-cell mass over the

disease progression is instrumental for drug target screening,

validation and for evaluation of therapeutic strategies. Since the

discovery of insulin almost a century ago, research efforts have

been focussed on understanding insulin secretion mechanisms,

and more recently, on the molecular regulation of insulin

granule exocytosis. These studies established cellular mechan-

isms governing insulin secretion (Fig 3), but many of its details

have not been tested in in vivo settings, due to the lack of

suitable tools to measure and quantify insulin secretion at high

spatial and temporal resolutions.

Traditionally, insulin secretion is measured by enzyme-linked

immunosorbent assay (ELISA) or radioimmunoassay (RIA).

These methods suffer from poor temporal resolution, complete

lack of spatial resolution and delayed results. In model

organisms, optical imaging of genetically introduced exocytosis

markers may provide an alternative, with high spatial and
Figure 3. Cellular and molecular regulation of insulin secretion. The cellular

events leading to insulin secretion start with a rise in glucose level in the

blood, which quickly leads to glucose uptake into pancreatic b-cells. Glucose

in the cells then undergoes glycolysis and Krebs cycle to produce ATP, resulting

in an increased ATP/ADP ratio, and consequent closure of KATP-channels.

Membrane depolarization from KATP-channel closure opens L-type calcium

channels, allowing calcium influx into the cells, which then triggers insulin

granule exocytosis and the release of insulin into blood. GluT-2, glucose

transporter 2; GK, glucokinase; TCA, tricarboxylic acid cycle; Syt7,

synaptotagmin-7; K-ATP, ATP-sensitive potassium channel; L-Ca, L-type

calcium channel.

� 2010 EMBO Molecular Medicine
temporal resolutions, along with instantaneous quantitative

information. Figure 4 depicts one strategy for visually monitoring

insulin granule movement and exocytosis, and for providing

instantaneous quantification of insulin secretion. The optical

sensor for exocytosis can be genetically introduced into mouse

b-cells under the control of mouse insulin I promoter (Lu et al,

2009) or other b-cell specific promoters. Intravital fluorescent

microscopic imaging may be used to examine insulin granule

exocytosis systemically by tail vein injections of reagents that

impact insulin secretion. Such a strategy may also be combined

with surface-enhanced Raman spectroscopic (SERS) detection of

insulin and glucose as detailed in Fig 5. In this SERS-based

approach, a SERS tag (e.g. an organic molecule immobilized on a

gold nanoparticle) serves to label and track an analyte such as

insulin. Although label-free detection of analytes on a nanopar-

ticle surface is theoretically possible, this has not been

demonstrated in a published study. Since SERS tags use

molecules tethered to the surface of gold or silver nanoparticles,

it has limited or no toxicity (Faulds et al, 2004), particularly in

gold-based systems. In some cases, the whole SERS active

substrate could be implanted in mouse to obtain quantitative

sensing of glucose (Stuart et al, 2006) upon laser excitation

(see Fig 5B for an example of an implantable substrate prepared

by lithographic techniques). Moreover, advantages such as high

information content, multiplexing capability, lack of extensive

sample preparation, high tissue penetration and a highly sensitive

detection limit to the level of single molecules (Qian et al, 2008)

have led to various applications of SERS in biosensing, e.g. in cells

(Kim et al, 2006), tissues (Zhang et al, 2008) and circulating

tumour cell detection in humanwhole blood (Hu et al, 2007). The

essential requirement for the SERS-based method is that an

analyte or its reporter lies close to the nanoparticles or nano-

roughened surface of noble metals such as gold or silver. Table 1

lists the means to attach an analyte molecule to the metal surface

and its applications. The SERS technique has been used in mouse

models for in vivo tumour targeting and detection (Keren et al,

2008; Qian et al, 2008; von Maltzahn et al, 2009; Xiao et al, 2009;

Zavaleta et al, 2009). In the context of metabolic sensing, the

promise of SERS lies on the detection of glucose and its

derivatives, and of insulin and other peptide hormones using

SERS-active nanoparticles attached to a fibre-optic sensor (Zhang

et al, 2007). Even though optical fibre-based SERS biosensing is

still at its infancy (Shi et al, 2009), we anticipate that this

technique will be of great use as the fibre can be readily

configured for in vivo applications to allow SERS-basedmetabolic

studies in living animals in the near future.
In vivo imaging of pancreatic b-cell mass and
function

Besides defective insulin secretory processes, reduced b-cell

mass with consequent decreased production and secretion of

insulin also contributes to the development of type 2 diabetes.

Whether there is a minimal number of pancreatic islets needed

to maintain proper blood glucose levels or a sizeable reduction

(e.g. by 50%) in b-cell mass directly results in diabetes is not yet
EMBO Mol Med 2, 196–210 www.embomolmed.org
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Figure 4. An optical sensor for visualizing insulin granule exocytosis.

A. The sensor is based on a chimeric fusion protein that consists of a secretory granule resident protein, phogrin and two fluorescent proteins: a highly

pH-sensitive pHluorin inside the secretory granules and a red mCherry.

B. Schematic showing the design strategy of the optical sensor. pHluorin is inside the acidic lumen and remains non-fluorescent at resting state. Upon exocytosis,

pHluorin faces the extracellular fluid at neutral pH, and becomes highly fluorescent, while mCherry remains in the cytosol during the process, and serves as a

label for granule tracking and a standard for ratiometric quantification (adapted from Lu et al, 2009).

C. A time-lapse showing detected exocytosis events in insulin-secreting cells. Arrows indicate exocytosed insulin granules. SP, signal peptide; TMR,

transmembrane region. The images are unpublished observations by Gustavsson.
clear (Kahn et al, 2009). It is thus important to quantify b-cell

mass in vivo and to correlate it with glucose homeostasis in the

course of diabetes development. Furthermore, determining b-

cell mass and function in vivo is essential to assess tissue- and

cell-based therapies for diabetes.

From the drug development angle, an animal model that

allows detection of b-cell mass in vivowill be extremely useful to

evaluate the potential of drug candidates in preserving b-cell

function and number, but imaging the pancreas in small animals

is challenging as it is a thin layer of tissue of irregular shape

between other large organs. Imaging pancreatic islets to

evaluate the b-cell mass is even more difficult because the

islets occupy only 1–2% of the total pancreas volume. In

addition, motion artefacts due to respiration and cardiac

pulsation may deteriorate the quality of high resolution imaging

needed for resolving the pancreas. Due to the lack of difference

in proton density and MRI relaxation times between b-cells and

surrounding pancreatic tissues, b-cells cannot be differentiated

based on these intrinsic contrasts in MRI. Although contrast

agents can be designed to target specific receptors on cells, the

limited number of receptors on b-cell surface requires high

sensitivity, affinity and specificity of the contrast agent (for

review of past efforts on developing b-cell imaging probes, see

Schneider, 2008). As this likely represents the best translatable

approach for non-invasive imaging of human b-cell mass,

ongoing efforts are aimed at identifying novel b-cell specific
www.embomolmed.org EMBO Mol Med 2, 196–210
biomarkers (Flamez et al, 2010; Ueberberg et al, 2010). So far,

limited success has been achieved in imaging b-cell mass in

rodents byMRI of transplanted islets or b-cells labelledwith iron

oxide nanoparticles or gadolinium (Gd) (Evgenov et al, 2006;

Zheng et al, 2005), by bioluminescent imaging of genetically

introduced luciferase gene in b-cells (Park & Bell, 2009), by

Mn2þ-enhanced MRI (Antkowiak et al, 2009) and by positron

emission tomography (PET) imaging of dihydrotetrabenazine

(DTBZ) bound Type 2 vesicular monoamine transporters

(VMAT2) (Souza et al, 2006). We propose here two approaches

to generate pancreatic b-cell specific labels that may allow

quantification of b-cell mass in vivo.

Small molecule probes

Commonly used antibody-based imaging techniques are limited

to tissue/cell surface targets (not intracellular) and repeated

treatment may induce adverse immune responses. Tagging the

antibodies with suitable labels (e.g. small molecules, metal

complexes or nanoparticles) is an added challenge. Genetic

modification of specific protein targets with fluorescence

proteins such as green fluorescent protein (GFP) provides

target specific labelling platforms in live systems but this

approach is not applicable to a clinical setting limiting their

usage to cell culture or animal model studies. Instead, small

molecule probes are ideal for clinical application as demon-

strated in many currently used drug molecules. Drug-like
� 2010 EMBO Molecular Medicine 201
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Figure 5. Basic concept and applications of surface-enhanced Raman spectroscopy.

A. Basic concept of SERS. Raman scattering occurs at very low intensities in solution phase when molecules (oval-shaped grains) are distant from the metallic

nanoparticles (yellow spheres). When the molecule is close to the nanosurface, upon laser excitation, the intensity is enhanced by the interaction of the

molecule with the surface electrons.

B. Scanning EM image of silver and gold bimetallic SERS substrate by deep UV lithography on silicon wafers designed for glucose sensing.

C. Raman spectrum of glucose. Glucose sensing using surface functionalized bimetallic SERS substrate shown in 5B in SERS mode. The peaks indicate different

vibrational levels in the molecules. Note that the narrowness of the peaks allows structurally similar multiple analytes to be detected simultaneously.

D. Glucose quantification by SERS-based glucose sensing. Areas-under-curves of the vibrational bands of glucose Raman spectrum at 519, 1067, 1131 and

1365 cm�1 are plotted against glucose concentrations.

Table 1. Strategies for attaching an analyte molecule to the metal surface and applications

Technique Principle Current/potential applications References

Polymer

encapsulation

SERS reporter molecule

on nanoparticle surface

protected by thiol

terminated polyethylene

glycol

Non-invasive in vivo

SERS imaging

Cho et al (2010);

Qian et al (2008)

Silica

encapsulation

SERS reporter molecule

on nanoparticle surface

protected by growing a

shell of silica around the

nanoparticle

Non-invasive in vivo

SERS imaging

Keren et al (2008);

Sha et al (2008);

Zavaleta et al (2008, 2009)

Covalent

anchor

Attaching the SERS

reporter molecule

covalently using thiol

chemistry

Mammalian cell

surface imaging

Hu et al (2007)

Self-assembled

monolayer

Partition of an analyte

into the monolayer on a

SERS active substrate

In vitro and in vivo

glucose sensing

Dinish et al (2009);

Stuart et al (2006);

Yonzon et al (2004)

202 � 2010 EMBO Molecular Medicine EMBO Mol Med 2, 196–210 www.embomolmed.org
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Figure 6. Schematic work flow of DOFLA in a- and b-cell screening and its application for in vivo imaging.

A. DOFLA preparation and high throughput screening in a- and b-cells to identify a probe specific for each of the cell types.

B. Structure of an a-cell selective probe Glucagon Yellow.

C. Examples of some potential modifications to convert Glucagon Yellow into PET or SPECT probes. The 99mTc ligand could also be replaced by a Gd

chelate to form an MRI contrast agent.

BOX 3: How to target small molecule fluorescent probes

There are two general approaches to target small molecule

fluorescent probes: one is analyte-oriented and the

other diversity-oriented. The conventional analyte-oriented

approach combines known analyte binding motifs to

fluorescent molecules through a linker. Many fluores-

cence-based sensors have been developed through this

approach, but each individual development requires a major

effort in both designing and synthesizing the sensors and the

sensor’s application remains limited to the pre-selected

specific analytes. To overcome this limitation and to

accelerate novel sensor discovery, an alternative diversity

oriented fluorescence library approach (DOFLA) was intro-

duced recently (Lee et al, 2009b). In DOFLA, structurally

diverse library compounds are generated by combinatorial

chemistry and the library compounds are screened in high

throughput manner either in purified analyte or against

whole cell/tissue/organism. In addition to its high speed of

novel probe discovery, this approach is advantageous over

conventional method especially when themolecular target is

not known, i.e. the whole cell can be used for screening, and

the target can be identified later (system to target approach).

DOFLA has been successfully used to generate probes against

a broad range of targets including DNA (Lee et al, 2003), RNA

(Li & Chang, 2006), b-amyloid (Li et al, 2004, 2007), GTP

(Wang & Chang, 2006), heparin (Wang & Chang, 2008),

chymotrypsin (Wang & Chang, 2008), human serum albumin

(Ahn et al, 2008), glutathione (Ahn et al, 2007;Min et al, 2007)

and myotube cell-state discrimination (Wagner et al, 2008).
imaging probes will also be easy-to-use universal research tools,

which can be used in cell or animal studies, without additional

genetic modifications. We note the revolutionary application of

Fura dyes for calcium imaging; this powerful small molecule

probe was the technical foundation for the booming of calcium

signalling field during the last several decades (Grynkiewicz

et al, 1985).

Despite their great potential, target specificity remains a

challenge in developing small molecule probes. We discuss two

approaches to target probes to particular molecules or cells in
www.embomolmed.org EMBO Mol Med 2, 196–210
Box 3. Fluorescent molecules are the most popular small

molecule probes due to their high sensitivity and exceptional

ease of handling compared to their radioactive counterparts.

However, the intrinsic limit of light penetration of the fluorescent

probe precludes its applications in deep tissue imaging. They can,

however, be modified by attaching an MRI-, PET- or SPECT

(single photon emission computed tomography)-compatible

functional group or single atomic radioisotope, which would

render them suitable for deep tissue imaging in animal or clinical

studies. The general work flow of diversity oriented fluorescence
� 2010 EMBO Molecular Medicine 203
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library approach (DOFLA) (see Box 3) and strategies to convert a

particular probe for MRI, PET and SPECT imaging are

summarized in Fig 6. We have recently applied this approach

to identify Glucagon Yellow as ana-cell-selective probe (Lee et al,

2009a). We believe that pancreatic b-cell specific probes can be

identified by adopting the approaches described inBox 3, and that

the identified fluorescent probe can be converted as in Fig 6 to

allow quantification of b-cell mass in vivo.

Genetic approach

An alternative to the small molecule approach is by genetic

introduction of complementary DNA (cDNAs) encoding pro-

teins that bind to MRI-, PET- or SPECT-compatible probes, or

that can accumulate iron and form MR-detectable iron particles.

Although this cannot be adapted to clinical usage, applying it to

animal models could generate useful pre-clinical models to

evaluate therapeutic compounds for their ability to preserve b-

cell mass. Several studies have demonstrated the use of iron-

binding proteins such as ferritin and a bacterial protein MagA in

in vitro and in vivo imaging (Cohen et al, 2005, 2007; Genove et

al, 2005; Goldhawk et al, 2009; Zurkiya et al, 2008). One can

envisage the use of transgenic mice expressing one of these

proteins specifically in pancreatic b-cells for the detection and

quantification of b-cell mass.
Functional assessment of pancreas in vivo

Pancreatic blood flow, blood volume and vascularization can

provide valuable information on the pancreatic islet function

and the re-establishment of b-cell function after transplantation.

Dynamic contrast enhanced MRI with intravenous injection of

Gd-based contrast agent has been used to estimate these

haemodynamic parameters in humans (Coenegrachts et al,

2004; Yu et al, 2009). Since one passage of the contrast agent

through circulation can be as short as 5 s in mice (Nyman et al,

2008) and 20 s in human, this makes it difficult to calculate

blood flow from the very fast contrast agent kinetics. Instead,

the time-to-peak and the area under curve of the contrast agent

kinetics are commonly used as an estimate of blood volume and

vascularization (Hathout et al, 2007; Medarova et al, 2007). We

recently demonstrated that similar contrast agent enhancedMRI

can be applied to study blood flow in mouse pancreas (Lee et al,

2009c). Another approach for quantifying blood flow is arterial

spin labelling (Schraml et al, 2008), but this has its own share of

challenges as well. A method based on gradient spin echo

(GRASE) image acquisition can significantly reduce the

susceptibility artefacts (unpublished observations) and could

be applied in abdominal imaging. The present MR technologies

cannot compete with the stunning time-resolved blood flow

patterns of exposed mouse pancreas in 3D obtained by line-

scanning confocal microscopy (Nyman et al, 2008). However,

image registration and correlation of high resolution optical

image data with MRI can provide a way for translating animal

model observations to in vivo and to human studies.

Imaging glucose, its derivatives and the activation of b-cells

in vivo is another important functional readout of the pancreas.
� 2010 EMBO Molecular Medicine
Glucose and glycogen can be detected by MRI using specific

paramagnetic lanthanide complexes, which generate a chemical

exchange saturation transfer (CEST) effect (Zhang et al, 2003).

Glucose distribution in the liver has been mapped ex vivo in this

manner (Ren et al, 2008). However, due to strong magnetic field

heterogeneity and motion, it will prove to be difficult to apply

this approach in in vivo studies. Using manganese ion (Mn2þ) as

a calcium analogue allows the measurement of calcium influx

into pancreatic b-cells after glucose stimulation (for review,

please see Koretsky & Silva, 2004). Indeed, Mn2þ-enhanced MRI

has been used to observe b-cell activity in isolated b-cells (Gimi

et al, 2006) and in mouse pancreas in vivo (Antkowiak et al,

2009). Although the toxicity of Mn2þ may limit its application in

humans, this non-invasive technique complements the restric-

tion of optical fluorescent imaging.

Although MRI is sensitive to different physical and physiolo-

gical parameters in vivo, it detects the ensemble of all the

parameters and cannot differentiate individual components. This

limits our ability to image multiple cell/islet populations and/or

biological processes in parallel to understand their interactions

and dynamics. One strategy to overcome this limitation is by

using frequency-shifting contrast agents to change the resonance

frequency of the water instead of changing the T1 or T2 relaxation

times (Zabow et al, 2008). This allows images to be generated at

different frequencies like quantum dots in optical imaging.

Alternatively, one can combine the use of conventional relaxation

agents (e.g. iron oxide nanoparticles or Mn2þ) and a CEST

contrast agent (Gilad et al, 2009). A potential application is to

track transplanted b-cells with iron oxide (or a frequency-shifting

agent) and to monitor their function using Mn2þ- or Zn2þ-

sensitive agents and/or CEST effect.
New technologies in imaging metabolic diseases

MRS using carbon (13C) is ideally suited to the study of

metabolism due to the extensive range of compounds that can be

detected and the ability to attribute signals to the different carbon

atoms within individual molecules. 13C studies of metabolism in

cells and in vivo have been conducted since the early 1980s,

pioneered by Robert Shulman. Bailey et al carried out the first

experiments on isolated perfused rat hearts using 13C-enriched

sodium acetate (Bailey et al, 1981). A wealth of work has since

followed on cardiac metabolism, despite limitations of the

method caused by both the low natural abundance of the MRS-

visible isotope of carbon (13C) and the low level of magnetic

polarization normally achievable. The low natural abundance of
13C has required most work to be conducted using 13C-enriched

molecules and even then long scan times are required, resulting

in the study of metabolic steady-state conditions.

Recently, a new technique—DNP-MR—has produced a

practical method to enhance magnetic polarization levels by

more than 10,000-fold (Ardenkjaer-Larsen et al, 2003; Golman

et al, 2003) (Fig 7). The technique combines the solid-state

methods of dynamic nuclear polarization (DNP) (Bailey et al,

1981) with a rapid dissolution procedure to produce stable

injectable solutions (in vivo stability of approximately 60 s)
EMBO Mol Med 2, 196–210 www.embomolmed.org
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Figure 7. Hyperpolarized 13C and an example of its applications in metabolic research.

A. The NMR signal is proportional to the difference between two populations of nuclei in distinct energy levels. Hyperpolarization of the 13C nuclei produces a

large difference as compared to the thermal equilibrium state thus increasing the NMR signal. Nþ/N�: number of nuclei in high/low energy state.

B. The thermal equilibrium 13C spectrum of urea at 9.4 T averaged for 65 h is depicted on the left while the analysis of the same sample, hyperpolarized by the

DNP-MR method and acquired in 1 s is presented on the right (adapted from Ardenkjaer-Larsen et al, 2003).

C. Time course of spectra acquired every second over a 60 s period after injection of hyperpolarized [1-13C]pyruvate from the heart of a male Wistar rat (adapted

from Tyler et al, 2008). As the pyruvate signal decays, one can observe the generation of lactate, alanine and bicarbonate. Chemical shift imaging of these

metabolites from a perfused rat heart depicts the biodistribution. The proton image is given for anatomical reference. The images are unpublished

observations by Lee.
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Table 2. Summary of the technologies and approaches discussed in the article and their applications to the field of metabolism and metabolic syndrome

Applications Technologies Reporter Subjects Relevant reference

Quantification

and 3D

mapping of

body fat

MRI and 1D MRS Intrinsic/protons Animal models and

human subjects

Liu et al (2010);

Springer et al (2010)

Detection and

estimation of

lipid saturation

levels

2D MRS Intrinsic/protons Animal models and

human subjects

Velan et al (2008))

Insulin

measurement

ELISA or RIA Antibody/fluorescence

or radioactive

In vitro Gustavsson et al (2008)

Visualization

of insulin

granules and

their

exocytosis

Fluorescent microscopy

and intravital

fluorescent microscopy

Fluorescent protein-

fused secretory

granule resident or

cargo protein

In vitro

and

animal

models

Lu et al (2009)

Detection and

quantification of

glucose

SERS SERS-active

substrates—Raman

spectroscopy

In vitro,

animal models

and human subjects

Dinish et al (2009);

Yonzon et al. (2004);

Stuart et al. (2006)

b-Cell

detection and

b-cell mass

determination

MRI Iron oxide

nanoparticles or

gadolinium

conjugates

In vitro

and animal models

Evgenov et al (2006);

Zheng et al (2005)

b-Cell detection

and b-cell mass

determination

MRI Transgene encoding

MRI-compatible

probes (e.g. Ferritin

and MagA)

Animal models To be demonstrated

b-Cell detection

and b-cell mass

determination

Bioluminescence Luciferase specifically

expressed in b-cells

Animal models Park & Bell (2009)

b-Cell detection

and b-cell mass

determination

Mn2þ-enhanced MRI Manganese chloride In vitro and

animal models

Antkowiak et al (2009);

Gimi (2006)

b-cell detection

and b-cell mass

determination

PET DTBZ-bound

VMAT2/positron

emitting isotopes

Animal models Souza et al (2006)

b-Cell detection

and b-cell mass

determination

MRI,

PET, SPECT

DOFLA-based small

molecule probes

subsequently

conjugated with

imaging contrast

agents

Animal models and

human subjects

To be demonstrated

Detection and

quantification

of a-cells

MRI, PET,

SPECT

Glucagon Yellow and

other DOFLA-based

small molecule

probes subsequently

conjugated with

imaging contrast

agents

Animal models and

human subjects

Lee et al (2009a)

Assessment of

pancreatic blood flow

Arterial spin

labelling

Magnetically labelled

blood–water

Animal models Schraml et al (2008)

Assessment of

pancreatic blood flow

GRASE Proton diffusion

measurements

Animal models Unpublished

Assessment of

pancreatic blood flow

Line-scanning

confocal

microscopy

Measurement of

fluorescent probes

Animal models Nyman et al (2008)

Tissue glucose

distribution

CEST Changes in proton

density

Animal models Ren et al (2008)

Detection of specific

metabolite

MRS 13C Ex vivo Bailey et al (1981)

Measurement of

metabolic fluxes

DNP-MRS Hyperpolarized 13C Animal models Schroeder et al (2008, 2009)
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Bridge the gap

The Gap

Metabolic syndrome, a pandemic problem in most of the

developed countries and many developing nations, poses a

significant burden to the health care of the affected

countries. Despite intense efforts from both basic and clinical

scientists, many fundamental questions regarding its aetiol-

ogy and development remain unanswered. The fine details of

in vivo insulin secretion regulation remain elusive. The

threshold of b-cell mass needed to keep glucose level in check

is not known. In addition, biomarkers that reflect in vivo b-

cell mass or pancreatic activity are also needed as endpoints

in clinical trials or for early drug development assays.

Although many technologies are available to address these

issues in vitro or ex vivo, what is urgently needed is clinical

applicable technologies and proper animal models that can

be used to understand the disease and test potential

therapeutic candidates.

The Bridge

Webelieve imaging represents themost suitable technology in

addressing these questions, with a track record of successful

pre-clinical applications and clinical adaptation. Answering

the questions above requires the development of suitable

imaging tools and this Bridge the Gap article proposes a series

of approaches that could be used to tackle these and other

relevant matters in the field of metabolic diseases.
(Golman et al, 2006a; Malloy et al, 1987). DNP-MR allows

visualization of 13C-labelled metabolites in vivo and, more

importantly, their enzymatic transformation into other species

(Schroeder et al, 2008; Tyler et al, 2008).

Initial trials of the DNP-MR method focussed on the study of

hyperpolarized [1-13C]pyruvate (Golman et al, 2006b) and

indicate that its rapid conversion to [1-13C]lactate, [1-13C]alanine

and bicarbonate (H13CO3
�) should provide a sensitive test for

cardiacmetabolism. In the heart, the metabolism of pyruvate and

the activity ofmitochondrial pyruvate dehydrogenase (PDH) play

key roles in oxidative metabolism (Chen et al, 2007; Schroeder et

al, 2009). The development of metabolic imaging with hyperpo-

larized MR (Ardenkjaer-Larsen et al, 2003; Golman et al, 2006a)

enabled unprecedented visualization of the biochemical mechan-

isms of normal and abnormal metabolism (Chen et al, 2007; Day

et al, 2007; Golman et al, 2006b; Merritt et al, 2007), such as

measuring PDH flux in vivo. In vivo, the hyperpolarized tracer

[1-13C]pyruvate rapidly generates the visible metabolic products

[1-13C]lactate, [1-13C]alanine and bicarbonate (H13CO3
�), which

exist in equilibriumwith carbon dioxide (13CO2). Because it is the

PDH-mediated decarboxylation of pyruvate into acetyl-CoA that

produces 13CO2, monitoring the production of hyperpolarized

H13CO3
� should enable a direct, non-invasive measurement of

flux through the PDH enzyme complex (Chen et al, 2007), which

is highly dependent on PDH activity in vivo.

The Krebs cycle is fundamental to cardiac energy production,

and is often implicated in energetic imbalances characteristic of

heart disease. To date, Krebs cycle flux has beenmeasured using
13C-MR spectroscopy with isotopomer analysis; however, this

approach is limited to the study of steady-state metabolism only

and has limited in vivo applications. Hyperpolarized [2-13C]pyr-

uvate was demonstrated in a recent study to serve as a tracer to

monitor Krebs cycle metabolism in the isolated perfused heart

directly (Schroeder et al, 2009). Hyperpolarized [2-13C]pyruvate

was infused into healthy hearts, and the metabolic products
www.embomolmed.org EMBO Mol Med 2, 196–210
with sufficient MR signal for detection at high temporal

resolution were identified. The time courses of the formation

of each of these metabolites gave kinetic information describing

the relationships among cytosolic metabolism of [2-13C]pyr-

uvate, PDH-mediated oxidation of [2-13C]pyruvate and its

subsequent incorporation into the Krebs cycle. In addition,

hyperpolarized [2-13C]pyruvate was infused at the moment of

reperfusion into globally ischaemic hearts, to identify differ-

ences in [2-13C]pyruvate metabolism in the reperfused myo-

cardium. This study demonstrated that Krebs cycle metabolism

can be directly and instantaneously monitored by using

hyperpolarized [2-13C]pyruvate as a metabolic tracer, and that

new information can be obtained about the coordination of

glycolysis, pyruvate oxidation and Krebs cycle flux in the

normal and post-ischaemic myocardium (Schroeder et al, 2009).

Hence, hyperpolarized 13C enables non-invasive, in vivo and

real time assessment of metabolic processes, with the possibility

of quantification, e.g. enzyme-mediated flux of metabolite

intermediates (PDH, LDH (L-lactate dehydrogenase), CA).When

coupled with metabolic imaging, it is possible to study the

spatial distribution of metabolites and to measure in vivo pH at

multiple time points (e.g. see Fig 7C). The technique may be

applied to study the impact of carbohydrate metabolism on

disease progression, and to evaluate the efficacy of therapeutic

interventions longitudinally, e.g. to monitor glucosemetabolism

at different stages of diabetes development. Since a-cells, but

not b-cells possess high level of surface transporters for

pyruvate (monocarboxylase transporters) (Ishihara et al,

2003), a potential application of hyperpolarized imaging of

pyruvate is to study the physiological and pathological changes

specifically in pancreatic a-cells.

Although technical details are still being worked out, future

applications of the technique in lipid metabolism will be highly

significant in understanding changes in lipogenesis during

development of obesity and other metabolic diseases.
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Concluding remarks

Despite intense efforts from both basic and clinical scientists,

many fundamental questions regarding the aetiology and

development of the metabolic syndrome remain unanswered.

We believe imaging represents the most suitable technology in

addressing such questions, with a track record of successful pre-

clinical applications and clinical adaptation.We discussedmany

imaging possibilities and approaches in this article and

summarized them in Table 2. While some are currently in

use, many others are still in early phase of development or of

translation to clinical application. The diversity and the

complexity of these approaches highlight the need for close

collaborations among biologists, clinicians, chemists, physicists

and engineers to develop suitable imaging tools that allow

visualization of metabolic processes in vivo.
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