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Abstract
Serotonin transporters (SERTs) are largely recognized for one aspect of their
function—to transport serotonin back into the presynaptic terminal after its
release. Another aspect of their function, however, may be to generate currents
large enough to have physiological consequences. The standard model for
electrogenic transport is the alternating access model, in which serotonin is
transported with a fixed ratio of co-transported ions resulting in net charge per
cycle. The alternating access model, however, cannot account for all the
observed currents through SERT or other monoamine transporters. 
Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine
generate or suppress currents that the standard model cannot support.  Here
we survey evidence for a channel mode of transport in which transmitters and
ions move through a pore. Available structures for dopamine and serotonin
transporters, however, provide no evidence for a pore conformation, raising
questions of whether the proposed channel mode actually exists or whether the
structural data are perhaps missing a transient open state.
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What happens when 5-hydroxytryptamine (5-HT) and therapeutic 
or abused drugs interact with the serotonin transporter? In addi-
tion to pharmacokinetics, drug metabolism, and the complexities of 
the serotonergic system, the events occurring directly at the serot-
onin transporter (SERT) will help us understand how therapeutic 
and abused drugs work. Neurotransmitter transporters and their 
role in synaptic transmission are broad subjects, and many topics, 
including the important role of 5-HT in the enteric nervous system, 
are not covered here. Previous reviews include1–10. This commen-
tary focuses on the transporter and small molecules (neurotransmit-
ters and drugs) that interact with the transporter. Our discussion 
inevitably involves the function of SERT in heterologous expres-
sion systems, other transporters like the dopamine transporter 
(DAT), and currently available structural data on the solute 
carrier 6 (SLC6) family of neurotransmitter transporters, of which 
both SERT and DAT are members. This commentary also broaches 
the concept of channel activity in SERT, as this property is one 
of the most controversial but least well understood.

Biochemical characterization of SERT began in 1977, when Gary 
Rudnick used plasma membrane vesicles from human platelets 
containing human SERT (hSERT)11 to study Na+ and Cl− coupled 
5-HT transport. Rudnick et al. concluded that SERT, in com-
mon with NET (norepinephrine transporter) and DAT, has an 
obligatory functional dependence on Na+ and Cl−: 5-HT transport 
cannot occur without the co-transport of one Na+ and one Cl− ion. 
The standard model for monoamine transporters, and SERT in 
particular, thus posits fixed stoichiometry of transmitter and ions, 
which, in the presence of ion gradients, can drive a transmitter 
against its own gradient12–22. In one form of this model, the influx 
of 5-HT (a monovalent cation at physiological pH) with Na+ and 
Cl− is coupled to the efflux of one K+ ion, thus rendering SERT 
electroneutral23. However, we now know that SERT is electrogenic 
and that 5-HT transport generates current. It is critical to understand 
the molecular basis of these currents because they figure promi-
nently in the action of antidepressants and drugs of abuse22,24–29.

Two models have been proposed to explain the intriguing 
phenomenon of ion currents, neither of which is mutually exclu-
sive. One model incorporates both uptake and current in one kinetic 
scheme30, and so in this sense these two events are coupled. Another 
model attributes current to fixed stoichiometry, electrogenic alter-
nating access transport with the ‘uncoupled’ current perhaps 
being caused by an occasional ‘slip’ into a channel mode. Such a  
phenomenon may occur in Drosophila SERT (dSERT)31, which 
exhibits remarkably high currents, with 50 charges per 5-HT (at 
−80 mV) versus 5–12 charges for its mammalian counterparts32. In 
dSERT, one of the putative extracellular gating residues is apolar 
asparagine instead of an acidic glutamate, as in hSERT, and thus 
presumably would be able to form only a hydrogen bond rather 
than a stronger salt bridge with its positively charged (arginine) gat-
ing partner. Regardless of the model invoked to explain transporter  
currents, the role of these currents at the serotonergic synapse 
remains unclear.

An important experiment potentially related to this question was 
performed by Dieter Bruns et al., who used an in vivo prepara-
tion: the giant serotonergic synapse of the medicinal leech33. This 

work measured pre- and postsynaptic currents in response to timed 
presynaptic 5-HT release. Distinguishing between presynaptic 
versus postsynaptic events as well as transporter versus receptor 
current was achieved by specific, targeted placement of recording 
electrodes and well-established pharmacological intervention. 
Interestingly, the postsynaptic ionotropic 5-HT3 receptor gener-
ated current after the presynaptic current associated with 5-HT 
transport back into the presynaptic terminal. Only a brief delay 
occurred between a presynaptic Ca++ flash, release of 5-HT, and 
a presynaptic SERT current that was earlier than, but compara-
ble in size to, the post-synaptic, 5-HT3-gated receptor current. It 
would seem impossible for traditional models to explain such large 
SERT currents, and these data suggest that a channel may exist 
within SERT, although no structural evidence yet exists for such 
a channel.

A recent study34 provided the first structural glimpse into hSERT, 
but only structures of a transport-deficient variant, dubbed “TS3”, 
in complex with two inhibitors, are described. The resolution of the 
transport-competent variant, dubbed “TS2”, is low (~4.5 Å) with 
no 5-HT, inhibitor or ions present in the electron density and con-
sequently none in the deposited coordinate file. Higher-resolution 
structural studies coupled with sophisticated biophysical experi-
ments of a transport-competent SERT in multiple conformations 
will be required to visualize a channel if one exists. Nevertheless, 
such a channel-like state may be transient and thus still be chal-
lenging to capture unless stabilized in some way. Note that existing 
crystal structures of homologous transporters, such as the bacterial 
SLC6 orthologue LeuT, which is widely used to model plasma 
membrane monoamine transporters, along with recent structures 
of Drosophila DAT (dDAT), provide evidence for the fixed stoi-
chiometry, alternating access model, with no hint of a channel35–38. 
However, the absence of such a conformation does not disprove 
its existence. Indeed, the proteins used for crystallization either do 
not exhibit channel activity (LeuT) or are highly thermostabilized, 
transport-deficient/impaired mutants (hSERT and dDAT) that may 
simply be incapable of sampling the channel-like state present in 
the wild-type proteins.

Unlike the biogenic amine transporters, glutamate transporters, 
which belong to a functionally and structurally distinct neurotrans-
mitter transporter family (SLC1), have been known for decades to 
embody an authentic Cl− channel and thus operate normally as both 
a glutamate carrier and a Cl− ion channel39–45. Is there any structural 
evidence for a channel in this family? Structural breakthroughs 
within the SLC1 family have emerged from work on an archaeal 
glutamate transporter homolog from Pyroccocus horikoshii, known 
as Glt

ph
46. Importantly, Glt

ph
 has a bona-fide Cl− channel47, akin to 

its eukaryotic counterparts. In the crystal structure of a crosslinked 
Glt

ph
 mutant (Glt

ph
-V198C-A380C) with bound mercury, one of the 

protomers of the asymmetric trimer serendipitously assumes an 
intermediate outward-facing state in which a small cavity between 
the transport and trimerization domains appears to be accessible 
from both sides of the membrane. Although this conformation 
may be stabilized by crystal packing, as the authors remark, the 
structure offers a tantalizing molecular glimpse into a plausible 
channel-like state48. By contrast, as mentioned above, none of the 
SLC6 structures solved to date reveals such an open pathway.
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If a channel exists within SLC6 members, do currents that carry 
Na+ or Cl− ions share a pathway with 5-HT? In 2011, Henry et al. 
studied the effect of an asparagine-to-alanine mutation at position 
101 in TM1 of hSERT49, which, according to LeuT-based homol-
ogy models and the recent hSERT structure, resides within the 
transport permeation pathway, close to the putative 5-HT and 
ion-binding sites. Henry et al. found that the N101A mutation 
eliminated Cl− dependence of 5-HT transport, 5-HT-induced 
currents, and 5-HT-independent leak currents. In fact, the N101A 
mutant evoked a much greater 5-HT/charge flux ratio (relative to 
that found in the wild-type) despite its reduced surface expression. 
These data suggest that N101 likely determines both Na+-coupled 
transport and channel pathways.

We also know that SERT and DAT have distinct functional 
states50–52, and although these may reflect distinct structural  
pathways, there is no proof of this. However, we must conclude 
that perfectly coupled, fixed stoichiometric models are incom-
plete, if for no other reason than the existence of leak currents53.  
Furthermore, 5-HT-induced macroscopic currents are 100 to 1,000 
times larger than can be explained by a fixed stoichiometry, alter-
nating access model, and this is another indirect argument for the 
existence of a channel-like pathway in SERT4.

Theories of transport based on flux coupling (also called frictional 
models) can account for observed macroscopic currents and are 
consistent with the existence of single transporter events4,31,33,54–59. 
Then how is it possible that present structural data of plasma 
membrane monoamine transporters provide no evidence for the 
existence of current-generating ion pathways? Perhaps chan-
nel states in this class of transporters are unstable, simply resist-
ant to structural analysis, especially (as mentioned above) with 
the thermostabilized constructs normally required to grow  
diffraction-quality crystals, or perhaps they need to be crystallized 
within a membrane-like environment, as would occur in the lipidic 
cubic phase60 of phospholipid bilayer nanodiscs. Perhaps both a 

current-generating construct combined with a lipidic milieu are 
necessary and, though entirely speculative, may need to be part-
nered with a presynaptic regulatory protein as would actually occur 
in the cell. Regardless, without structural evidence for channels in 
plasma membrane monoamine transporters, the existing functional 
data will lie dormant.

Let us return to the original question: What happens when 5-HT, 
therapeutic drugs, or abused drugs arrive at the serotonin trans-
porter? As 5-HT is transported, SERT generates large depolarizing 
currents that are incompatible with fixed stoichiometry models but 
consistent with channel models4,27,31,61. For drugs of abuse, con-
sider as an example that ecstasy generates larger currents through 
SERT than 5-HT does. The resulting depolarization due to these 
currents is sufficient to open voltage-gated Ca++ channels29. The 
influx of Ca++ could itself have effects, but certainly the resulting 
depolarization in serotonergic neurons would increase excitabil-
ity and presynaptic 5-HT release. On the other hand, when uptake 
inhibitors interact with hSERT, in addition to blocking uptake they 
also block the inherent transporter leak current and that would 
hyperpolarize serotonergic neurons and decrease the probability 
of 5-HT release. These few examples suggest a larger picture of 
how transporter agonists and antagonists may influence the func-
tion of SERT in neurons given the channel-like properties of 
SERT. In conclusion, SERT is not only a 5-HT carrier but also 
may transiently act as an ion channel poised for pharmacological 
manipulation.
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