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A B S T R A C T   

This review focuses on the hypothetical mechanisms for enhanced vulnerability of African Americans to SARS- 
CoV-2 infection, COVID-19 severity, and increased deaths. A disproportionately higher number of African 
Americans are afflicted with autoimmune and inflammatory diseases (e.g., diabetes, hypertension, obesity), and 
SARS-CoV-2 has helped expose these health disparities. Several factors including socioeconomic status, inferior 
health care, and work circumstances contribute to these disparities. Identifying potential inflammatory bio-
markers and decreasing basal levels in high-risk individuals with comorbidities through preventive measures is 
critical. Immune cells, particularly neutrophils, protect us against pathogens (bacteria, fungi, and viruses) 
through increased generation of free radicals or oxidants and neutrophil extracellular traps (NETs) that ensnare 
pathogens, killing them extracellularly. However, continued generation of NETs coupled with the lack of prompt 
removal pose danger to host cells. NET levels are increased during pro-inflammatory diseases. COVID-19 patients 
exhibit elevated NET levels, depending upon disease severity. Conceivably, high-risk individuals with elevated 
basal NET levels would exhibit hyper-inflammation when infected with SARS-CoV-2, amplifying disease severity 
and deaths. Drugs inhibiting oxidant formation and vitamin supplements decreased NET formation in mice 
models of inflammation. Thus, it is conceivable that preventive treatments lowering NET levels and inflammation 
in high-risk individuals could mitigate SARS-CoV-2-induced complications and decrease mortality.   

“Health disparities have always existed for the African American 
community … [coronavirus is] shining a bright light on how unac-
ceptable that is because, yet again, when you have a situation like the 
coronavirus, they are suffering disproportionately.” –Dr. Anthony S. 
Fauci [1]. 

1. Introduction 

A disproportionately higher number of African Americans, His-
panics, and other ethnic minorities from various age groups suffer from 
inflammatory diseases such as hypertension, diabetes, coronary artery 
diseases, obesity, lupus, sickle cell disease, asthma, and other autoim-
mune disorders [2–4]. When individuals with these underlying medical 
conditions are infected with severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), the severity of the disease it causes, coronavi-
rus disease 19 (COVID-19), is greatly magnified, resulting in lengthy 

hospitalization and dire consequences. Studies reveal that African 
Americans, Hispanics, and other ethnic minority groups are dispropor-
tionately affected by SARS-CoV-2 [5–8]. Importantly and disturbingly, 
their death rate from COVID-19 is much higher. Several social de-
terminants contribute to enhanced health disparities, including lower 
income, substandard living conditions with a lack of physical separation, 
less-than-ideal work circumstances, decreased nutrition, and inferior 
health care. To understand and mitigate the disproportionate impact of 
SARS-CoV-2 or related viruses on the health and morbidity of African 
Americans, Hispanics, and other ethnic minority groups, a concerted 
and systematic effort that addresses the fundamental mechanisms 
responsible for disparate underlying conditions must be undertaken. 
What is the mechanistic basis for linking increased oxidative damage and 
pro-inflammatory conditions in high-risk individuals to enhanced suscepti-
bility to COVID-19 severity? Might any preventive measures help mitigate 
disease severity? Although most COVID-19 cases result in mild symptoms, 
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some progress to respiratory failure and death. Reports indicate that 
elevated levels of neutrophil extracellular traps (NETs) are produced in 
the lungs of COVID-19 patients, leading to hyperinflammation and res-
piratory failure [9]. Increased levels of NETs in the serum could be used 
as a biomarker that might predict the long-term risk for enhanced 
hyperinflammatory and deadly effects caused by SARS-CoV-2. Targeting 
NETs is therefore a promising strategy to mitigate inflammation induced 
by SARS-CoV-2 [9,10]. Anthony S. Fauci, MD, director of the National 
Institute of Allergy and Infectious Diseases and a member of the White 
House coronavirus task force, said that the COVID-19 pandemic has 
exposed the underlying health disparities in the African American 
community [1]. To that end, this review focuses on NET biology, its 
mechanisms of formation, and potential interventional approaches to 
decrease NET levels in African Americans with underlying medical 
conditions and higher risk of mortality against SARS-CoV-2. 

2. Neutrophils and NET formation: a defense mechanism and a 
double-edged sword 

Neutrophils, belonging to the family of polymorphonuclear leuko-
cytes, are the most abundant type of white blood cell circulating in our 
bodies and are responsible for providing innate immunity. Neutrophils 
are the first immune cell responders for infection. In response to bac-
terial, fungal, and viral infections, neutrophils activate other immune 
cells, engulf pathogens by phagocytosis, and destroy the invading 

Fig. 1. Conventional host defense involving the stimulation of oxidative or 
respiratory burst in neutrophils during phagocytosis of pathogens, including 
bacteria, fungi, or viruses. Activation of the enzyme, NADPH oxidase, stimu-
lates O2

•– and H2O2 formation. Degranulation releases the enzyme MPO that in 
the presence of H2O2 oxidizes the chloride anion to HOCl or bleach, a strong 
antimicrobial agent. Reprinted from Redox Biology, 1, Kalyanaraman B, 
Teaching the basics of redox biology to medical and graduate students: Oxi-
dants, antioxidants and disease mechanisms, 244–257, Copyright 2013, with 
permission from Elsevier. 

Fig. 2. Oxidants cascading from one-electron reduction of oxygen to O2
•–. Several potent oxidants are generated from H2O2 formed from dismutation of O2

•–. One of 
the most potent antimicrobial oxidants, HOCl, is formed from MPO-catalyzed oxidation of chloride ion. ONOO− , another potent oxidant, is formed from the reaction 
between O2

•– and nitric oxide and results in the oxidation of lipid, proteins, and DNA. 

Fig. 3. NETosis and NET formation as an extracellular antimicrobial mechanism. Stimulation of oxidants during the phagocytic killing of microbes causes rupture of 
nuclear membranes extruding chromatin, MPO, neutrophil elastase, histones, and proteolytic enzymes into the extracellular space forming a net-like structure that 
traps and kills pathogens. 
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pathogens in the style of the Pac-Man video game (Fig. 1). This is known 
as the respiratory, or oxidative, burst pathway and is dependent upon 
the activation of nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase enzymes (NADPH oxidase 2 [Nox2]) whose main 
function is to generate the superoxide anion (O2

•–) using NADPH as a 
cofactor via a one-electron reduction of oxygen as part of their antimi-
crobial mechanism [11]. Dismutation of O2

•– forms additional oxidants 
(hydrogen peroxide [H2O2]) that, in the presence of myeloperoxidase 
(MPO) and the chloride ion generate, hypochlorous acid (HOCl) or 
bleach as a potent antibacterial agent. Other potent oxidants such as 
peroxynitrite (ONOO− ) and hydroxyl radicals (•OH) are formed from the 
reaction between O2

•– and nitric oxide (NO•) formed from the nitric oxide 
synthase (NOS)-catalyzed oxidation of L-arginine (Fig. 2) [12]. Neutro-
phils use these highly potent oxidants and free radicals (also described as 
cellular atomic bombs) to destroy phagocytized pathogens intracellu-
larly (Fig. 1). In 2004, it was proposed that in addition to the intracel-
lular antimicrobial killing mechanism, neutrophils trap and kill 
pathogens by casting a toxic extracellular net [13,14]. 

3. Neutrophils, extracellular traps, or NETosis, a novel form of 
cell death: dying to kill? 

NETosis is a form of cell death that is distinctly different from 
apoptosis or necrosis [15,16]. Following an intracellular oxidative burst 
in response to a bacterial, fungal, or viral infection, neutrophils extrude 
DNA and antimicrobial proteins during NETosis into the extracellular 
space, forming a net-like structure, or NETs (similar to a spiderweb), to 
trap and kill invading pathogens, including bacteria, fungi, and viruses 
(Fig. 3) [15–17]. Structurally, NETs consist of extracellular DNA deco-
rated with histones, cytosolic proteins, and granular proteins; neutrophil 
elastase; and oxidative enzymes, Nox2, MPO, and NOS [18,19] (Fig. 3). 
Histones are positively charged and form a nucleosome with chromatin. 
Neutrophil elastase, a serine protease, translocates to the nucleus and 
instigates NET formation. NET formation is triggered by innate immu-
nity receptors activating Nox2 and/or mitochondria that subsequently 
activate MPO, neutrophil elastase, and a calcium-dependent protei-
n-arginine deiminase type 4 (PAD4). PAD4 citrullinates histones and 
decreases the net positive charge by converting the positively charged 
arginine to the neutral citrulline, promoting chromatin decondensation 
[20]. Neutrophils derived from patients with chronic granulomatous 
disease with mutations in Nox2, which does not generate O2

•–, failed to 
induce NET formation [21]. Both Nox2 and MPO are implicated in NET 
formation in plasma isolated from patients with autoimmune conditions 
[22]. The 8-hydroxy deoxyguanosine (8-OHdG)-enriched DNA present 
in NETs binds to a transmembrane protein on tumor cells and facilitates 
their metastatic potential, as discussed later [23,24]. 

4. Imbalance between NET formation and NET clearance or 
degradation 

Despite its antimicrobial effects, the excessive accumulation of NET 
causes damage to the host by inducing pro-inflammatory mechanisms 
[25,26]. The timely removal of NETs is crucial for preventing 
self-antigens [27]. Degradation of NETs in 
ischemia/reperfusion-challenged intestinal tissue with deoxyribonu-
clease 1 (DNase 1) is proposed as an effective treatment against intes-
tinal ischemia/reperfusion injury [28]. Acute and chronic inflammation 
and autoimmune disorders are associated with enhanced NET levels 
[17]. A decreased ability to degrade NETs is pronounced in systemic 
lupus erythematosus (SLE) patients with antiphospholipid syndrome 
[29–32] and nephritis [27], and degradation of NETs is impaired by the 
presence of autoantibodies, increasing the risk of thrombosis. 

5. Enhanced NET formation in COVID-19 patients 

Enhanced release of NETs was reported to occur in severe cases of 

COVID-19 [33,34]. Sera from COVID-19 patients revealed elevated 
levels of extracellular DNA (cell-free DNA), and two specific markers of 
NETs: MPO-DNA and citrullinated histone H3. The levels of cell-free 
DNA showed a strong correlation with other markers of inflammation 
(e.g., C-reactive protein, D-dimer). Both cell-free DNA and MPO-DNA 
were much higher in patients on mechanical ventilation as compared 
with patients breathing room air. Another interesting finding of this 
study [17] is that sera from COVID-19 patents triggered NET release 
from control neutrophils in vitro, indicating that circulating NETs could 
be used to predict the extent of disease severity. NETs stimulated 
immunothrombosis in COVID-19 patients and were suggested as suit-
able therapeutic targets for mitigating prothrombotic complications in 
COVID-19 patients [35]. 

After entering the respiratory tract, SARS-CoV-2 uses a spike protein 
and latches onto the angiotensin-converting enzyme 2 (ACE2) receptor 
present on the surface of the cell membrane, fuses into the lung cell 
membrane, and begins replicating (Fig. 4) [36]. A major function of 
ACE2 is to convert angiotensin II (AT-II) that is vasoconstrictive to 
angiotensin 1,7 (AT-1,7) that exerts vasodilatory effects. AT-II activates 
O2
•– whereas AT-1,7 decreases O2

•– in vascular cells [37,38]. Lung 
inflammation is enhanced by AT-II and diminished in the presence of 
AT-1,7 [39]. SARS-CoV-2 decreases ACE2 receptors; as a result, AT-II 
levels are elevated, resulting in enhanced oxidant formation, oxidative 
stress, and inflammation [40,41]. ACE2 deficiency increases 
Nox2-mediated oxidant formation [42,43]. Recent reports indicate that 
neither ACE inhibitors nor angiotensin receptor blockers were associ-
ated with increased mortality in COVID-19 patients [44,45]. 

6. NET and the cytokine storm 

COVID-19 patients who were admitted into the intensive care unit 
showed elevated levels of cytokines as compared with those who were 
not admitted. During the early stages of this pandemic, many patients on 
ventilators developed respiratory illness and died. More recently, due to 
antiviral drugs (e.g., remdesivir) and anti-inflammatory steroids (e.g., 
dexamethasone), respiratory-illness-related deaths have dramatically 
decreased. Remdesivir, a nucleoside analog that mimics a viral RNA 
component, inhibits the RNA polymerase enzyme that SARS-CoV-2 uses 
for replication [46]. Dexamethasone, an FDA-approved immunosup-
pressive steroid that has been used in the clinic for over 50 years, 

Fig. 4. SARS-CoV-2 from the respiratory tract enters lung cells through the 
ACE2 receptor. The virus inactivates the ability of ACE2 to convert AT-II to AT- 
1,-7. SARS-CoV-2 stimulates PMN (polymorphonuclear neutrophils- 
mediated) O2

•–. 
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prevented mortality in seriously ill COVID-19 patients [47]. In response 
to SARS-CoV-2 infection, the immune system is activated through 
recruitment of T-cells, macrophages, and dendritic cells. These immune 
cells secrete molecules, cytokines and chemokines, to combat the viral 
infection. The “cytokine storm” refers to an uncontrolled, 
hyper-activation of immune cells, cytokines (IL-6), and chemokines 
(CXCL10). NETs induce pro-inflammatory cytokines that further stim-
ulate NET and cause a “feedback” snowballing effect [48]. Drugs 
decreasing the NET levels have been shown to prevent COVID-19 asso-
ciated cytokine release [49]. 

7. African Americans are disproportionately affected by 
inflammatory diseases: NET hypothesis 

COVID-19 patients with underlying medical conditions (e.g., dia-
betes, hypertension, obesity, and immunosuppression) with increased 
basal levels of oxidative stress need hospitalization and frequently 
develop more severe complications [50]. Because COVID-19 patients 
have increased NET levels accompanied by increased severity, it is 
conceivable that people with elevated basal levels of NET caused by 
underlying medical conditions (as described below) would be more 
vulnerable to life-threatening complications induced by SARS-CoV-2. 
Whether enhanced NET induction is the cause or consequence of un-
derlying medical conditions, decreasing NETs with drugs or nutritional 
and vitamin supplements has been shown to be beneficial [51]. African 
Americans are disproportionately affected by several chronic medical 
conditions as discussed in the following sections. 

7.1. Obesity 

The link between oxidative stress and endothelial dysfunction is well 
established [52]. In an animal model of obesity, increased NET forma-
tion was shown to be associated with inflammation and endothelial 
dysfunction [53]. Prevention of NET formation with 2-chloroamidine, 
an inhibitor of peptidylarginine deaminase 4, that inhibits the citrulli-
nation of histone decreased obesity-related endothelial dysfunction and 
inflammation [53]. In another study, it was reported that NET levels did 
not affect the onset of obesity or adipose tissue inflammation but may 
affect obesity-induced pathologies [54]. Severe obesity in patients was 
shown to be associated with enhanced NET generation [55]. Obesity is 
proposed as a major risk factor for increased prevalence, severity, and 
lethality of COVID-19 [56]. Inhibiting NET in obese individuals would 
be a promising therapeutic strategy. 

7.2. Hypertension 

Hypertension (increased blood pressure) is more prevalent in African 
Americans, and obesity is a major contributing factor [57]. Emerging 
research reveals a new role for neutrophils in hypertension [58]. The 
presence of a salt-sensitive gene that regulates vascular resistance and 
renal sodium transport in African Americans increases the risk of 
developing high blood pressure [59]. This particular gene is a variant of 
the angiotensin-converting enzyme that enhances the release of AT-II, a 
vasoconstrictor. Enhanced formation of oxidants and NETs were shown 
to contribute to elevated blood pressure in spontaneously hypertensive 
rats [60]. Studies implicate a role for enhanced angiotensin II and 
activation of Nox2 and NETosis in arterial hypertension [60–62]. Afri-
can Americans with hypertension exhibit decreased activity of antioxi-
dant enzymes [63]. 

7.3. Cardiovascular disorders 

In contrast to initial thinking that COVID-19 predominantly damages 
the lungs, recent research shows that the virus causes inflammation in 
the heart, affects heart function, and diminishes oxygen supply to the 
heart muscle [64]. People with preexisting heart conditions are at 

increased risk for developing severe heart problems. SARS-CoV-2 pre-
sumably enters through the ACE2 receptors present in the heart and 
directly attacks the heart cells, causing an extreme inflammatory reac-
tion that induces a cytokine storm (e.g., IL-6,7,22 and CXCL10) and can 
even trigger a heart attack [65]. NETs were proposed to play a primary 
role in acute myocardial infarction caused by the rupture of a coronary 
atherosclerotic plaque followed by a thrombus artery occlusion [66,67]. 
Impaired DNase 1-mediated degradation of NET is associated with 
excessive microvascular thrombosis [68]. Lack of removal of NETs over 
a long period of time induces collagen deposition, increased fibrosis, and 
heart failure [69]. 

7.4. Diabetes 

Diabetes is a key risk factor for developing severe COVID-19, and 
COVID-19 patients with this underlying condition are more likely to die 
of respiratory and cardiovascular complications [70,71]. Diabetes is 
marked by chronic inflammation, endothelial dysfunction, and other 
cardiovascular complications. The connection between high glucose or 
hyperglycemia-induced NET formation and the NADPH oxidase 
pathway and diabetic retinopathy is strong [72–75]. NET levels and 
biomarkers of NETosis were increased in the serum of diabetics [72]. 
Increased NETs and pro-inflammatory cytokines were detected in type 2 
diabetes mellitus patients [73–75]. Impaired wound healing in patients 
with type 2 diabetes was attributed to increased NET levels [76]. 
SARS-CoV-2 has been found to destroy insulin-producing cells, inducing 
conditions in COVID-19 patients similar to those in patients with type 1 
diabetes [77,78]. A recent report suggests that elevated glucose levels 
enhanced SARS-CoV-2 infection and viral load in patients with uncon-
trolled diabetes via a glycolytic mechanism [79]. Enhanced generation 
of mitochondrial O2

•– was thought to be responsible for SARS-CoV-2 
replication and for elevated cytokine production in monocytes present 
in diabetic patients. 

7.5. Sickle cell disease 

Sickle cell disease (SCD) is an inherited autosomal recessive disorder 
that is predominantly seen in African Americans [50]. The distorted 
shape of sickle red blood cells makes them more prone to hemolysis. SCD 
is characterized by chronic hemolysis with elevated levels of heme and 
cell-free hemoglobin. Neutrophilia is a major characteristic of SCD. In a 
humanized SCD mouse model, enhanced levels of NETs were detected in 
the lungs and in plasma [80]. This study also revealed that heme present 
in the plasma stimulates in vitro and in vivo NET formation in SCD mice 
[81]. Increasing or decreasing plasma heme concentrations was shown 
to induce or prevent NETosis in SCD, respectively. Treating SCD mice 
with hemopexin to scavenge free heme reduced NET formation [81]. 
Results from these studies show that free iron is involved in NET for-
mation and treatment of SCD plasma, with the iron chelator deferox-
amine or the iron binding apotransferrin effectively inhibiting NET 
release [82]. The commonly used and FDA-approved drug hydroxyurea, 
which induces fetal hemoglobin and reduces neutrophil count, did not 
decrease the NET activity and pro-inflammatory effects associated with 
SCD [83]. 

7.6. Autoimmune diseases: systemic lupus erythematosus 

SLE is an autoimmune disease characterized by generation of auto-
antibodies directed against one’s own DNA. SLE is three times more 
prevalent in African American women than in Caucasian women. NETs 
act as autoantigens, and SLE patients develop autoantibodies to modi-
fied histones, ubiquitinated MPO, and other neutrophil proteins [84]. 
NET-associated proteins are recognized by autoantibodies in systemic 
autoimmune diseases [84]. AntiNET antibodies prevent DNase I access 
to NETs. Timely removal of NETs is crucial to avoid self-antigen for-
mation [27,85]. It was reported that NET levels increased with 
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worsening SLE several months in advance, and this allows for preven-
tative intervention. Progressive damage to kidneys, the vasculature, skin 
tissues, and other organs occurs in SLE patients. Understanding the 
mechanism of NET formation and NET removal is critical for developing 
precise therapeutic intervention. Whether SLE-induced NETs are medi-
ated by O2

•–/H2O2-independent hyper-citrullination or Nox2-or mito-
chondria-dependent oxidants remains debatable; however, reports 
suggest that mitochondria-targeted antioxidants (Mito-Quinone 
[Mito-Q] and Mito-TEMPOL) attenuated the severity of lupus in the 
mouse model [86,87]. It was suggested that Mito-Q could inhibit type 1 
interferon (IFN-1), upstream of O2

•– production [88]. Mito-Q also 
inhibited IFN-1 that is a byproduct of NETosis [88]. Immune system 
activation by mitochondria was recently reported [89]. 
Post-translational protein citrullination mediated by the nuclear enzyme 
PAD4 has also been implicated in autoimmune disorders (e.g., rheu-
matoid arthritis) in African Americans [90]. 

7.7. Airway diseases: COPD and asthma 

African Americans are at higher risk of developing chronic obstruc-
tive pulmonary disease (COPD) and asthma, diseases that obstruct air-
ways and make breathing difficult. African American women (including 
non-smokers) in particular are vulnerable to developing COPD [91]. 
Enhanced airway neutrophilic inflammation is a characteristic hallmark 
of COPD. Stable COPD patients exhibit enhanced NET formation and 
extracellular DNA in sputum [92]. Reports suggest that oxidants 
enhance NET formation in airway neutrophils; in addition, it was re-
ported that chemokine CXCL8 regulates NET formation in COPD pa-
tients [48]. CXCR2 antagonist AZD5069 decreased NETosis and NET 
levels in COPD-derived neutrophils [48]. Studies show that NET for-
mation correlates with the severity of airflow limitation [91]. 
Decreasing NET levels in COPD and asthmatic patients may be beneficial 
to mitigate chronic airway inflammation. 

7.8. Alzheimer’s disease and related dementias 

The prevalence of Alzheimer’s disease (AD) in African Americans is 
two-to threefold higher than in Caucasians, and older African Americans 
are disproportionately affected by the disease [93–95]. The inflamma-
tory network is a characteristic feature of AD [96]. Recent studies show 
that increased levels of NETs are released in AD [97–99]. 
Pro-inflammatory cytokines generated in AD brain microvessels further 
elevate intravascular NETosis in AD brains [98]. The beta-amyloid de-
posits that accumulate during AD enhanced Nox2-mediated O2

•–, pro-
moting intraparenchymal NET formation [100]. The discovery of NETs 
in mouse models of AD and in Alzheimer’s patients reveals a novel role 
of neutrophils in neuroinflammation. Whether NETs are related to early 
biomarkers of AD is not known; however, therapeutic targeting of NETs 
through preventive approaches in the early stages of AD could be a 
promising therapeutic strategy to mitigate neuroinflammation. 

7.9. Cerebrovascular disease: ischemic stroke 

Stroke is the third leading cause of death in African Americans [101]. 
Ischemic stroke is caused by occlusive thrombus (blockage of blood flow 
due to blood clot). NETs (e.g., extracellular DNA-histone complexes, 
citrullinated histones colocalizing with NET) were identified in all stroke 
thrombi in ischemic stroke patients [102–105]. Neutrophils support 
thrombosis through formation of NETs. Ex vivo addition of DNase 1 
improved tissue plasminogen (tPA)-mediated dissolution of thrombi 
isolated from stroke patients [104]. Further research on the use of DNase 
1, an FDA-approved drug for cystic fibrosis, as a prothrombolytic drug 
alone or in combination with conventional drugs (e.g., tPA) is clearly 
warranted. 

7.10. Cancer metastasis 

Metastasis of breast cancer, a leading cause of death, occurs at high 
rates in African American women [106]. Increased levels of NETs were 
identified in the metastatic lesions [23,24]. A recent study showed that 
NETosis and enhanced NET formation in the distant organs preceded 
cancer metastasis, suggesting that NETs in blood could be used as a 
predictive biomarker of metastasis [23]. 8-OHdG, a characteristic hall-
mark of NET-DNA, is an extracellular DNA sensor. The transmembrane 
protein CDC25 interacts with NET-DNA, supporting the proliferation of 
metastatic cells [23,24]. Other markers of NETosis and serum NET levels 
(e.g., MPO-DNA) were found to be higher in breast cancer patients with 
liver metastases [23]. Therapeutic targeting CDC25 and mitigating NETs 
in cancer patients may be an effective approach for preventing cancer 
metastasis [23,24]. Targeting NETosis in the tumor immune microen-
vironment was proposed as a promising strategy to inhibit metastatic 
progression [23,24,107]. 

7.11. Thrombosis or blood clots in COVID-19 patients 

Early on, COVID-19 was thought to be primarily a lung-related 
problem resulting in acute respiratory disease syndrome. Elevated 
levels of D-dimer and procoagulants such as von Willebrand factor 
(VWF), a multimeric glycoprotein, and coagulation factor VIII (FVIII) 
were detected in COVID-19 patients after stroke. These patients had 
enhanced blood clots or microthrombosis mediated by VWF and FVIII 
and were treated with unfractured heparin and other VWF-modifying 
agents. 

The presence of enhanced levels of high-molecular-weight multimers 
of VWF is an established risk factor for arterial thrombosis [108]. The 
virus binds to endothelial cells and induces inflammation through 
inactivation of the ACE2 enzyme. ACE2 inactivation increases AT-II, a 
vasoconstrictor, as it is metabolized to AT-1,7, which causes vasodila-
tion (Fig. 4). ACE2 inactivation and an increase in AT-II results in 
enhanced O2

•– formation from Nox2 and inflammation of the 
sub-endothelium. During this process, procoagulants (VWF and FVIII) 
are released. 

8. NETs as potential therapeutic targets 

8.1. FDA-approved drugs 

Basic research strongly supports that drugs mitigating NET levels in 
diseases decrease inflammation [109]. We hypothesize that mitigation 
of NETs in African Americans with underlying medical conditions would 
improve their health and decrease the severity of COVID-19, thus saving 
lives. 

FDA-approved drugs decrease NET and inflammatory biomarkers 
[110]. Metformin, one of the most widely used antidiabetic drugs, 
decreased NET formation in SLE patients [111]. 5-aminiosalicylic acid 
(mesalamine), which is widely used to treat inflammatory bowel dis-
eases, inhibits NET formation [112]. Dipyridamole is an FDA-approved 
drug that activates adenosine A2A receptors and inhibits NETs [113]. 
Recently, an antibody therapy using the anti-citrullinated protein anti-
body against NET was reported [114]. 

Hydroxychloroquine and chloroquine are FDA-approved drugs for 
treating malaria, lupus, and rheumatoid arthritis. Hydroxychloroquine 
and chloroquine inhibit NET formation in murine models of pancreatitis 
and ischemia/reperfusion injury [115–117]. However, use of hydroxy-
chloroquine and chloroquine in COVID-19 patients causes serious heart 
rhythm problems [118]. Recent studies have concluded that neither 
hydroxychloroquine nor chloroquine, either alone or in combination 
with azithromycin, is an effective antiviral drug against SARS-CoV-2 
[118–120]. A randomized, double-blind, placebo-controlled trial 
showed that the prophylactic use of hydroxychloroquine did not prevent 
symptomatic infection after SARS-CoV-2 exposure [121]. Investigators 
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also reported that hydroxychloroquine decreased COVID-19 associated 
mortality in a multi-center retrospective study [122]. Additional ran-
domized, placebo-controlled studies that are presently ongoing should 
provide definitive answers as to whether the use of hydroxychloroquine 
mitigates COVID-19 severity. Regardless of whether or not it is protec-
tive as an antiviral drug for COVID-19, the use of hydroxychloroquine is 
contraindicated in COVID-19 patients with preexisting cardiovascular, 
pulmonary, and other complications. Recently, the FDA issued a warn-
ing cautioning against the use of hydroxychloroquine and chloroquine 
for COVID-19 patients outside of the hospital setting or in a clinical trial 
due to the elevated risk of cardiovascular complications. 

8.2. Nutritional supplements and natural products 

8.2.1. Glutathione 
Glutathione (GSH), a tripeptide consisting of cysteine, glycine, and 

glutamate, is one of the most abundant cellular antioxidants involved in 
the removal of H2O2 and activation of key enzymes (thioredoxins, per-
oxiredoxins, and glutathione peroxidases). N-acetylcysteine (NAC) is an 
intracellular precursor of GSH, and its protective mechanism is linked to 
reduction of disulfides and regeneration of GSH. Recent clinical reports 
hypothesized that GSH deficiency is a plausible cause of increased sus-
ceptibility to SARS-CoV-2 infection in older people and in those with 
preexisting medical conditions (e.g., diabetes and cardiovascular and 
respiratory diseases) [123]. GSH lowers viral load and viral infection; 
inhibits oxidative stress, inflammation, pro-inflammatory cytokines (e. 
g., IL-6, IL-8, and TNF-α), and thrombosis; and potentially boosts im-
mune function [123,124]. Inadequate nutrition and insufficient con-
sumption of fresh fruits and vegetables could contribute to endogenous 
GSH deficiency. GSH therapy has been effectively used to alleviate 
dyspnea in COVID-19 patients [125]. Prior to supplementation therapy, 
the basal levels of GSH should be determined. 

8.2.2. N-acetylcysteine 
NAC, an FDA-approved mucolytic drug for chronic obstructive lung 

disease and acetaminophen toxicity, is currently undergoing clinical 
trials in COVID-19 patients [126]. NET formation induced by O2

•– pro-
motes thrombosis [127]. NAC can act as an anticoagulant and exert a 
thrombolytic effect [127]. NAC was found to block NETosis in vitro 
[128]. Although a multitude of publications claim that NAC acts as an 
antioxidant by scavenging the O2

•– anion, the collective opinion of ex-
perts in the areas of oxidative biology and free radical chemistry is that 
NAC does not exert protection against oxidative stress by directly 
scavenging O2

•– or H2O2 [129]. NAC reduces the disulfide bonds (-S-S-) 
to sulfhydryl groups (-SH). Thus, NAC can increase intracellular GSH 
levels by reducing glutathione disulfide. The VWF protein forms large 
multimers through disulfide cross-linking, and microvascular throm-
bosis is caused by aggregation of platelets due to binding to VWF mul-
timers [130]. NAC alters VWF binding through a reduction of the 
intrachain disulfide bond and a decrease in the number of VWF multi-
mers [130,131]. Fig. 5 illustrates the plausible mechanism by which 
NAC might induce platelet disaggregation by reducing the -S-S- bond 
and decreasing VWF multimers. 

8.2.3. L-glutamine 
L-glutamine, one of the most abundant amino acids in the blood-

stream, is approved by the FDA as an antioxidant drug for treatment of 
SCD. L-glutamine enhances intracellular GSH and NAD+ (nicotinamide 
adenine dinucleotide) levels. The immunomodulatory aspects of L- 
glutamine supplementation and its beneficial effects in immunocom-
promised people have recently been discussed [51]. Clearly, the 
appropriate clinical trials are required to establish the efficacy of 
L-glutamine in immunocompromised COVID-19 patients. 

8.2.4. Vitamin C 
Vitamin C (ascorbic acid) is an essential nutrient that is acquired 

from intake of fruits and vegetables or from nutritional supplements. 
Vitamin C deficiency results in oxidative stress, inflammation, and 
compromised immune function. Intracellular concentration of ascorbate 
can be significantly increased when supplemented with dehy-
droascorbate, the oxidized form of ascorbate [132]. The antioxidant 
mechanism of ascorbic acid is important for the antimicrobial function 
of neutrophils [132,133]. Ascorbate supplementation decreased NET 
formation in activated neutrophils. Ascorbate supplementation protects 
against enhanced oxidative stress induced by inflammatory and auto-
immune conditions [133]. 

8.2.5. Vitamin D 
Vitamin D deficiency, also known as hypovitaminosis D, is associated 

with several chronic diseases (e.g., asthma and respiratory disorders) 
and negatively affects immune function and response. Under these 
conditions, it is essential to increase the levels of vitamin D through 
appropriate supplementation. Vitamin D supplementation enhances the 
innate immune system and reportedly prevents immune system over-
activation. Investigators reported a significant correlation between 
vitamin D deficiency, cytokine storm, and increased COVID-19 mortality 
[134–136]. Vitamin D deficiency was suggested to be a predictor of poor 
prognosis in COVID-19 patients with acute respiratory distress syn-
drome [137]. More rigorous studies linking vitamin D and SARS-CoV-2 
need to be performed. Dietary factors, sunlight, and vitamin D supple-
mentation enhance endogenous vitamin D levels. African Americans and 
other individuals with darker skin pigmentation have decreased vitamin 
D levels because of UVB light absorption by the melanin pigment [135]. 
UVB present in the sunlight is needed for vitamin D synthesis. Elderly 
people also often have vitamin D deficiency. Because an optimal level of 
vitamin D is essential for proper functioning of the immune system and 
for inhibiting the pro-inflammatory cytokines, any perceived deficiency 
in high-risk individuals should be rectified by supplementation with 
vitamin D. 

8.2.6. Vanilloids 
Recent high-throughput studies discovered a novel class of vanilloids 

as effective inhibitors of NET formation [138]. The vanilloids capsaicin, 
dihydrocapsaicin, and resiniferatoxin are natural products that contain 
the vanillyl moiety (4-hydroxy-3-methoxybenzyl). Capsaicin and dihy-
drocapsaicin, well known agonists of the TRPV1 (transient receptor 
potential vanilloid 1) receptor, are believed to exert their effects via 
downregulation of NF-κB signaling [138]. 

Fig. 5. Potential thrombolytic effect of NAC. Increased formation of O2
•– as shown in Fig. 4 results in enhanced VWF and thrombosis. Reduction of disulfide (-S-S-) to 

sulfhydryl groups (-SH) in VWF cross linked to proteins is proposed as the likely mechanism for the vasoprotective effects of NAC. 
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9. Role of mitochondria in NET: repurposing mitochondria- 
targeted drugs in COVID-19 treatment? 

Published reports suggest that compounds inhibiting the mitochon-
drial respiratory chain inhibit neutrophil activation and oxidative burst 
[139,140]. Mitochondrial complex I inhibitors, rotenone and metfor-
min, significantly inhibit the recruitment of neutrophils in a 
lipopolysaccharide-induced lung inflammation mouse model [141]. 
Using a neutrophil-specific knockout zebrafish model, the first in vivo 
evidence was provided for mitochondrial regulation of neutrophil 
function [142]. Primary neutrophils depend on mitochondrial mem-
brane potential for chemotaxis. Proper functioning of the mitochondrial 
electron transport chain is required for neutrophil motility to occur 
[142]. Perturbation of mitochondrial function was shown to greatly 
decrease the antimicrobial potency of inflammatory neutrophils [140]. 
However, the role of mitochondria in oxidative burst induced by neu-
trophils is questionable; it was previously demonstrated that cyanide 
inhibited the macrophage/monocyte respiratory burst but not the 
neutrophil-generated O2

•– and H2O2 [143,144]. 
Mitochondria-targeted drugs inhibited Nox2 levels, oxidative dam-

age, and inflammation in a mouse model of Parkinson’s disease [145]. 
Mito-apocynin synthesized from apocynin, a non-specific inhibitor of 
Nox2, inhibited Nox2 and oxidative/nitrative modification of proteins 
and inflammation in microglia [145]. Mito-Q, co-enzyme Q conjugated 
to the triphenylphosphonium moiety, decreased NET formation in a 
lupus mouse model [88]. Mito-Q treatment of SARS-CoV-2-infected 
monocytes from diabetics decreased viral replication and cytokine 
upregulation [79]. Fig. 6 shows the chemical structures of selected drugs 
that target mitochondria and inhibit Nox2 activity and inflammation. 
These and related drugs are promising candidates for mitigation of NETs 
[146]. 

Other mechanisms contribute to oxidative stress in COVID-19 that 
have not been discussed here. One of the major pathways regulating 
cellular oxidant balance is the transcription factor, nuclear factor 
erythroid 2-related factor (Nrf2) [147,148]. Nrf2 regulates the expres-
sion of antioxidant proteins that protect against oxidative damage 
induced by inflammation. Several FDA-approved drugs (ursodiol, 
dimethyl fumarate) and natural compounds (sulforaphane, curcumin, 
resveratrol, quercetin) are known to activate Nrf2 [149]. It was sug-
gested that Nrf2 activation may significantly decrease the intensity of 
the cytokine storm in COVID-19 [150,151]. Recent reports suggest that 
the Nrf2 activating agent may be a potential therapeutic for COVID-19 
[150,152]. 

10. Conclusions 

NETs are a double-edged sword—they kill pathogens and viruses by 
oxidative damage and microbicidal activities, but they also cause 
collateral damage in surrounding tissues due to a cascade of inflam-
matory reactions. Recently, a group of medical research organizations (i. 
e., the NETwork) including the Cold Spring Harbor Laboratory began 
investigating whether overactive immune cells that produce NETs are 
responsible for lung inflammation and, if so, whether drugs that 
decrease NET formation would decrease the severity of lung disease in 
COVID-19 patients. Several therapeutic approaches targeting the cyto-
kine storm, neutrophil elastase, PAD4, and oxidative enzymes Nox2 and 
MPO have been proposed. 

African Americans are disproportionately affected by many inflam-
matory diseases in which increased NETs induce inflammation and 
thrombosis. SARS-CoV-2 infection induces a double whammy in in-
dividuals with preexisting inflammatory medical conditions, causing a 
hyperactive immune response with deleterious consequences. Drugs 
that decrease NETs in high-risk groups, including African Americans, 
Hispanics, and other ethnic minorities, as well as in individuals from 
other groups with underlying medical conditions (e.g., hypertension, 
diabetes, and cardiovascular disorders), could potentially decrease the 
severity and mortality of SARS-CoV-2 and future pandemic viruses. 
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A. Moscardó, Neutrophil extracellular traps are increased in patients with acute 
ischemic stroke: prognostic significance, Thromb. Haemostasis 117 (2017) 
1919–1929, https://doi.org/10.1160/th17-02-0130. 

[104] C. Ducroux, L. Di Meglio, S. Loyau, S. Delbosc, W. Boisseau, C. Deschildre, M. Ben 
Maacha, R. Blanc, H. Redjem, G. Ciccio, S. Smajda, R. Fahed, J.B. Michel, 
M. Piotin, L. Salomon, M. Mazighi, B. Ho-Tin-Noe, J.P. Desilles, Thrombus 
neutrophil extracellular traps content impair tPA-induced thrombolysis in acute 
ischemic stroke, Stroke 49 (2018) 754–757, https://doi.org/10.1161/ 
strokeaha.117.019896. 

[105] C. Acta Neuropathologica, Publisher correction to: acta neuropathologica 
communications, volume 7, Acta Neuropathologica Communications 7 (2019) 
131, https://doi.org/10.1186/s40478-019-0784-5. 

[106] M. Schootman, D.B. Jeffe, W.E. Gillanders, R. Aft, Racial disparities in the 
development of breast cancer metastases among older women: a multilevel study, 
Cancer 115 (2009) 731–740, https://doi.org/10.1002/cncr.24087. 

[107] M. Binnewies, E.W. Roberts, K. Kersten, V. Chan, D.F. Fearon, M. Merad, L. 
M. Coussens, D.I. Gabrilovich, S. Ostrand-Rosenberg, C.C. Hedrick, R. 
H. Vonderheide, M.J. Pittet, R.K. Jain, W. Zou, T.K. Howcroft, E.C. Woodhouse, R. 
A. Weinberg, M.F. Krummel, Understanding the tumor immune 
microenvironment (TIME) for effective therapy, Nat. Med. 24 (2018) 541–550, 
https://doi.org/10.1038/s41591-018-0014-x. 

[108] D. Lillicrap, Thrombolytic potential of N-acetylcysteine, Circulation 136 (2017) 
661–663, https://doi.org/10.1161/CIRCULATIONAHA.117.029313. 

[109] K. Van Avondt, D. Hartl, Mechanisms and disease relevance of neutrophil 
extracellular trap formation, Eur. J. Clin. Invest. 48 (Suppl 2) (2018), e12919, 
https://doi.org/10.1111/eci.12919. 

[110] L.S. van Dam, T.J. Rabelink, C. van Kooten, Y.K.O. Teng, Clinical implications of 
excessive neutrophil extracellular trap formation in renal autoimmune diseases, 
Kidney Int Rep 4 (2019) 196–211, https://doi.org/10.1016/j.ekir.2018.11.005. 

[111] H. Wang, T. Li, S. Chen, Y. Gu, S. Ye, Neutrophil extracellular trap mitochondrial 
DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept 

trial of metformin, Arthritis Rheum. 67 (2015) 3190–3200, https://doi.org/ 
10.1002/art.39296. 
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