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This work is concerned with the numerical study of laminar, steady MHD mixed convection flow, and entropy 
generation analysis of 𝐴𝑙2𝑂3-water nanofluid flowing in a lid-driven trapezoidal enclosure. The aspect ratio 
of the cavity is taken very small. The cavity is differentially heated to study the fluid flow, heat, and mass 
transfer rate. The adiabatic upper wall of the enclosure is allowed to move with a constant velocity along the 
positive 𝑥-direction. The second-order finite difference approximation is employed to discretize the governing 
partial differential equations, and a stream-function velocity formulation is used to solve the coupled non-linear 
partial differential equations numerically. The simulated results are plotted graphically through streamlines, 
isotherms, entropy generation, Nusselt number, and Sherwood number. The computations indicate that the 
average Nusselt number and average Sherwood number are decreasing functions of Hartmann number, aspect 
ratio, and nanoparticle volume fraction. Significant changes in streamlines, temperature and concentration 
contours for high Richardson number are observed.
1. Introduction

Minimization of entropy generation is an emerging thermodynamic 
approach in the field of engineering, which is a major concern to design 
modern thermal management systems. The concept of entropy genera-
tion was first introduced by Bejan (see, [1]). He concluded that the 
entropy generation minimization process enhances the thermodynamic 
efficiency of the system and leads to an increment of efficiency of a ther-
mal system. Basak et al. [2] studied the entropy generation for natural 
convection in a porous cavity considering different boundary conditions 
of a trapezoidal enclosure with various inclination angles. They ana-
lyzed the effects of different Rayleigh number and Prandtl number on 
the heat transfer rate and entropy generation and found that the magni-
tude of entropy generation increases with increase in Prandtl number.

Nanofluid is a fluid with suspended metallic nanoparticles of size 
smaller than 100 nm (see, [3]). The applications of nanofluids on heat 
transfer have been studied by Buongiorno [4], Das et al. [5], Wen et al. 
[6], Mahian et al. [7] etc. It is experimentally and theoretically proved 
that the thermal conductivity of fluid enhanced by 10 - 50 per cent 
when considering a mixture of a solid volume fraction of nanoparticles 
less than 5 per cent. Nayak et al. [8] investigated the study of con-
vective heat transfer of a Cu-water nanofluid in a differentially heated 
skewed enclosure in which nanoparticles are moving at a higher ve-
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locity relative to the velocity of the fluid. The result shows that an 
increment in the nanoparticle size strongly affects the heat transfer rate 
and the square cavity has maximum heat transfer as compared to all 
other shapes of the parallelogram enclosure.

Fluids in association with heat and mass transfer are extensively 
used in substance production, air cooling, refrigeration, transportation, 
heat exchanger and several other applications (see, [9], [10], [11]). 
Mixed convection in cavity flow is an important phenomenon due to its 
various applications in cooling of electronic components, heat exchang-
ers, chemical reactors, solar collectors, food processing, float glass pro-
duction, thermal-hydraulics of nuclear reactors, flow and heat transfer 
in solar ponds, dynamics of lakes (see, [12], [13], [14], [15]) etc. Keep-
ing this motivation in mind in many engineering applications forced 
convection is encountered in the analysis of pipe flow, cavity flow, flow 
over a flat plate, heat exchangers etc. Mixed convection and entropy 
generation of Cu-water nanofluid and pure water in a lid-driven square 
cavity have been studied by Khorasanizadeh et al. [16]. They reported 
that for a suitable choice of Reynolds number and Rayleigh number, 
heat transfer enhancement and minimum entropy generation are ob-
tained. Nayak et al. [17] examined the entropy generation and mixed 
convection of Cu-water nanofluid inside a differentially heated skew en-
closure and studied the heat transfer, fluid flow and entropy generation 
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Table 1. Thermophysical properties of water and Aluminium oxide nanoparticle 
[26].

Properties water 𝐴𝑙2𝑂3 nanoparticles

𝐶𝑝(𝐽 𝑘𝑔−1 𝐾−1) 4179 765

𝑘(𝑊 𝑚−1 𝐾−1) 0.623 40

𝜌(𝑘𝑔 𝑚−3) 997.1 3970

𝛽𝑇 (𝐾−1) 21 × 10−5 0.8 × 10−5

𝜎(𝑘𝑔−1 𝑚−3 𝑠3 𝐴2) 0.05 3.69 × 107

𝜇(𝑘𝑔 𝑚−1 𝑠−1) 0.001003 -

𝛼(𝑚2 𝑠−1) 0.143 × 10−6 -

due to the addition of nanoparticles and different skew angle. They ob-
served that heat transfer enhancement is achieved for a higher value 
of the skew angle. Magnetic field plays an important role in the fluid 
flow due to the presence of Lorentz force that highly effects the heat 
and mass transfer rate. Elshehabey and Ahmed [18] studied the mixed 
convection flow in the presence of a magnetic field using Buongiorno’s 
nanofluid model with sinusoidal temperature distribution. They found 
that the fluid movement retards due to the presence of an inclined mag-
netic field.

Various studies are performed on different geometries, such as: A 
numerical modelling of steady laminar mixed convection flow of water-
Al2O3 nanofluid in a lid-driven inclined square enclosure has been 
discussed by Abu-Nada and Chamkha [19], Waheed [20] has studied 
heat transfer of mixed convection flow in rectangular enclosures with 
moving horizontal plate, mixed convection flow in a trapezoidal en-
closure filled with two layers of nanofluid and porous media with a 
rotating circular cylinder and a sinusoidal bottom wall was studied by 
Hussein et al. [21], numerical investigation of double diffusive natu-
ral convection and entropy generation of nanofluid in a wavy enclosure 
with discrete heating in the presence of magnetic field have been dis-
cussed by Parveen and Mahapatra [22], Chamkha et al. [23] recently 
studied effects of a rotating cone on the mixed convection in a dou-
ble lid-driven 3D porous trapezoidal cavity filled with nanofluid under 
the impact of magnetic field, mixed convection of hybrid nanofluid in a 
porous trapezoidal chamber was discussed by Cimpean et al. [24] etc. 
In the analysis of entropy generation, the geometry of the cavity is also 
considerable as it varies for different shape of cavities. In the present 
study, a trapezoidal enclosure with various aspect ratios is considered.

In this manuscript, double-diffusive mixed and forced convection of 
nanofluid inside a trapezoidal cavity of low aspect ratio (0.2 ≤ 𝐴 ≤ 0.4) 
with moving upper wall in the presence of magnetic field acting per-
pendicularly to the 𝑥−axis has been analyzed. Previously, entropy gen-
eration has been studied in many researches, but all the reasons (viz. 
fluid flow, heat transfer, mass transfer and magnetic field) of entropy 
generation have not been analyzed together in a low aspect ratio trape-
zoidal enclosure for double-diffusive MHD mixed convection flow. In 
the present manuscript, those limitations are overcome with a lot of ef-
fects, which are basically observed in most of the real applications and 
therefore, the present study can be used as a more general entropy gen-
eration minimization process. The main objective of the present study is 
to investigate and minimize the entropy generation due to the combined 
effects of heat and mass transfer, fluid flow and magnetic field in a low 
aspect ratio cavity, which may be applied to improve several thermody-
namic applications like refrigeration, cooling of electronic equipment, 
heat exchangers by increasing their efficiency as well as making them 
thinner.

2. Problem formulation

2.1. Thermo-physical properties of nanofluid

According to the Boussinesq model thermo-physical properties of 
the nanofluid are assumed to be constant except for the variation of 
density. Thermo-physical properties of water and Al2O3 nanoparticles 
are given in Table 1.
2

Fig. 1. Physical diagram of the considered problem.

The thermal diffusivity, effective density, heat capacitance of 
nanofluid, thermal expansion coefficient and solutal expansion coef-
ficient are given by Xuan and Roetzel [25] as

𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓
, 𝜌𝑛𝑓 = (1 −𝜑)𝜌𝑓 +𝜑𝜌𝑠, (𝜌𝑐𝑝)𝑛𝑓 = (1 −𝜑)(𝜌𝑐𝑝)𝑓 +𝜑(𝜌𝑐𝑝)𝑠,

(𝜌𝛽𝑇 )𝑛𝑓 = (1 −𝜑)(𝜌𝛽𝑇 )𝑓 +𝜑(𝜌𝛽𝑇 )𝑠 and (𝜌𝛽𝑆 )𝑛𝑓 = (1 −𝜑)(𝜌𝛽𝑆 )𝑓 +𝜑(𝜌𝛽𝑆 )𝑠,

respectively. The effective thermal conductivity (𝑘𝑛𝑓 ) and viscosity 
(𝜇𝑛𝑓 ) of nanofluid followed respectively by Maxwell-Garnetts model 
[27] and Brinkman relation [28] and are given by

𝑘𝑛𝑓 = 𝑘𝑓

[
𝑘𝑠 + 2𝑘𝑓 − 2𝜑(𝑘𝑓 − 𝑘𝑠)
𝑘𝑠 + 2𝑘𝑓 +𝜑(𝑘𝑓 − 𝑘𝑠)

]
and 𝜇𝑛𝑓 =

𝜇𝑓

(1 −𝜑)2.5
,

where 𝑘, 𝜌, 𝜑, 𝛽𝑇 , 𝛽𝑆 , 𝐶𝑝 are thermal conductivity, fluid density, 
nanoparticle volume fraction, coefficient of thermal expansion, coef-
ficient of solutal expansion respectively and the suffixes 𝑠, 𝑓 , 𝑛𝑓 refer 
to the corresponding properties nanoparticles, base fluid, nanofluid, re-
spectively.

2.2. Governing equations and boundary conditions

The two-dimensional governing equations for viscous, steady, mag-
netohydrodynamic, double-diffusive, mixed convection flow of water-
based Al2O3 nanofluid inside a trapezoidal cavity with right and left 
walls inclined at an angle 𝜙 with the positive 𝑋-axis and the negative 
𝑋-axis, respectively are based on the law of conservation of mass, linear 
momentum, thermal energy and concentration. In the present study, the 
cavity is considered with uniformly heated and diffusive bottom wall, 
adiabatic and of zero concentration gradient top wall, linearly heated 
and diffusive left wall, cold and non-diffusive right wall. The top wall 
of the cavity is moving with velocity 𝑈0 in the positive 𝑋-direction. 
A uniform magnetic field 𝐵0 is imposed along Y-axis neglecting the in-
duced magnetic field, which is justified for MHD flow at small magnetic 
Reynolds number [29]. The physical model of the problem is shown in 
Fig. 1.

Mass flux due to temperature gradient is known as Soret effect and 
its impact on the liquid is important only when the concentration of so-
lute is not small but in the present study, the concentration of solute in 
the liquid is small. So the Soret effect is neglected. The reciprocal phe-
nomenon to the Soret effect is Dufour effect, which is the energy flux 
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due to the concentration of solute occurring as a coupled effect of irre-
versible processes. It is also negligible as the energy flux due to mass 
concentration in the liquid is very small. Chemical reactions are also ne-
glected because 𝐴𝑙2𝑂3 is a stable compound as in the structure of 𝐴𝑙2𝑂3
there are four aluminium atoms around the oxygen atom as tetrahedral 
and six oxygen atoms around the aluminium atom as octahedral, which 
mean both atoms have the maximum coordination number according 
to valence bond theory. So that there is no possibility to get a reaction 
between aluminium oxide and water.

The thermo-physical properties are treated as constant except in 
the buoyancy term where the density, is considered as a function of 
temperature and concentration under Boussinesq approximation. The 
equations of continuity, momentum, energy and concentration for the 
problem under consideration can be written in dimensional form as fol-
lows:

𝑈𝑋 + 𝑉𝑌 = 0, (1)

𝑈𝑈𝑋 + 𝑉 𝑈𝑌 = − 1
𝜌𝑛𝑓

𝑃𝑋 + 𝜈𝑛𝑓 (𝑈𝑋𝑋 +𝑈𝑌 𝑌 ) −
𝜎𝑛𝑓𝐵

2
0𝑈

𝜌𝑛𝑓
, (2)

𝑈𝑉𝑋 + 𝑉 𝑉𝑌 = − 1
𝜌𝑛𝑓

𝑃𝑌 + 𝜈𝑛𝑓 (𝑉𝑋𝑋 + 𝑉𝑌 𝑌 ) +
𝑔(𝜌𝛽𝑇 )𝑛𝑓
𝜌𝑛𝑓

(𝑇 − 𝑇𝑐)

+
𝑔(𝜌𝛽𝑆 )𝑛𝑓
𝜌𝑛𝑓

(𝐶 −𝐶𝑐), (3)

𝑈𝑇𝑋 + 𝑉 𝑇𝑌 = 𝛼𝑛𝑓 (𝑇𝑋𝑋 + 𝑇𝑌 𝑌 ), (4)

𝑈𝐶𝑋 + 𝑉 𝐶𝑌 =𝐷(𝐶𝑋𝑋 +𝐶𝑌 𝑌 ), (5)

where 𝑈 , 𝑉 , 𝑃 , 𝑇 , 𝐶 , 𝐷, 𝑔, 𝑇𝐶 , 𝐶𝐶 , 𝜎𝑛𝑓 , 𝜈𝑛𝑓 represent dimensional 
velocity along 𝑋-direction, dimensional velocity along 𝑌 -direction, di-
mensional pressure, dimensional temperature, dimensional concentra-
tion, mass diffusivity, acceleration due to gravity, dimensional tem-
perature at the cold wall, dimensional concentration at the non-
diffusive wall, electrical conductivity of nanofluid, kinematic viscosity 
of nanofluid respectively and the suffixes 𝑋, 𝑌 represent the partial 
derivative with respect to 𝑋, 𝑌 respectively.

The imposed dimensional boundary conditions for considered prob-
lem are as follows:

(i) at the top wall: 𝑈 =𝑈0, 𝑉 = 0, 𝑇𝑌 = 0 = 𝐶𝑌 ,
(ii) at the bottom wall: 𝑈 = 𝑉 = 0, 𝑇 = 𝑇ℎ, 𝐶 = 𝐶ℎ,

(iii) at the left wall: 𝑈 = 𝑉 = 0, 𝑇 = 𝑇𝑐 +(𝑇ℎ−𝑇𝑐)(1 −𝑌 ∕𝐿), 𝐶 = 𝐶𝑐 +(𝐶ℎ−
𝐶𝑐)(1 − 𝑌 ∕𝐿),

(iv) at the right wall: 𝑈 = 𝑉 = 0, 𝑇 = 𝑇𝑐, 𝐶 = 𝐶𝑐 .

Introducing the non-dimensional variables 𝑥 = 𝑋∕𝐿, 𝑦 = 𝑌 ∕𝐿, 𝑢 =
𝑈∕𝑈0, 𝑣 = 𝑉 ∕𝑈0, 𝑝 = 𝑃∕(𝜌𝑛𝑓𝑈2

0 ), 𝜃 = (𝑇 −𝑇𝑐)∕(𝑇ℎ−𝑇𝑐), 𝑆 = (𝐶 −𝐶𝑐 )∕(𝐶ℎ−
𝐶𝑐), the governing Eqs. (1) - (5) can be written in the dimensionless 
form as:

𝑢𝑥 + 𝑣𝑦 = 0, (6)

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝑝𝑥 +
𝜇𝑛𝑓

𝜌𝑛𝑓 𝜈𝑓

1
𝑅𝑒

(𝑢𝑥𝑥 + 𝑢𝑦𝑦) −
𝜎𝑛𝑓 𝜌𝑓

𝜎𝑓 𝜌𝑛𝑓

𝐻𝑎2

𝑅𝑒
𝑢, (7)

𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −𝑝𝑦 +
𝜇𝑛𝑓

𝜌𝑛𝑓 𝜈𝑓

1
𝑅𝑒

(𝑣𝑥𝑥 + 𝑣𝑦𝑦) +
(𝜌𝛽𝑇 )𝑛𝑓
𝜌𝑛𝑓 𝛽𝑓

𝑅𝑖(𝜃 +𝑁𝑆), (8)

𝑢𝜃𝑥 + 𝑣𝜃𝑦 =
𝛼𝑛𝑓

𝛼𝑓

1
𝑅𝑒𝑃𝑟

(𝜃𝑥𝑥 + 𝜃𝑦𝑦), (9)

𝑢𝑆𝑥 + 𝑣𝑆𝑦 =
1

𝐿𝑒𝑃 𝑟𝑅𝑒
(𝑆𝑥𝑥 +𝑆𝑦𝑦), (10)

where 𝑃𝑟 
(
= 𝜈𝑓

𝛼𝑓

)
, 𝑅𝑒 

(
= 𝑈0𝐿

𝜈𝑓

)
, 𝐿𝑒 

(
= 𝛼𝑓

𝐷

)
, 𝐻𝑎 

(
=
√

𝜎𝑓

𝜇𝑓
𝐵0𝐿

)
,

𝐺𝑟 
(
= 𝑔𝛽𝑓 (𝑇ℎ−𝑇𝑐 )𝐿3

𝜈2
𝑓

)
, 𝑅𝑖 

(
= 𝐺𝑟

𝑅𝑒2

)
, 𝑁

(
= (𝜌𝛽𝑆 )𝑛𝑓 (𝐶ℎ−𝐶𝑐 )

(𝜌𝛽𝑇 )𝑛𝑓 (𝑇ℎ−𝑇𝑐 )

)
, 𝑢, 𝑣, 𝑝, 𝜃, 𝑆

are the Prandtl number, Reynolds number, Lewis number, Hartmann 
3

number, Grashof number, Richardson number, Buoyancy ratio, di-
mensionless velocity along 𝑥-axis, dimensionless velocity along 𝑦-axis, 
dimensionless pressure, dimensionless temperature, dimensionless con-
centration respectively and the suffixes 𝑥, 𝑦 represent the partial deriva-
tive with respect to 𝑥, 𝑦 respectively and the dimensionless boundary 
conditions become:

(i) at the top wall: 𝑢 = 1, 𝑣 = 0, 𝜃𝑦 = 0 = 𝑆𝑦,
(ii) at the bottom wall: 𝑢 = 𝑣 = 0, 𝜃 = 1 = 𝑆,

(iii) at the left wall: 𝑢 = 𝑣 = 0, 𝜃 = 1 − 𝑦 = 𝑆,
(iv) at the right wall: 𝑢 = 𝑣 = 0, 𝜃 = 0 = 𝑆.

The non-dimensional streamfunction (𝜓) and vorticityfunction (𝜔) 
are defined by the equations:

𝑢 = 𝜓𝑦, 𝑣 = −𝜓𝑥 and 𝜔 = 𝑣𝑥 − 𝑢𝑦, (11)

which yields a single equation as:

𝜓𝑥𝑥 +𝜓𝑦𝑦 = −𝜔. (12)

Eliminating 𝑝 from (7) and (8) and using Eqs. (11), one can find

1
𝑅𝑒

(
𝜇𝑛𝑓

𝜌𝑛𝑓 𝜈𝑓

)
(𝜔𝑥𝑥 +𝜔𝑦𝑦) − (𝑢𝜔𝑥 + 𝑣𝜔𝑦) +

(𝜌𝛽𝑇 )𝑛𝑓
𝜌𝑛𝑓 𝛽𝑛𝑓

𝑅𝑖(𝜃𝑥 +𝑁𝑆𝑥)

+
𝜎𝑛𝑓 𝜌𝑓

𝜎𝑓 𝜌𝑛𝑓

𝐻𝑎2

𝑅𝑒
𝑢𝑦 = 0. (13)

2.3. Nusselt number

The rate of heat transfer at the boundaries in terms of Nusselt num-
ber (Nu) is the ratio of convective heat transfer to conductive heat trans-

fer and is defined as: Nu = 𝑞𝑐

𝑘𝑓 (𝑇ℎ−𝑇𝑐 )∕𝐿
= 𝐿𝑞𝑐

𝑘𝑓 (𝑇ℎ−𝑇𝑐 )
, 𝑞𝑐 = −𝑘𝑛𝑓

(
𝜕𝑇

𝜕𝑛∗

)
𝑛∗=0

, 
where 𝑞𝑐 is the surface heat flux and 𝑛∗ is the dimensional direction 
in the outward drawn normal. Using the non-dimensional variables 
𝜃 = (𝑇 − 𝑇𝑐)∕(𝑇ℎ − 𝑇𝑐), 𝑛 = 𝑛∗∕𝐿, Nusselt number can be written as: 

Nu = − 
(

𝑘𝑛𝑓

𝑘𝑓

)
𝜃𝑛, where 𝑛 is the non-dimensional normal direction to 

the plane and 𝜃𝑛 is the partial derivative of 𝜃 with respect to 𝑛. The 
local Nusselt number at the top, bottom, left and right walls are respec-
tively given by:

Nu𝑡 = −
(
𝑘𝑛𝑓

𝑘𝑓

)
𝜃𝑦|𝑦=𝐴, Nu𝑏 =

(
𝑘𝑛𝑓

𝑘𝑓

)
𝜃𝑦|𝑦=0,

Nu𝑙 =
(
𝑘𝑛𝑓

𝑘𝑓

)[
𝜃𝑥|𝑙 sin𝜙+ 𝜃𝑦|𝑙 cos𝜙

]
,

Nu𝑟 = −
(
𝑘𝑛𝑓

𝑘𝑓

)[
𝜃𝑥|𝑟 sin𝜙− 𝜃𝑦|𝑟 cos𝜙

]
, (14)

and average Nusselt numbers at the bottom, left and right walls are 
defined as:

Nu𝑏 =

1

∫
0

Nu𝑏 𝑑𝑥, Nu𝑙 =
sin𝜙
𝐴

𝐴

sin𝜙

∫
0

Nu𝑙 𝑑𝑆1, Nu𝑟 =
sin𝜙
𝐴

𝐴

sin𝜙

∫
0

Nu𝑟 𝑑𝑆2

respectively and the overall average Nusselt number

Nu = (Nu𝑏 +Nu𝑙 +Nu𝑟)∕3, (15)

where 𝑑𝑆1 and 𝑑𝑆2 are the small elemental lengths along the left and 
right walls, respectively. Here, Nu𝑡 = 0 as the top wall of the considered 
problem is adiabatic.

2.4. Sherwood number

The ratio of convective mass transfer and diffusive mass transfer, 
known as Sherwood number (𝑆ℎ) is defined as: 𝑆ℎ = −𝑆𝑛, where 𝑛 is 
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the normal direction to the plane. The local Sherwood number at the 
top, bottom, left and right walls are respectively given by:

𝑆ℎ𝑡 = −𝑆𝑦|𝑦=𝐴, 𝑆ℎ𝑏 = 𝑆𝑦|𝑦=0, 𝑆ℎ𝑙 = [
𝑆𝑥|𝑙 sin𝜙+ 𝑆𝑦|𝑙 cos𝜙

]
,

𝑆ℎ𝑟 = −
[
𝑆𝑥|𝑟 sin𝜙− 𝑆𝑦|𝑟 cos𝜙

]
, (16)

and average Sherwood numbers at the bottom, left and right walls are 
defined as:

𝑆ℎ𝑏 =

1

∫
0

𝑆ℎ𝑏 𝑑𝑥, 𝑆ℎ𝑙 =
sin𝜙
𝐴

𝐴

sin𝜙

∫
0

𝑆ℎ𝑙 𝑑𝑆1, 𝑆ℎ𝑟 =
sin𝜙
𝐴

𝐴

sin𝜙

∫
0

𝑆ℎ𝑟 𝑑𝑆2

respectively and the overall average Sherwood number

𝑆ℎ = (𝑆ℎ𝑏 +𝑆ℎ𝑙 + 𝑆ℎ𝑟)∕3, (17)

where 𝑑𝑆1 and 𝑑𝑆2 are the small elemental lengths along the left and 
right walls, respectively. Here, 𝑆ℎ𝑡 = 0 as the top wall of the cavity is of 
zero diffusive gradient.

2.5. Entropy generation

According to the local thermodynamic equilibrium of linear trans-
port theory, the dimensionless local entropy generation due to fluid 
friction, heat transfer, mass transfer and magnetic field in Cartesian co-
ordinate are given by (see, [30] and [31])

𝑆𝜓 = 𝜆1

(
𝜇𝑛𝑓

𝜇𝑓

)[
2
(
𝑢2
𝑥
+ 𝑣2

𝑦

)
+
(
𝑢𝑦 + 𝑣𝑥

)2]
, (18)

𝑆𝜃 =
(
𝑘𝑛𝑓

𝑘𝑓

)[
𝜃2
𝑥
+ 𝜃2

𝑦

]
, (19)

𝑆𝜏 = 𝜆2

[
𝑆2
𝑥
+𝑆2

𝑦

]
+ 𝜆3

[
𝜃𝑥𝑆𝑥 + 𝜃𝑦𝑆𝑦

]
, (20)

𝑆𝑀 = 𝜆1

(
𝜇𝑛𝑓

𝜇𝑓

)
𝐻𝑎2𝑢2, (21)

where 𝜆1, 𝜆2 and 𝜆3 are irreversibility distribution ratios and they are 
taken as 𝜆1 = 0.0001, 𝜆2 = 0.5 and 𝜆3 = 0.01 ([22]).

3. Co-ordinate transformation and numerical procedure

Application of boundary conditions at different boundaries of an ir-
regular enclosure is not a simple task. Again, prescriptions of conditions 
at boundaries not conforming to the co-ordinate lines lead to severe in-
terpolation errors. For these reasons a transformation is introduced to 
map the irregular physical domain to a square computational domain 
where we can use a uniform grid. The coordinate transformation used 
in this study is:

𝜉 = 𝑥+ 𝑦 cot𝜙
1 + 2 𝑦 cot𝜙

, 𝜂 = 𝑦

𝐴
. (22)

This transformation maps the trapezoidal physical domain (in 𝑥 − 𝑦

plane) to a computational square domain (in 𝜉 − 𝜂 plane).
Using the transformation (22), Eqs. (13), (9) and (10) are trans-

formed as:(
𝜇𝑛𝑓

𝜌𝑛𝑓 𝜈𝑓𝑅𝑒

)[(
𝐺2 + 𝐴2𝐸2

4

)
𝜔𝜉𝜉 +𝐸𝜔𝜉𝜂 +

1
𝐴2 𝜔𝜂𝜂

]

+
[(

𝜇𝑛𝑓

𝜌𝑛𝑓 𝜈𝑓

)
𝐻

𝑅𝑒
− 𝑢𝐺 − 𝑣𝐴𝐸

2

]
𝜔𝜉 −

𝑣

𝐴
𝜔𝜂 +

(𝜌𝛽𝑇 )𝑛𝑓
𝜌𝑛𝑓 𝛽𝑓

𝑅𝑖
(
𝐺𝜃𝜉 +𝑁𝐺𝑆𝜉

)
+
𝜎𝑛𝑓 𝜌𝑓

𝜎𝑓 𝜌𝑛𝑓

𝐻𝑎2

𝑅𝑒

(
𝐴𝐸

2
𝑢𝜉 +

1
𝐴
𝑢𝜂

)
= 0, (23)

[(
𝑢𝐺 + 𝑣𝐴𝐸

2

)
−
𝛼𝑛𝑓

𝛼𝑓

𝐻

𝑅𝑒𝑃 𝑟

]
𝜃𝜉 +

𝑣

𝐴
𝜃𝜂

=
𝛼𝑛𝑓

𝛼

1
𝑅𝑒𝑃𝑟

[
𝐹𝜃𝜉𝜉 +𝐸𝜃𝜉𝜂 +

1
2 𝜃𝜂𝜂

]
, (24)
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wh
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go

𝑓 𝐴

4

𝑢𝐺 + 𝑣𝐴𝐸

2

)
− 𝐻

𝐿𝑒𝑅𝑒𝑃 𝑟

]
𝑆𝜉 +

𝑣

𝐴
𝑆𝜂

= 1
𝐿𝑒𝑅𝑒𝑃 𝑟

[
𝐹𝑆𝜉𝜉 +𝐸𝑆𝜉𝜂 +

1
𝐴2 𝑆𝜂𝜂

]
, (25)

ere 𝐺, 𝐸, 𝐹 and 𝐻 are given by 𝐺 = 1∕(1 + 2 𝐴𝜂 𝑐𝑜𝑡𝜙), 𝐸 =
1 − 2 𝜉) 𝑐𝑜𝑡𝜙)∕(𝐴(1 + 2𝐴𝜂 𝑐𝑜𝑡𝜙)), 𝐹 = 𝐺2 + 𝐴2𝐸2∕4 and 𝐻 = −(4(1 −
𝑐𝑜𝑡2𝜙)∕(1 + 2 𝐴𝜂 𝑐𝑜𝑡𝜙)2.
We have not found any way to solve the Eqs. (23) - (25) analytically 

cause they are coupled non-linear partial differential equations. So 
 Eqs. (23) - (25) are discretized using second order central difference 
mula of 𝜓 , 𝜃 and 𝑆 as described by Mahapatra and Mondal [32]. The 
trix form of the discretized Eqs. (23) - (25) are:

𝝍 = 𝒇 (𝑃𝑟,𝑅𝑒,𝑅𝑖,𝐻𝑎,𝑁,𝐴, 𝑢, 𝑣, 𝜃,𝜓𝜉 ,𝜓𝜂,𝑆), (26)

𝜽 = 𝟎, (27)

𝑺 = 𝟎, (28)

ere the co-efficient matrices 𝐴1, 𝐴2 and 𝐴3 are of order mn and the 
mber of components in the vectors 𝝍 , 𝜽, 𝑺 and 𝒇 is mn for a grid 
e m × n. The governing Eqs. (6) - (10) are non-linear and the use 
non-uniform grid leads to non-symmetric matrices which motivates 
to use biconjugate gradient stabilized method (BiCGStab) (see, [33]) 
t constitutes inner iterations. The Eqs. (26) - (28) are solved by outer 
ner iteration process discussed by Gupta and Kalita [34]. The con-

rgence is assumed to reach when the absolute errors between two 
nsecutive iterations are less than 0.5 × 10−6. The iterations are per-
med for 𝜓 , 𝜃 and 𝑆. The CPU usage and running time for the applied 
merical method are 99 % and 841.37 seconds for a grid size of 81 ×81
d for the case of 𝐴 = 0.3, 𝑅𝑒 = 100, 𝑅𝑖 = 0.01, 𝐿𝑒 = 1, 𝑁 = 5, 𝐻𝑎 = 40
d 𝜑 = 0.03 respectively. At last the entropy generations (𝑆𝜓 ), (𝑆𝜃), 
𝜏 ) and (𝑆𝑀 ) are obtained from the discretized forms of Eqs. (18) -
).

Results and discussion

In the present study, streamfunctions, isotherms, isoconcentrations 
d the minimization of entropy generation due to the combined ef-
ts of fluid friction, heat transfer, mass transfer and magnetic field 
 mixed convection flow of Al2O3 nanofluid inside a trapezoidal en-
sure with moving upper wall having constant velocity are discussed. 
e aspect ratio is considered as very low (0.2 −0.3). There is a magnetic 
ld acting perpendicularly in the positive 𝑦 direction on the horizontal 
lls of the cavity. Some parameters are considered fixed, which are 
ndtl number (𝑃𝑟 = 6.2), Buoyancy ratio (𝑁 = 1), Reynolds number 
𝑒 = 100) and the inclination angle of right and left walls of the cav-
 with the positive and negative x-axis respectively as 𝜙 = 600. No-slip 
undary conditions at the inclined walls and bottom wall of the cav-
 are implemented. Together with these, linearly heated and diffusive 
t wall, cold and non-diffusive right wall, uniformly heated and diffu-
e bottom wall and adiabatic with zero diffusion gradient top wall are 
nsidered.

. Validation of the code and grid independence test

To verify the accuracy of the results, a comparison has been per-
med for the values of |𝜓|𝑚𝑎𝑥 and Nu with the benchmark numerical 
utions discussed by Basak et al. [2]. The present result is compared 
 the flow of fluid inside a square cavity with hot left wall, cold right 
ll, adiabatic top and bottom walls for 𝑃𝑟 = 0.71 and 𝑅𝑎 = 103 and 
4, 𝐻𝑎 = 0, which gives a good accuracy of the present result shown in 
ble 2. Also, a comparison has been performed for |𝜓|𝑚𝑎𝑥 and Nu for 
tural convection flow inside a square cavity of water-Al2O3 nanofluid 
the presence of magnetic field studied by Ghasemi et al. [35] for 
 = 103, 𝐻𝑎 = 60 and 𝜑 = 0.03 are shown in Table 3, which shows a 
od agreement with the present result.
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Table 2. Comparison of the results with Basak et al. [2].

Basak et al. [2] Present

𝑅𝑎 |𝜓|𝑚𝑎𝑥 Nu |𝜓|𝑚𝑎𝑥 Nu

103 1.1746 1.1179 1.1727 1.1183
104 5.0737 2.2482 5.0745 2.2446

Table 3. Comparison of the results with Ghasemi et al. [35].

Ghasemi et al. [35] Present

𝑅𝑎 |𝜓|𝑚𝑎𝑥 Nu |𝜓|𝑚𝑎𝑥 Nu

103 0.110 1.121 0.108 1.117
104 1.057 1.249 1.053 1.244
105 5.642 3.124 5.639 3.120

Table 4. Grid independence test of |𝜓|𝑚𝑎𝑥 for 𝐴 = 0.2, 𝑅𝑒 = 100, 𝑅𝑖 = 1, 𝐿𝑒 = 1, 
𝑁 = 1, 𝐻𝑎 = 20, 𝜑 = 0.05 and 𝜙 = 600 .

Grid 21 × 21 41 × 41 81 × 81 161 × 161|𝜓|𝑚𝑎𝑥 2.7131 2.71146 2.6921 2.6916

To check whether the solution obtained depends on the grid used, 
we have checked the results for different grid sizes. A grid independence 
study is performed for |𝜓|𝑚𝑎𝑥 with the grid sizes 21 ×21, 41 ×41, 81 ×81
and 161 ×161 and presented in Table 4, which shows that the results are 
almost same. So we have performed all the computations using 81 × 81
grid.

4.2. Numerical discussion

Numerical results of streamlines, isotherms, isoconcentrations and 
entropy generation due to fluid flow, heat transfer, mass transfer, and 
magnetic field are illustrated in Figs. 2, 3, 4, 5, 6 for different val-
ues of the parameters 𝐻𝑎(20 − 40), 𝜑(0.01 − 0.1), 𝐿𝑒(1 − 2), 𝑅𝑖(0.01 −
100) and 𝐴(0.2 − 0.4) in a trapezoidal cavity with linearly heated and 
diffusive left wall, uniformly heated and a diffusive bottom wall, cold 
and of zero diffusion gradient right wall, the adiabatic top wall having 
zero diffusion gradient. Here Pr is taken as 6.2 and the inclination an-
gle of the right wall of the cavity with the positive x-axis and that of the 
left wall of the cavity with the negative x-axis is 600 .

Figs. 2(a)-2(b) represent the contours of streamlines, isotherms and 
isoconcentrations for 𝑅𝑖 = 1, 𝐻𝑎 = 20, 𝑁 = 1, 𝐿𝑒 = 1, 𝑅𝑒 = 100 and for 
𝐴 = 0.2 and 0.3 with |𝜓|𝑚𝑎𝑥 = 0.1334(𝐴 = 0.2), 0.1071(𝐴 = 0.3). It is ob-
served that aspect ratio is an important parameter for the flow inside 
the cavity. As aspect ratio decreases the volume of the cavity decreases, 
which results in an increment in the fluid flow in a low aspect ratio 
cavity. The flow is circulating towards the right wall of the cavity as 
the upper wall is moving with a fixed velocity 𝑈0 and it is also ob-
served that as the aspect ratio increases the fluid inside the cavity is 
flowing in a larger circular path. The isotherm and isoconcentration 
contours spread from linearly heated and diffusive left wall towards the 
right-bottom corner as it is the junction of two hot, diffusive and cold, 
non-diffusive walls of the cavity.

In thermal convection and mass diffusion problems, the Richardson 
number has an important role to present the forced convection flow 
Fig. 2. Streamlines (𝜓), isotherms (𝜃) and isoconcentrations (𝑆) for 𝑅𝑖 = 1, 𝐻𝑎

5

relative to mixed convection flow. If 𝑅𝑖 << 1.0 forced convection dom-
inates the flow and for 𝑅𝑖 = 1.0 mixed convection phenomenon is ob-
served whereas for 𝑅𝑖 >> 1 free convection dominates. Figs. 3(a) - 3(d) 
represent the contours of 𝜓 , 𝜃 and 𝑆 for 𝐻𝑎 = 40, 𝑁 = 1, 𝐿𝑒 = 1, 𝑅𝑒 =
100, 𝐴 = 0.3, 𝜑 = 0.05 and for different values of 𝑅𝑖 (0.01 in Fig. 3(a), 
0.1 in Fig. 3(b), 1.0 in Fig. 3(c) and 100 in Fig. 3(d)). In Figs. 3(a) and 
3(b), the streamlines represent the flow when forced convection domi-
nates over free convection whereas the streamlines in Fig. 3(c) represent 
the flow when forced convection and free convection are of the same 
order. Fig. 3(d) shows the streamlines when free convection dominates 
over forced convection. In this figure, two circulations are seen near the 
hot left wall and cold right wall. The values of |𝜓|𝑚𝑎𝑥 are 1.8992 (for 
𝑅𝑖 = 0.01), 1.9231 (for 𝑅𝑖 = 0.1), 2.2243 (for 𝑅𝑖 = 1.0) and 0.3303 (for 
𝑅𝑖 = 100). When 𝑅𝑖 ≤ 1, strength of flow increases as 𝑅𝑖 increases but 
when 𝑅𝑖 ≥ 1, strength of flow decreases as 𝑅𝑖 increases. The contours of 
𝜃 and 𝑆 in Figs. 3(a) - 3(d) represent heat and mass transfer phenom-
ena inside the cavity. In Figs. 3(a) - 3(c), it is observed that heat and 
mass transfer phenomena are almost the same due to mixed and forced 
convection but in Fig. 3(d) different type of contours are found relative 
to Figs. 3(a) - 3(c) which is caused by free convection.

Figs. 4(a) - 4(c) represent the contours of 𝜓 , 𝜃 and 𝑆 for 𝑅𝑖 = 1, 
𝐻𝑎 = 40, 𝑁 = 1, 𝐿𝑒 = 2, 𝑅𝑒 = 100, 𝐴 = 0.3 and for 𝜑 = 0.01, 0.05 and 0.1
respectively with |𝜓|𝑚𝑎𝑥 =2.7376 (for 𝜑 = 0.01), 2.5861 (for 𝜑 = 0.05) 
and 2.4384 (for 𝜑 = 0.1). It is observed that the strength of flow is 
decreasing with the increment of nanoparticles in the 𝐴𝑙2𝑂3-water 
nanofluid. Streamlines are circulated from left to right and due to lid-
driven upper wall circulations are observed towards the right wall and 
they are dense near the right wall. A few interesting patterns of the 
contours of isotherms and isoconcentrations are observed and found to 
be distorted and compressed at the right bottom corner, which is the 
junction of hot, diffusive and cold non-diffusive walls for 0.01 ≤ 𝜑 ≤ 0.1.

Comparing Figs. 3(c) and 4(b) it can be seen that heat transfer 
phenomenon represented by the contours of 𝜃 are highly distributed to-
wards the upward direction in Fig. 4(b) than that in Fig. 3(c) but mass 
transfer phenomenon represented by the contours of 𝑆 are highly dis-
tributed towards the upward direction in Fig. 3(c) than that in Fig. 4(b). 
These effects are caused by the Lewis number.

Figs. 5(a) - 5(c) represent the contours of pointwise entropy gen-
eration caused by the effect of fluid flow, heat transfer, mass transfer 
and magnetic field and the contours of pointwise total entropy genera-
tion for 𝑅𝑖 = 1, 𝐻𝑎 = 20, 𝑁 = 5, 𝐿𝑒 = 1, 𝑅𝑒 = 100, 𝐴 = 0.3 and the effect 
of 𝐴𝑙2𝑂3 nanoparticles volume fraction (𝜑) in water is observed. En-
tropy generations due to fluid friction (𝑆𝜓 ) and magnetic field (𝑆𝑀 ) 
are much less than that due to heat transfer (𝑆𝜃) and mass transfer 
(𝑆𝜏 ). The maximum absolute values of entropy generations are |𝑆𝜓 |𝑚𝑎𝑥
= 31.65 (for 𝜑 = 0.01 in Fig. 5(a)), 35.087 (for 𝜑 = 0.05 in Fig. 5(b)) 
and 40.165 (for 𝜑 = 0.1 in Fig. 5(c)), |𝑆𝜃|𝑚𝑎𝑥 = 317573 (for 𝜑 = 0.01 
in Fig. 5(a)), 355091 (for 𝜑 = 0.05 in Fig. 5(b)) and 406448 (for 𝜑 = 
0.1 in Fig. 5(c)) and |𝑆𝜏 |𝑚𝑎𝑥 = 157407 (for 𝜑 =0.01, 0.05 and 0.1). 𝑆𝜓
contours are congested towards the boundary of the cavity and it is in-
creasing with the increment of 𝜑. The same phenomenon is observed 
for 𝑆𝜃 and 𝑆𝜏 but they are congested in the right bottom corner, which 
is the junction of hot and cold walls. |𝑆𝑀 |𝑚𝑎𝑥 is also increasing with 
= 20, 𝑁 = 1, 𝐿𝑒 = 1, 𝑅𝑒 = 100 and 𝜑 = 0.05 for (a) 𝐴 = 0.2 and (b) 𝐴 = 0.3.
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Fig. 3. Streamlines (𝜓), isotherms (𝜃) and isoconcentrations (𝑆) for 𝐻𝑎 = 40, 𝑁 = 1, 𝐿𝑒 = 1, 𝑅𝑒 = 100, 𝐴 = 0.3 and 𝜑 = 0.05 for (a) 𝑅𝑖 = 0.01, (b) 𝑅𝑖 = 0.1, (c) 𝑅𝑖 = 1.0
and (d) 𝑅𝑖 = 100.

Fig. 4. Streamlines (𝜓), isotherms (𝜃) and isoconcentrations (𝑆) for 𝑅𝑖 = 1, 𝐻𝑎 = 40, 𝑁 = 1, 𝐿𝑒 = 2, 𝑅𝑒 = 100 and 𝐴 = 0.3 for (a) 𝜑 = 0.01, (b) 𝜑 = 0.05 and (c) 𝜑 = 0.1.

Fig. 5. Entropy generations due to fluid friction (𝑆𝜓 ), heat transfer (𝑆𝜃), mass transfer (𝑆𝜏 ), magnetic field (𝑆𝑀 ) and pointwise total entropy generation (𝑆𝑇 ) for 
𝑁 = 5, 𝐿𝑒 = 1, 𝑅𝑖 = 1, 𝑅𝑒 = 100, 𝐻𝑎 = 20 and 𝐴 = 0.3 for (a) 𝜑 = 0.01, (b) 𝜑 = 0.05 and (c) 𝜑 = 0.1.
6
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Fig. 6. Entropy generations due to fluid friction (𝑆𝜓 ), heat transfer (𝑆𝜃), mass transfer (𝑆𝜏 ), magnetic field (𝑆𝑀 ) and pointwise total entropy generation (𝑆𝑇 ) for 
𝑁 = 5, 𝐿𝑒 = 1, 𝑅𝑖 = 1, 𝑅𝑒 = 100, 𝐻𝑎 = 40, 𝜙 = 600 and 𝜑 = 0.01 for (a) 𝐴 = 0.2, (b) 𝐴 = 0.3 and (c) 𝐴 = 0.4.

Fig. 7. Variation of average Nusselt number (Nu) and Sherwood number (𝑆ℎ) with Hartmann number (𝐻𝑎) for 𝑁 = 5, 𝐿𝑒 = 1, 𝑅𝑖 = 1, 𝑅𝑒 = 100, 𝜙 = 600 , 𝜑 = 0.01
and for various 𝐴(0.2 − 0.4).

Fig. 8. Variation of average Nusselt number (Nu) and Sherwood number (𝑆ℎ) with Hartmann number (𝐻𝑎) for 𝐴 = 0.3, 𝑁 = 5, 𝐿𝑒 = 1, 𝑅𝑖 = 1, 𝑅𝑒 = 100, 𝜙 = 600 , and 
for various 𝜑(0.01 − 0.1).
the increment of 𝜑 and the contours of 𝑆𝑀 are dense towards the top 
wall of the cavity caused by the effect of magnetic field acting perpen-

dicularly to the bottom wall of the cavity. The active zones of entropy 
generations are observed towards the boundary for fluid flow and re-

sult a thickness of boundary layer for entropy generation contours due 
to the no slip boundary conditions. The active zones of entropy gener-

ations are found in the right bottom corner for heat and mass transfer 
where |𝑆𝜃|𝑚𝑎𝑥 and |𝑆𝜏 |𝑚𝑎𝑥 occur and near the upper wall for magnetic 
field where the contours of 𝑆𝑀 are dense. This phenomenon is observed 
for the contours of 𝑆𝑀 because the magnetic field is acting in the up-

ward direction.
7

Figs. 6(a) - 6(c) represents the entropy generation contours for 
𝑅𝑖 = 1, 𝐻𝑎 = 40, 𝑁 = 5, 𝐿𝑒 = 1, 𝑅𝑒 = 100, 𝜙 = 600, 𝜑 = 0.01 and for 
various values of A (0.2, 0.3 and 0.4) with |𝑆𝜓 |𝑚𝑎𝑥 = 71.2114 (for 
𝐴 = 0.2), 31.645 (for 𝐴 = 0.3), 17.803 (for 𝐴 = 0.4), |𝑆𝜃|𝑚𝑎𝑥 = 714540 
(for 𝐴 = 0.2), 317573 (for 𝐴 = 0.3), 178635 (for 𝐴 = 0.4), |𝑆𝜏 |𝑚𝑎𝑥 = 
354166 (for 𝐴 = 0.2), 157407 (for 𝐴 = 0.3), 88541 (for 𝐴 = 0.4), |𝑆𝑀 |𝑚𝑎𝑥
= 0.1332 (for 𝐴 = 0.2), 0.1233 (for 𝐴 = 0.3), 0.1140 (for 𝐴 = 0.4). 
The contours of total entropy generation are distributed from bottom 
wall to top and right walls of the cavity and maximum values are ob-

served in the right bottom corner. These numerical data and contours 
of Fig. 6 show that the entropy generation is highly dependent on heat 



P. Mondal, T.R. Mahapatra and R. Parveen Heliyon 7 (2021) e06143

Fig. 9. Variation of average Nusselt number (Nu) and Sherwood number (𝑆ℎ) with nanoparticle volume fraction 𝜑 for 𝑁 = 5, 𝐿𝑒 = 1, 𝑅𝑖 = 1, 𝑅𝑒 = 100, 𝐻𝑎 = 40, 
𝜙 = 600 , and for various 𝐴(0.2 − 0.4).
and mass transfer. So it is clear that increment of aspect ratio will min-
imize entropy generation of the cavity. On the other hand, electronic 
equipments and engines should be smaller in size to handle them eas-
ily. For this purpose aspect ratio must be kept low and the total entropy 
generation should be minimum to get the maximum efficiency of a sys-
tem.

The rate of heat and mass transfer at the wall of the cavity in terms 
of average Nusselt and Sherwood number have been plotted in Figs. 7, 
8, 9. Fig. 7 shows the variation of Nu and 𝑆ℎ with respect to 𝐻𝑎 for var-
ious A when other parameters are fixed. It is observed that Nu and 𝑆ℎ
are decreasing as 𝐻𝑎 and 𝐴 are decreasing. In Fig. 8 it can be observed 
that Nu and 𝑆ℎ decrease with the increased values of 𝐻𝑎 and 𝜑, but in 
Fig. 9 it is seen that Nu and 𝑆ℎ rapidly decrease with the increment of 
𝜑 and 𝐴.

5. Conclusions

As increment of entropy enhances the irreversibilities of a sys-
tem, one should encounter such kind of system where entropy will 
be minimum to get the maximum efficiency of any system. Keeping 
this motivation in mind minimization of entropy generation of a two-
dimensional, steady, double-diffusive, mixed convection flow of water 
- 𝐴𝑙2𝑂3 nanofluid in a low aspect ratio cavity in the presence of mag-
netic field has been formulated and solved numerically for a range of 
Richardson number, aspect ratio, Hartmann number and nanoparticle 
volume fraction to find out the following conclusions.

As the aspect ratio increases the rate of flow, heat transfer, mass 
transfer and entropy generations due to fluid flow, heat transfer, mass 
transfer, and magnetic field increase. This phenomenon is observed due 
to the increase of fluid volume inside the cavity. So low aspect ratio cav-
ity can be used to minimize entropy generation in various engineering 
tools and it will save the loss of energy.

The movement of the upper lid of the cavity affects the motion of 
fluid flow, heat and mass transfer. As 𝑅𝑖 increases from 0.01 to 1, i.e., 
when forced convection phenomenon is changed into mixed convec-
tion phenomenon, flow, heat and mass transfer increase. This is caused 
due to both the effect of natural and forced convection. When 𝑅𝑖 = 100, 
i.e., in case of natural convection two-sided circulations from the bot-
tom wall towards left and right walls are observed and fluid flow, heat 
and mass transfer rates are dominated due to the absence of forced con-
vection. Therefore, entropy generation due to mixed convection (for 
𝑅𝑖 = 1) becomes minimum. So it is concluded that mixed convection 
phenomenon is more effective than that of natural and forced convec-
tion to minimize entropy generation.

As 𝐻𝑎 increases, both the rate of heat and mass transfer in terms 
of Nusselt number and Sherwood number decrease slightly with the 
increment of aspect ratio. This phenomenon is also observed with the 
8

increment of 𝜑. It is also observed that entropy generation increases 
with the increment of 𝜑. So to minimize entropy generation in a low 
aspect ratio cavity, nanoparticle volume fraction should be less than 
10 per cent and if there is a magnetic field acting perpendicularly to 
the bottom wall for which the entropy generation is higher towards the 
upper wall than the low aspect ratio cavity will be useful to minimize 
entropy generation.

Therefore, the present study concluded that to get significant effi-
ciency of a system and to minimize entropy generation in a low aspect 
ratio cavity mixed convection flow with a low percentage of nanopar-
ticle volume fraction can be used in a trapezoidal cavity of inclination 
angle 600 when other parameters 𝐿𝑒, 𝑁, 𝑅𝑒, 𝑃𝑟 etc. are fixed.
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