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Abstract: As a primary pigment of leafy green vegetables, chlorophyll plays a major role in indicating
vegetable growth status. The application of hyperspectral remote sensing reflectance offers a quick
and nondestructive method to estimate the chlorophyll content of vegetables. Reflectance of adaxial
and abaxial leaf surfaces from three common leafy green vegetables: Pakchoi var. Shanghai Qing
(Brassica chinensis L. var. Shanghai Qing), Chinese white cabbage (Brassica campestris L. ssp. Chinensis
Makino var. communis Tsen et Lee), and Romaine lettuce (Lactuca sativa var longifoliaf. Lam) were
measured to estimate the leaf chlorophyll content. Modeling based on spectral indices and the partial
least squares regression (PLS) was tested using the reflectance data from the two surfaces (adaxial
and abaxial) of leaves in the datasets of each individual vegetable and the three vegetables combined.
The PLS regression model showed the highest accuracy in estimating leaf chlorophyll content of
pakchoi var. Shanghai Qing (R2 = 0.809, RMSE = 62.44 mg m−2), Chinese white cabbage (R2 = 0.891,
RMSE = 45.18 mg m−2) and Romaine lettuce (R2 = 0.834, RMSE = 38.58 mg m−2) individually as well
as of the three vegetables combined (R2 = 0.811, RMSE = 55.59 mg m−2). The good predictability of
the PLS regression model is considered to be due to the contribution of more spectral bands applied
in it than that in the spectral indices. In addition, both the uninformative variable elimination PLS
(UVE-PLS) technique and the best performed spectral index: MDATT, showed that the red-edge
region (680–750 nm) was effective in estimating the chlorophyll content of vegetables with reflectance
from two leaf surfaces. The combination of the PLS regression model and the red-edge region are
insensitive to the difference between the adaxial and abaxial leaf structure and can be used for
estimating the chlorophyll content of leafy green vegetables accurately.
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1. Introduction

The human consumption of leafy green vegetables has been increasing due to lifestyle changes in
recent years, and hence the nutrition and health status of leafy green vegetables on the market is of
important to consumers [1–3]. Chlorophyll, as the primary pigment of leafy green vegetables, plays a
major role in assessing the health status of vegetables. The nutritional status of leafy green vegetables
can also be monitored via quantifying chlorophyll content because most of the nitrogen is incorporated
in leaf chlorophyll [4–7]. Hence, there is a need for accurate, efficient, and practical methodologies to
estimate leaf chlorophyll content [8–10]. Non-destructive remote determination of leaf chlorophyll
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content by reflectance permits a way to quickly measure chlorophyll variation in leaves and avoid
destructive and expensive traditional laboratory-based chlorophyll content measurements [11,12].

Many reflectance-based vegetation indices (VIs) that include a single band or multiple bands
have been developed to estimate the chlorophyll content of plants. Most of the indices utilize the
reflectance in the feature bands, such as near infrared (NIR) (750–870 nm), green (550 nm), and
red (660–670 nm) [3,13,14]. Additionally, more sensitivity of reflectance in the red-edge region than
the reflectance in the other bands to chlorophyll content of vegetation has been recognized for
decades [13–17], and the red-edge bands have been widely used for biophysical parameters at leaf
and canopy levels [18]. The red edge is the region of sharp change in vegetation reflectance spectra.
It occurs between wavelengths of 680–750 nm, where the reflectance changes from very low in the
chlorophyll red absorption region to very high in the NIR because of leaf and canopy scattering [19].

Spectral indices mostly focus only on a few bands, which makes it difficult to construct a unified
index to remotely estimate leaf chlorophyll content across different plant species or different growth
stages. In contrast, the partial least squares (PLS) regression is a so-called full-spectrum technique
that reduces the large number of measured collinear spectral variables to a few non-correlated latent
variables or factors while maximizing co-variability to the variable(s) of interest [20–22]. Some
researchers have demonstrated that the PLS regression model could make the prediction more robust
and accurate in the quantitative analysis of biochemical compositions in plants [23–25]. However,
the original PLS method uses all available wavebands, which are not always informative. Some
researchers used an uninformative variable elimination PLS (UVE-PLS) approach for the selection
of the informative bands before PLS modeling [24–26]. UVE-PLS is a method for variable selection
based on an analysis of regression coefficients of PLS [26], which can remove lots of useless variables
and retain the primary valuable-information-containing variables. The UVE-PLS method has been
widely applied in analytical chemistry, and satisfactory prediction results were obtained [23]. However,
limited research has been conducted to estimate the leaf chlorophyll content with reflectance.

The adaxial leaf side is traditionally considered in reflectance measurements assuming that
the reflectance captured by remote sensors is mostly from the adaxial leaf. Recently, dorsiventral
spectral leaf data are gaining attention, such as the development of dorsiventral radiative transfer
models [27], the detection of disease and water status in wheat [28], and leaf air pollution estimation [29].
Only very few studies have focused on the leaf chlorophyll content estimation by dorsiventral leaf
reflectance [30–32]. However, these studies merely utilized a linear regression analysis with only two
or three wavebands to build a valid spectral index, but did not involve more wavebands, such as in
PLS regression analysis. In addition, most remote reflectance measurement methods have worked on
quantifying the chlorophyll content of grasses, crops, deciduous trees, and coniferous trees [12,33–37],
whereas fewer studies have been conducted on green leaves vegetables [3].

One of the aims of the present study was to investigate the validation of the spectral indices and
PLS regression model in estimating the leaf chlorophyll content of vegetables with dorsiventral leaf
reflectance. The prediction performances of leaf chlorophyll content by the two methods were compared,
and the approach that was insensitive to the adaxial and abaxial leaf structure was determined. The
other aim was to select the most informative spectral bands retained in each of the two methods,
spectral indices, and PLS, for estimating chlorophyll content of three different green leaves vegetables.

2. Materials and Methods

2.1. Plant Materials

Three different species of common green leafy vegetables with different leaf colors: Pakchoi var.
Shanghai Qing (Brassica chinensis L.var. Shanghai Qing) with dark green leaves, Chinese white cabbage
(Brassica campestris L. ssp. chinensis Makino) with green leaves and Romaine lettuce (Lactuca sativa
var longifoliaf. Lam) with middle green leaves were sampled from vegetable greenhouse in suburban
farmland and used as our experimental materials. In order to obtain a wide range of variation of
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chlorophyll content of the leaf samples, the vegetables (pakchoi var. Shanghai Qing (n = 66), Chinese
white cabbage (n = 60), and Romaine lettuce (n = 62)) at different growing stages were harvested from
vegetable greenhouse. The chlorophyll content of the three species vegetables is shown in Table 1.
It can be seen that the vegetable leaf samples covered a very wide range (7.20 to 557.57 mg m−2) of
chlorophyll variation (corresponding to different leaf color change from yellow to dark green). The
minimum chlorophyll content of Romaine lettuce was significantly greater than that of pakchoi var.
Shanghai Qing and Chinese white cabbage, mainly because the leaves of Romaine lettuce were very
thin and easy to be damaged, and it is hard to get samples with the very low chlorophyll content.

Table 1. Chlorophyll content (mg m−2) of three species vegetables extracted in this study.

Samples for
Calibration

Total Chlorophyll Content
(mg m−2) Samples for

Validation

Total Chlorophyll Content
(mg m−2)

Minimum Median Maximum Minimum Median Maximum

pakchoi
var.Shanghai

Qing
(n = 45)

7.20 302.73 557.57

pakchoi
var.Shanghai

Qing
(n = 21)

7.20 198.15 490.66

Chinese white
cabbage
(n = 43)

7.20 236.39 499.34 Chinese white
cabbage (n = 17) 60.64 269.79 465.92

Romaine lettuce
(n = 45) 76.06 276.70 446.18 Romaine lettuce

(n = 17) 95.07 269.31 404.78

About 70% of the samples were used for the model calibration and the remainder were used for
model validation.

2.2. Reflectance Measurements

For each leaf, two reflectance measurements were made on the adaxial and abaxial leaf surfaces
using an ASD FieldSpec®HandHeld 2 spectrometer (Analytical Spectral Devices, Boulder, CO, USA).
The spectral range of this spectrometer is 325–1075 nm, with a sampling interval of 1.4 nm and a
spectral resolution of 3 nm. Due to the noise at the edge wavelengths of the spectrometer, only the
reflectance range of 400–1000 nm was used in this study. Radiance was measured with an ASD leaf clip
attached by a fore-optic probe for shielding the leaf from ambient light. The probe had a field-of-view
of approximately 1 cm in diameter. The sample was clamped by the clips and irradiated by the beam
from an internal incandescent light source with illumination perpendicular to the leaf. Each sample
was scanned three times and averaged as the representative data for the sample. The measuring
positions of leaves are shown in Figure 1. Similar measurements were made for a nearly 100% diffuse
reflector (Spectralon, Labsphere, North Sutton, NH, USA) as a reference before every sample was
measured. Spectral reflectance was computed by dividing the radiance reflected by the diffuse reflector.
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2.3. Leaf Chlorophyll Extraction

To ensure the consistency between the reflectance and chlorophyll content of each leaf sample,
three 0.6 mm diameter discs were cut from the approximate position on the leaf sample at which the
reflectance measurement was taken. The discs were placed into a mortar with 0.6 g silica sand and
0.25 g calcium carbonate and then ground in the dark until the green color disappeared. Subsequently,
the pigment mixture was transferred to a 50 mL volumetric flask with 96% ethanol to extract the
chlorophyll, and then one part of the homogenous solution was removed for centrifuging in a plastic
tube with a rotational speed of 927 g for 10 min. The supernatant of the pigment solution was separated
from the plastic tubes and put into a cuvette for quantifying of chlorophyll content with a Lambda 900
UV/VIS spectrophotometer (PerkinElmer Inc., Waltham, MA, USA). Finally, the chlorophyll content
was used in the empirical Equations (1)–(4) provided by Wintermans and De Mots (1965) [38].

ca(µg/mL) = 13.7×A665mµ− 5.76×A649mµ (1)

cb(µg/mL) = 25.80×A649mµ− 7.66×A665mµ (2)

ctotal(g/L) = ca + cb = 6.10×A665mµ+ 20.04×A649mµ (3)

Chl(mg/m−2) =
ctotal(µg/mL) ×V(mL)

S(cm2)
× 10 (4)

where the A665 and A649 are the absorbance at the wavelengths of 665 and 649 nm, V is the volume of
each sample solution and S is the area of each sample. The entire process of reflectance measurement
and leaf chlorophyll extraction was conducted in a darkroom to avoid chlorophyll decomposition and
keep the consistency between the reflectance and chlorophyll content measuring of each leaf sample.

2.4. Data Analysis

A reference leaf chlorophyll value was available for each reflectance measurement. The errors of
leaf chlorophyll estimation were calculated for the dataset of pakchoi var. Shanghai Qing, Chinese
white cabbage, Romaine lettuce as well as for three plant species combined.

One non-parametric regression method, PLS [39,40], and VIs were applied for leaf chlorophyll
estimation. These methods are commonly used in remote sensing [3,24,25,41]. The PLS regression
model is a method that specifies a linear relationship between a set of independent and response
variables. In this study, PLS regression was used to model the correlation between leaf reflectance
spectra (predictor variables) and leaf chlorophyll content (response variable). To ensure a reliable
comparison between the two methods, the same calibration and validation data sets were used in
both methods.

However, much of the information content within reflectance spectra maybe redundant and can
be explained with fewer than 601 spectral bands [25]. Thus, before PLS modeling, an uninformative
variable elimination PLS (UVE-PLS) approach was used for selection of the informative bands [24–26].
This method has been used previously to find informative spectral bands for LAI, leaf chlorophyll, and
carotenoid content estimation [24,25]. UVE-PLS assists in reducing the data dimension by eliminating
spectral data which are uninformative or redundant. When the UVE-PLS method is employed, a
procedure of leave-one-out cross-validation was used to calculate the regression coefficients of all
wavelengths (400–1000 nm). The non-informative bands were eliminated by the UVE-PLS method,
which is based on the reliability parameter cwl and is computed using the PLS regression coefficients of
each band as Equation (5):

cwl =
bwl

std(bwl)
(5)

where bwl and std(bwl) are the average and the standard deviation of the PLS regression coefficients
of all wavelengths (400–1000 nm), respectively. A low absolute value of the reliability parameter cwl
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means a low informative content band, and then these uninformative bands are eliminated from the
PLS regression model [24,26]. The final PLS regression model for estimating chlorophyll utilized the
retained bands. The PLS and UVE-PLS modeling was performed using the MATLAB R2014a software
(The MathWorks, Inc., Natick, MA, USA).

The 30 VIs (Table 2), which were reported effective for leaf chlorophyll estimation at the leaf
level were used. Some of the VIs were defined with specific formula and wavelengths as shown in
Table 2, provided by the previous literature. One special VI named Modified Datt index (MDATT) [30],
which was reported to be effective in estimating leaf chlorophyll content on both adaxial and abaxial
surfaces, is an index with a specific formula, i.e., the ratio of the reflectance difference between different
wavelengths as Equation (6), but without specific wavelength information.

MDATT index(Rλ1, Rλ2, Rλ3) = (Rλ3 −Rλ1)/(Rλ3 −Rλ2) (6)

where Rλ1, Rλ2, and Rλ3, are reflectance at different spectral bands. In order to obtain the optimal
combination of bands, an exhaustive iteration of all the possible band combination was applied.
Since the total 601 single-band reflectance (400–1000 nm) was used in this study, and the MDATT
is a three-band index, 6013 combinations were calculated for optimizing the MDATT. The MDATT
were fitted to the corresponding leaf chlorophyll content values by using a linear function commonly
used for reflectance model versus plant physiological parameters relationships. The algorithms of
the optimizing band combinations for the spectral and the regression analyses were created using a
custom computer program in IDL software (Environmental Systems Research Institute, Inc., Redlands,
CA, USA). The MDATT with the highest correlation coefficient was selected as optimum to estimate
chlorophyll content for a specific dataset. The best performing relationships were validated using
the validation datasets. The coefficient of determination (R2) and the root mean square error (RMSE)
were calculated to compare the prediction abilities of those and the PLS regression model. The high
R2 and low RMSE represented the higher precision and accuracy of the model in predicting the leaf
chlorophyll content.
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Table 2. Previously published spectral indices used in this study.

Spectral Index References Spectral Index References

(R850 − R710)/(R850− R680) Datt, 1999b (R800 − R650)/(R800 + R650) Blackburn, 1998b

D754/D704 Takebe and Yoneyama, 1989 PSNDb:
(R800 − R635)/(R800 + R635) Blackburn, 1998a

NDI:
(R750 − R705)/(R750 + R705) Gitelson and Merzlyak, 1994 VOG2:

(R734 − R747)/(R715 + R726) Vogelmann et al., 1993

D730 Richardson et al., 2002 1/R700−1/R750 Gitelson et al., 2003
R672/(R550*R708) Datt, 1998 R750/R700 Lichtenthaler et al., 1996
R860/(R550*R708) Datt, 1998 R750/R550 Lichtenthaler et al., 1996

1/R700 Gitelson and Merzlyak, 1996 1/R550−1/R750 Gitelson et al., 2003
R800/R675 Blackburn, 1998b R750/R710 Zarco-Tejada et al., 2001
R800/R650 Blackburn, 1998b R710/R760 Carter, 1994

PSSRb: B800/B635 Blackburn, 1998a R695/R420 Carter, 1994
PSSRa: R800/R680 Blackburn, 1998a R605/R760 Carter, 1994

R672/R550 Datt, 1998 R550 Carter, 1994
R860/R550 Datt, 1998 D715/D705 Vogelman et al., 1993

(R800 − R675)/(R800 + R675) Blackburn, 1998b D725/D702 Kochubey and Kazantsev, 2007
R680 Blackburn, 1998b R800−R550 Buschman and Nagel, 1993
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3. Results and Discussion

3.1. Reflectance of Adaxial and Abaxial Leaf Surfaces

The reflectance spectra of three different vegetable species measured from adaxial and abaxial
leaf surfaces are presented in Figure 2. The trend of the spectral curves of the three vegetable species
was similar. A significant difference was observed between the adaxial and abaxial reflectance for
most wavelengths (P < 0.001). The reflectance of abaxial leaf surfaces was greater than that of the
adaxial leaf surfaces in the visible spectral region (400–700 nm). The relative difference between the
adaxial and abaxial reflectance was reversed from that of the spectral region of 700–750 nm (Figure 3).
This observation was consistent with the results of Stuckens et al. [27] and Lu et al. [30,31]. It can be
explained by the cross-section structures of bifacial leaves. The mesophyll cells at the adaxial leaf side
are of palisade character, whereas those at the abaxial leaf side are of spongy structure [42]. The spongy
cells with loose structure have more intercellular spaces that allow more scatter from the abaxial leaf
side, while the compact structure of the palisade cells cannot scatter as much in the visible wavelengths.
This may result in a higher reflectance from the abaxial leaf side and a lower reflectance from the
adaxial side. In the NIR spectral region, the abaxial transmittance is often higher than that of the
adaxial transmittance, which leads to a higher reflectance from the adaxial side and lower reflectance
from the abaxial side [27].
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plant species.

The absolute values of the reflectance difference between the adaxial and abaxial leaf surfaces
for the three vegetables species is shown in Figure 3. It was found that the reflectance difference in
the visible region was less than in the NIR region. This is seemingly in conflict with the results of
Lu et al. [30] which found that the reflectance difference in the visible region was larger than in the NIR
region. In fact, the difference in NIR was almost equal for all of the plant species of both studies, but
the reflectance in the visible wavelengths had the largest contrast. The adaxial reflectance of the woody
species in Lu’s (white poplar and Chinese elm leaves) was much lower than that of the herbal species
in this study. This may be caused by the different inner structures of the leaves in woody plants and
annual herbaceous plants. Ivanova [43] had demonstrated that in the case of annual herbaceous plants,
the ratios of spongy tissue prevailed over the palisade tissue. The higher percentage of spongy tissue
that the vegetable species have may result in higher reflectance from the adaxial leaf side compared
with those of the woody plants in the studies of Lu et al. and Stuckens et al. [27]. Much of the spongy
tissue on the abaxial side of both the woody and vegetable species made little difference of the abaxial
leaf reflectance between the woody plants and vegetables in this study.

The smallest reflectance difference between the adaxial and abaxial leaf surfaces for all of the
vegetables was near 710 nm, which is located in the red-edge region. Thus, it is assumed that the
spectral regions around 710 nm may be regarded as the least sensitive spectral band to leaf side
structures. In addition, it is perhaps accurate to estimate chlorophyll content of leaves by the reflectance
in the red-edge wavelengths when spectral information from the two leaf surfaces is considered. Of the
three vegetables, the largest spectral difference between the two surfaces was observed in the Chinese
white cabbage leaves, which may be due to the folds on the Chinese white cabbage.

3.2. Accuracy of Leaf Chlorophyll Estimation from the Reflectance Data from Two Leaf Surfaces

The R2 and RMSE of the best 16 validation results of all of the tested methods, including 15 VIs
and PLS regression model, are shown in Figure 4. The specific prediction results of PLS regression
model and all VIs which were tested in this study are listed in Tables 3 and 4. The PLS method had
the highest accuracy of chlorophyll content estimation in terms of R2 and RMSE for each green leaves
vegetable and three species combined. The PLS regression model, using the small number of spectral
bands selected by UVE-PLS demonstrated the highest accuracy followed by the MDATT index in
estimating the leaf chlorophyll content of pakchoi var. Shanghai Qing, Chinese white cabbage, and
Romaine lettuce separately and also of the three vegetables combined. The PLS provided an RMSE of
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62.44 mg m−2 (R2 = 0.809), 45.18 mg m−2 (R2 = 0.891), and 38.58 mg m−2 (R2 = 0.834) for pakchoi var.
Shanghai Qing, Chinese white cabbage, and Romaine lettuce, respectively. The PLS also performed
best in the dataset of three species combined, in which the RMSE was 55.59 mg m−2 (R2 = 0.811). The
MDATT index gave the second best performance in both the individual plant species datasets and the
three species combined. The RMSE was 65.41 mg m−2 (R2 = 0.790), 52.89 mg m−2 (R2 = 0.850), and
48.54 mg m−2 (R2 = 0.736) for pakchoi var. Shanghai Qing ((R710 − R727)/(R710 − R734)), Chinese white
cabbage ((R703 − R732)/(R703 − R722)), and Romaine lettuce ((R712 − R744)/(R712 − R720)), respectively,
and 57.14 mg m−2 (R2 = 0.800) for the three species combined ((R705 − R732)/(R705 − R722)). The results
related to the MDATT index were consistent with those of Lu [30] in that it performed better than
nearly all of the VIs tested. It has been shown in previous studies that MDATT was an effective
index that is insensitive to the structures of adaxial and abaxial leaf surfaces for woody plant leaves.
The results of this study presented that MDATT, formatted as the ratio of difference of reflectance is
also available for leaf chlorophyll content estimation on herbaceous plant leaves, such as vegetables.
However, it was a little inferior to the PLS method. The accuracy of green leaves vegetable chlorophyll
estimation was slightly lower than previous studies, because in this study the validation results were
provided instead of calibration results. Figure 5 shows the predictive ability of the MDATT index
(R705 − R732)/(R705 − R722) and the PLS method for estimating the chlorophyll contents of the three
vegetables combined. It can be found that the scatter points derived from PLS is closer to 1:1 line
than those from MDATT. It is worth noting that the points with the leaves chlorophyll content smaller
than 400 mg m−2 are more concentrated in the PLS model than in the MDATT index model. It was
also discussed in Sims and Gamon [12] that MDATT index produced unstable results for leaves with
very low chlorophyll content. In addition, the accuracy of chlorophyll estimation of Romaine lettuce
using MDATT index was much lower than the other vegetables. This may be caused by the narrower
chlorophyll content range of Romaine lettuce. Thus, MDATT index is considered more suitable for
high chlorophyll content estimation and needs a wide range (low to high) of chlorophyll content to
modeling. The PLS is a potentially more robust method to determine the leaf chlorophyll content
of vegetables with the reflectance data from adaxial and abaxial surfaces and not affected by the
chlorophyll content range in spite of having a little larger residual (>400 mg m−2).

Table 3. Calibration and validation statistics of the partial least squares (PLS) regression models on
the entire measurement spectra (400–1000 nm) for determination of the leaf chlorophyll content in
each vegetable.

Vegetables Calibration Dataset Validation Dataset

N PCs R2 RMSE
(mg m−2)

N R2 RMSE
(mg m−2)

pakchoi Var. Shanghai Qing 90 7 0.880 52.28 42 0.809 62.44
Chinese White Cabbage 86 16 0.894 42.20 34 0.891 45.18

Romaine Lettuce 90 8 0.879 38.66 34 0.834 38.58
All Combination 266 16 0.846 51.77 110 0.811 55.59

PCs: Number of latent variables; N: Number of samples.
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Table 4. Validation statistics of spectral indices on the entire measuring spectra (400−1000 nm) for determination of the leaf chlorophyll content of each vegetable.

Spectral Index

Validation for
Pakchoi Var.

Shanghai Qing Spectral Index

Validation for
Chinese White

Cabbage Spectral Index

Validation for
Romaine Lettuce Spectral Index

Validation for
Vegetables
Combined

R2 RMSE
(mg m−2)

R2 RMSE
(mg m−2)

R2 RMSE
(mg m−2)

R2 RMSE
(mg m−2)

MDATT(R710 −

R727)/(R710 − R734) 0.790 65.41 MDATT(R703 −

R732)/(R703 − R722) 0.850 52.89 MDATT(R712 −

R744)/(R712 − R720) 0.736 48.54 MDATT(R705 −

R732)/(R705 − R722) 0.800 58.81

D715/D705 0.766 69.11 D715/D705 0.832 55.91 D725/D702 0.692 52.47 D715/D705 0.777 64.01
D725/D702 0.740 72.86 D725/D702 0.796 61.64 D715/D705 0.679 53.54 D725/D702 0.751 67.57

(R850 − R710)/(R850 − R680) 0.722 75.37 (R850 − R710)/(R850 − R680) 0.775 64.75 D730 0.648 56.11 (R850−R710)/(R850−R680) 0.741 68.99

D730 0.701 78.05 R710/R760 0.734 70.43 (R850 − R710)/(R850 − R680) 0.632 57.39 VOG2:(R734 − R747)/(R715
+ R726) 0.711 72.78

R710/R760 0.696 78.77 VOG2: (R734 − R747)/(R715
+ R726) 0.733 70.59 VOG2: (R734 − R747)/(R715

+ R726) 0.629 57.56 R710/R760 o.710 73.00

VOG2: (R734 − R747)/(R715
+ R726) 0.691 79.45 D730 0.698 75.04 R800 − R550 0.595 60.18 D730 0.691 75.34

NDI 0.677 81.21 NDI 0.698 75.06 R710/R760 0.578 61.42 NDI 0.682 76.34
R800 − R550 0.674 81.58 R550 0.689 76.07 R750/R710 0.554 63.13 R750/R710 0.674 77.31

1/R550 − 1/R750 0.671 81.95 R750/R710 0.688 76.30 NDI 0.533 64.59 R605/R760 0.614 84.16
R750/R710 0.669 82.14 1/R700 0.663 79.30 R860/R550 0.509 66.27 R750/R550 0.609 84.74
R750/R550 0.669 82.22 1/R700 − 1/R750 0.641 81.80 R750/R550 0.496 67.16 R860/R550 0.607 84.92
R860/R550 0.661 83.19 R605/R760 0.602 86.08 D754/D704 0.487 67.76 R750/R700 0.601 85.54
R605/R760 0.647 84.82 1/R550 − 1/R750 0.602 86.08 R750/R700 0.449 70.17 R800−R550 0.596 86.14

(R800 − R635)/(R800 + R635) 0.625 87.55 R750/R700 0.591 87.28 R605/R760 0.385 74.16 (R800 − R635)/(R800 + R635) 0.591 86.62
R750/R700 0.605 89.73 R860/(R550*R708) 0.589 87.50 1/R550 − 1/R750 0.374 74.80 R550 0.589 86.82

1/R700 − 1/R750 0.602 90.13 R800 − R550 0.571 89.42 R860/(R550 * R708) 0.357 75.83 1/R700 − 1/R750 0.587 87.02
PSSRb: R800/R635 0.599 90.40 (R800 − R635)/(R800 + R635) 0.570 89.55 1/R700 − 1/R750 0.333 7725 1/R550 − 1/R750 0.587 87.06

R550 0.596 90.80 R750/R550 0.564 90.14 (R800 − R635)/(R800 + R635) 0.329 77.46 (R800−R650)/(R800 + R650) 0.552 90.66
(R800 − R650)/(R800 + R650) 0.592 91.24 R860/R550 0.559 90.69 PSSRb: B800/B635 0.291 79.63 R860/(R550*R708) 0.548 91.05

R860/(R550*R708) 0.582 92.39 (R800 − R650)/(R800 + R650) 0.531 93.44 (R800 − R650)/(R800 + R650) 0.230 82.98 1/R700 0.537 92.21
R800/R650 0.579 92.69 PSSRb: B800/B635 0.447 101.56 R550 0.212 83.91 PSSRb: B800/B635 0.512 94.65

1/R700 0.544 96.49 R695/R420 0.446 101.62 R800/R650 0.209 84.07 R800/R650 0.472 98.43
(R800 − R675)/(R800 + R675) 0.458 105.14 R680 0.419 104.06 PSSRa: R800/R680 0.202 84.47 (R800 − R675)/(R800 + R675) 0.433 102.04

R800/R675 0.436 107.30 R800/R650 0.397 106.03 (R800 − R675)/(R800 + R675) 0.192 85.02 PSSRa: R800/R680 0.403 104.73
PSSRa: R800/R680 0.424 108.44 (R800 − R675)/(R800 + R675) 0.388 106.81 R800/R675 0.181 85.59 R800/R675 0.402 104.75

R680 0.397 110.92 D754/D704 0.344 110.54 1/R700 0.180 85.65 R680 0.396 105.30
D754/D704 0.361 114.21 PSSRa: R800/R680 0.333 111.48 R672/(R550*R708) 0.113 89.08 D754/D704 0.361 108.33
R672/R550 0.178 129.50 R800/R675 0.323 112.31 R680 0.055 91.92 R695/R420 0.190 121.92
R695/R420 0.082 136.89 R672/(R550*R708) 0.300 114.18 R695/R420 0.043 92.52 R672/(R550*R708) 0.159 124.24

R672/(R550*R708) 0.047 139.41 R672/R550 0.024 134.84 R672/R550 0.023 93.46 R672/R550 0.086 129.53
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Figure 4. Comparison of the spectral indices and the PLS regression model for chlorophyll content
estimation of (a) pakchoi var. Shanghai Qing, Modified Datt index (MDATT): (R710 − R727)/(R710 −

R734); (b) Chinese white cabbage, MDATT: (R703 − R732)/(R703 − R722); (c) Romaine lettuce, MDATT:
(R712 − R744)/(R712 − R720) and (d) the three species combined, MDATT: (R705 − R732)/(R705 − R722).
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Figure 5. Predictive ability of the new MDATT index (R705 − R732)/(R705 − R722) and the PLS model.

Overall, although the best performing spectral index with the highest R2 was MDATT, which
was in agreement with studies on the wooden or liana species [30,32], the PLS model was the more
useful method in evaluating the leaf chlorophyll content when the reflectance of both leaf surfaces was
considered, because with PLS, the regression model took more of the leaf chlorophyll sensitive spectral
dataset into account than the spectral indices in a weighted viewpoint.
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3.3. Spectral Band Selection for Estimating Leaf Chlorophyll Content with Reflectance from Two Leaf Surfaces

The two methods, PLS regression model and MDATT index, both demonstrated high accuracy
in estimating the leaf chlorophyll content of three vegetable species separately as well as that of the
three vegetables combined. Identifying the reliable spectral bands with different methods provides
insight into the spectral features of reflectance specific to each species as well as those common to the
three species, which have very different leaf structure. Identifying these spectral bands also allows the
development of algorithms for estimating leaf chlorophyll with reflectance from two surfaces in these
vegetables with no re-parameterization.

UVE-PLS was applied to quantitatively evaluate the information content of reflectance data for
leaf chlorophyll content estimation. The optimal bands selected for the individual vegetable species
and the combination of the three are shown in Figure 6. For each single plant species, the red-edge and
NIR wavelengths were the main informative bands. For the combination dataset, although the reliable
bands were more dispersed than those of the individual species, the red-edge region was still retained.
The informative spectral bands were able to achieve an RMSE below 55.59 mg m−2.
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Figure 6. The band positions retained for estimating leaf chlorophyll by PLS regression model in
(a) pakchoi var. Shanghai Qing; (b) Chinese white cabbage; (c) Romaine lettuce and (d) the three
species combined.

For the MDATT index, the red-edge bands were also essential for leaf chlorophyll estimation in
individual vegetable species and the three vegetables combined (Figure 7). The figures showed the
band combinations with the highest coefficient of determination when λ3 was fixed on each band from
400–1000 nm. It was found that the MDATT index which had relatively high correlation (the 60 highest
in red color) with the chlorophyll content owned very similar band combinations in any dataset studied
in this research. The three bands used in the MDATT occurred on the red-edge region. For example,
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in the pakchoi var. Shanghai Qing dataset, the 718–736 nm for λ1, 703–742 nm λ2, and 697–757 nm
for λ3 were the best band combinations; in the Chinese white cabbage dataset, the 722–733 nm for
λ1, 692–738 nm λ2, and 685–745 nm for λ3 were the best band combinations; in the Romaine lettuce
dataset, the 721–744 nm for λ1, 700–744 nm λ2, and 694–750 nm for λ3 were the best band combinations;
and in the three vegetables combined dataset, the 722–732 nm for λ1, 694–742 nm λ2, and 690–750 nm
for λ3 were the best band combinations. Figure 8 showed the dynamic variation of R2 when the λ3 was
fixed at 705 nm for the dataset of three species combined. The combinations of 705, 722, and 732 nm
for the MDATT index brought the RMSE below 57.14 mg m−2 for the three vegetables combined.
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Figure 7. The band combination of λ1 and λ2 with the highest R2 when λ3 was fixed at every wavelength
from 400–1000 nm. (a) Pakchoi var. Shanghai Qing; (b) Chinese white cabbage; (c) romaine lettuce, and
(d) the three species combined.
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Figure 8. The dynamic variation of R2 when the λ3 was fixed at 705 nm for the dataset of three
species combined.

The consistency of the spectral bands retained by PLS and VIs is quite remarkable, indicating
the robustness of the band selections. A very important result is that both methods tested were not
species-specific for three different vegetables with different leaf structures. Thus, it is likely that
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the spectral bands selected in this study may be applicable in other vegetables to evaluate the leaf
chlorophyll content.

It is instructive that the spectral band selection (red-edge regions) for MDATT consistently partly
coincided with the bands selected by the PLS with informative spectral regions identified by UVE-PLS
with a few exceptions. For the individual vegetation species, the red-edge bands were also selected
by the UVE-PLS. However, the UVE-PLS selected bands for the combination of the three vegetable
samples were a little far away from the optimal bands derived from the MDATT. It may be due to the
fact that the red-edge reflectance could remove some effects of the different structures of leaf blades,
but to remove the impacts of the difference between the vegetable species, it was necessary to combine
more bands in the PLS analysis. Regardless, the consistency of band selection in MDATT and UVE-PLS
showed that the red-edge region was effective in estimating the chlorophyll content of vegetables with
reflectance from two leaf surfaces. Furthermore, the PLS method, including much more spectral bands,
only improved the R2 and decreased the RMSE a little, which demonstrated that the bands outside the
red-edge may only contribute to the improvement of the prediction of leaf chlorophyll content to a
small degree.

4. Conclusions

The reflectance from the adaxial and abaxial surfaces of three leafy green vegetables was measured
in this study. Two methods, namely, VIs and the PLS regression model, were used to estimate
chlorophyll content. Although the bands were optimized using band optimum algorithms for some
spectral indices, they did not outperform the PLS model for the derivation of the leaf chlorophyll
content from both adaxial and abaxial reflectance. This is most likely due to the fact that the PLS model
used more spectral bands than the spectral indices. PLS is a potentially useful method to evaluate
the leaf chlorophyll content compared with the method of spectral indices when reflectance from
both leaf surfaces is considered. In addition, the spectral regions selected by both the vegetation
index of MDATT and PLS corresponded to the features of chlorophyll absorption, reflectance, and
leaf scattering. The consistency of the spectral bands retained by MDATT and PLS indicated the
robustness of the band selection. This finding would help estimate chlorophyll content in vegetable
leaves accurately without re-parameterization of the algorithms. It is also an important step in the
development of robust algorithms for remote sensing of vegetable biophysical parameters.
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