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Abstract
Background: Ovarian cancer is the gynecologic tumor with the highest fatality rate, 
and high-grade serous ovarian cancer (HGSOC) is the most common and malignant 
type of ovarian cancer. One important reason for the poor prognosis of HGSOC is the 
lack of effective diagnostic and prognostic biomarkers. New biomarkers are neces-
sary for the improvement of treatment strategies and to ensure appropriate health-
care decisions.
Methods: To construct the co-expression network of HGSOC samples, we applied 
weighted gene co-expression network analysis (WGCNA) to assess the proteomic 
data obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and 
module-trait relationship was then analyzed and plotted in a heatmap to choose key 
module associated with HGSOC. Subsequently, hub genes with high connectivity in 
key module were identified by Cytoscape software. Furthermore, the biomarkers 
were selected through survival analysis, followed by evaluation using the relative op-
erating characteristic (ROC) analysis.
Results: A total of 9 modules were identified by WGCNA, and module-trait analysis 
revealed that the brown module was significantly associated with HGSOC (cor = 0.7). 
Ten hub genes with the highest connectivity were selected by protein-protein inter-
action analysis. After survival and ROC analysis, ALB, APOB and SERPINA1 were sug-
gested to be the biomarkers, and their protein levels were positively correlated with 
HGSOC prognosis.
Conclusion: We conducted the first gene co-expression analysis using proteomic data 
from HGSOC samples, and found that ALB, APOB and SERPINA1  had prognostic 
value, which might be applied for the treatment of HGSOC in the future.
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1  |  INTRODUC TION

Ovarian cancer is the gynecologic cancer with the highest mor-
tality in the world, and ranks third in the incidence of gynecologic 
cancers, next to cervical cancer and endometrial cancer; 313,959 
new cases and 207,252 deaths were estimated to have happened 
in 2020.1 High-grade serous ovarian cancer (HGSOC), belonging to 
epithelial ovarian cancer (EOC), is the most common and fatal type 
of ovarian cancer, and the first leading cause of ovarian cancer-
related deaths.2–4 Since the ovaries are located deeply in the pelvic 
cavity, and there are no specific symptoms and effective screening 
methods of the early stages of HGSOC, most patients are often in 
an advanced clinical stage (stage III/IV) with metastasis at the time 
of diagnosis. The standard treatment of HGSOC is similar to other 
ovarian cancers, which is to perform primary debulking surgeries 
followed by chemotherapy combining platinum and paclitaxel.2 
But 80% of patients with advanced HGSOC will experience re-
currence and chemotherapy resistance, leading to a 5-year sur-
vival rate of 30%,5 and more and more evidences indicate that the 
metastasis-prone characteristics of HGSOC play an important role 
in its relatively poor prognosis.6,7 In advanced HGSOC, tumor cells 
have spread out from the ovaries and pelvic organs to the perito-
neum and abdominal organs, which could impede the normal func-
tion of vital organs in the abdomen by uncontrolled proliferation, 
as well as function of circulatory and respiratory system by gen-
erating large amounts of ascites and increasing intra-abdominal 
pressure,5,8 which eventually causing the HGSOC patients to die 
of various complications. However, patients diagnosed with early-
stage HGSOC usually have a good prognosis after standard clinical 
interventions. Therefore, the studies on the biomarkers for early 
diagnosis or judging the prognosis of HGSOC are of great help to 
develop new effective therapies and improve the prognosis of pa-
tients with HGSOC.

Over the past two decades, with the breakthrough of high-
throughput sequencing technology, a huge amount of next-
generation sequencing data of various human tissues has been 
accumulated, which has greatly promoted the progress of bio-
medicine research, such as the screening of probable cancer 
prognostic biomarkers. Specifically, in the field of ovarian cancer 
research, a variety of mRNA-  or lncRNA-based signatures have 
been identified for survival prediction in patients with ovarian 
cancer. For example, one study analyzed the differentially ex-
pressed genes in samples of ovarian cancer at different clinical 
stages and discovered specific gene co-expression modules re-
lated to the clinical stage and finally identified COL3A1, COL1A1, 
COL1A2, KRAS and NRAS as potential prognostic genes for ovar-
ian cancer.9 Another study showed that 5  lncRNAs (LINC00664, 
LINC00667, LINC01139, LINC01419 and LOC286437) could be 
used as independent risk factors for recurrence of ovarian can-
cer.10 Meanwhile, other researchers have proved that changes in 
expression levels of genes were related to platinum resistance in 
ovarian cancer.11 But almost all of these integrated analyses are 
performed at the transcriptome level, not at the proteome level. 

It is well known that protein is the main executor of life activities, 
and all life activities depend on the correct function of protein. 
And with the advancement of research methods for proteomics 
and the accumulation of public proteomic data, performing inte-
grated proteomics analysis is completely feasible at present.

In the post-genomic era, the consensus that the occurrence of 
complex diseases such as cancer is not determined by a single gene 
that has gradually gained the approval of most researchers. Gene co-
expression network research can provide us with information about 
gene expression correlations and potential functional relationships, 
thereby assisting us comprehend biological systems and explore the 
relationship between the relevant functional genes.12 And weighted 
gene co-expression network analysis (WGCNA) is a method for 
concretizing this idea, which has been comprehensively applied to 
multiple cancer-associated studies to identify hub genes related to 
various traits.

Recent proteomics studies using ovarian tissue samples from 
HGSOC patients by Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) have aided us better understand the mechanism of tumori-
genesis from a novel insight and have also identified some candidate 
therapeutic targets.2,13,14 In this study, we applied WGCNA to rean-
alyze these published proteomic data in order to discover proteins 
and pathway related to occurrence and development of HGSOC and 
identified a significant correlation between the brown module and 
the HGSOC, clinical stage, histological grade and patient survival 
time. Ten hub genes were selected from this module and verified by 
survival and relative operating characteristic (ROC) analysis. Finally, 
it was identified that ALB, APOB and SERPINA1 might be the poten-
tial biomarkers related to the prognosis of HGSOC. To our knowl-
edge, this is the first study of prognostic biomarkers for HGSOC 
applying proteomic data, which provides some new insights into the 
occurrence and progress of HGSOC.

2  |  MATERIAL S AND METHODS

2.1  |  Proteomic data collection and pre-processing

The quantitative proteomic data and clinical information of 
HGSOC were obtained from CPTAC Data Portal (https://cptac​
-data-portal.georg​etown.edu/studi​es/filte​rs/prima​ry_site:Ovary). 
And the unshared peptides expression matrices analyzed through 
the Common Data Analysis Pipeline were used for subsequent 
data analysis. Samples lacking information about clinical stage, 
tumor histological grade and survival time and proteins with 
missing value of relative abundance among all samples were ex-
cluded from our study. Other sample inclusion criteria and data 
processing procedures were described in previous studies,2,13,14 
in short, that were (1) five samples were removed causing with-
out TP53  mutation; (2) the median values of relative protein 
abundance over all proteins in every sample were calculated and 
re-centered to value of 0; (3) the normalized relative protein abun-
dances of overlapping samples were averaged and used as their 
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protein abundances. Finally, 2,892 proteins were identified to per-
form WGCNA analysis.

2.2  |  Co-expression network construction and 
module detection

We used the WGCNA package (Version 1.70, https://CRAN.R-proje​
ct.org/packa​ge=WGCNA) to construct the co-expression network 
for the identified proteins.15 First, sample cluster analysis was 
carried out by the function hclust of WGCNA package to assess 
whether there were any significant outliers in the selected sample. 
Next, a suitable soft threshold power for scale-free network con-
struction was calculated and chosen with the function pickSoft-
Threshold of WGCNA package. After, an adjacency matrix was built 
to bring about weighted separation of co-expression with the cho-
sen soft threshold power value.16 Co-expression similarity for paired 
proteins from adjacency matrix was calculated by measuring the 
topological overlap dissimilarity, and then we got a topological over-
lap matrix (TOM) for next identification and similarity analysis of co-
expression gene modules and combination of similar modules with 
the following major parameters: deepSplit of 2, minModuleSize of 15 
and mergeCutHeight of 0.3. The resulting protein co-expression net-
work was visualized as the heatmap based on dissimilarity of TOM 
with hierarchical clustering dendrogram, and the number of proteins 
in each module was counted and plotted with the barplot (ggplot2, 
Version 3.3.5, https://CRAN.R-proje​ct.org/packa​ge=ggplot2).

2.3  |  Identification of module-trait correlations and 
module preservation

The correlations between modules and clinical traits including sam-
ple type, clinical stage, pathological grade and survival time were 
assessed by the Pearson correlation coefficients and a heatmap was 
plotted to demonstrate the correlation value of interaction between 
modules and traits. The student t-test was used to get the p value of 
the correlation, and a p value of < 0.05 was considered statistically 
significant. The brown module with the highest value of correlation 
coefficients was mainly focused on and the correlation between 
gene significance (GS) for HGSOC and module membership (MM) 
in brown module was checked to identify module-trait associations.

2.4  |  Functional annotation of modules

Gene ontology (GO) enrichment analysis and KEGG pathway enrich-
ment analysis were performed for brown module via Cluster Profiler 
package (Version 3.16.1, https://bioco​nduct​or.org/packa​ges/relea​
se/bioc/html/clust​erPro​filer.html),17 and the top 5 results with ad-
justed p value of < 0.05 of enrichment analysis was visualized using 
chord diagram by GOplot package (Version 1.0.2, https://CRAN.R-
proje​ct.org/packa​ge=GOplot).18

2.5  |  Identification of hub genes

Genes closely connected to the intramodular nodes are regarded as 
hub genes which usually have more important biological function 
than other nodes.19 Protein-protein interaction (PPI) network analysis 
was performed via the online database Search Tool for Retrieval of 
Interacting Genes (STRING, Version 11, https://strin​g-db.org/),20 then 
the result of PPI analysis was imported to Cytoscape software (Version 
3.8.0) to screen out top 10 hub genes ranked by degrees in the network 
of key modules using CytoHubba plug-in (Version 0.1).21,22

2.6  |  Kaplan-Meier survival and ROC analysis

Survival analysis of hub genes was conducted and visualized via the 
Survival package (Version 3.2–11, https://CRAN.R-proje​ct.org/packa​
ge=survival) and Survminer package (Version 0.4.9, https://cran.r-
proje​ct.org/packa​ge=survm​iner), respectively. The relative protein 
abundances and overall survival time from our data were used to plot 
the Kaplan-Meier curves. The cut-off values of the hub genes to sepa-
rate the samples were determined by Survminer package. The hazard 
ratio (HR) was calculated with 95% confidence interval. Log-rank tests 
were performed to provide the statistical significance, and p value 
of < 0.05 was considered statistically significant. To evaluate the pos-
sibility of the hub genes acting as the biomarkers, we conducted the 
receiver operating characteristic (ROC) analysis and the ROC curve 
was plotted by ggplot2 package. And the area under the ROC curve 
(AUC) was calculated by the pROC package.23

2.7  |  Gene set enrichment analysis

Gene set enrichment analysis (GSEA) of the biomarkers was per-
formed with GSEA software (Version 4.1.0).24  The package “h.all.
v7.4.symbols.gmt”of the Molecular Signature Database (MsigDB, 
https://www.gsea-msigdb.org/gsea/msigd​b/) was selected as ref-
erence gene set.25  The normalized enrichment scores and p value 
were generated, and p value of  <  0.05 was considered statistically 
significant.

3  |  RESULTS

3.1  |  Identification of co-expression modules using 
WGCNA

It is believed that genes with comparable co-expression patterns 
are usually controlled by relative regulatory manner or have similar 
or parallel pathways of functional interaction.12 In this study, we 
obtained the proteomic data from the CPTAC database accord-
ing to Data Use Agreement. After the necessary quality control 
and manual check and screening, a matrix of relative abundance 
of 2,892 proteins from 25 normal fallopian tube and 235 HGSOC 

https://CRAN.R-project.org/package=WGCNA
https://CRAN.R-project.org/package=WGCNA
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samples with clinical information were selected to construct 
the co-expression networks. To ensure the reliability of the co-
expression network, sample clustering analysis was performed to 
investigate the outliers among all samples, and no outliers were 
detected (Additional file  1). Finally, the relative abundances of 
these 2,892 proteins and 260  samples were applied to identify 
the modules of co-expression genes (Additional file 2). To obtain 
scale-free topology, a value of 7 of soft threshold power was se-
lected based on scale independence analysis (R^2 =  0.927), and 
the mean connectivity analysis was also relatively high under this 
soft threshold power (Figure 1). Thirteen modules were generated 
firstly, and 4 modules were merged into adjacent modules due to 
their high relevance of module eigengenes with adjacent modules, 
thus a total of 9 modules were included in our subsequent analysis 
(Figure 2A, B). The hierarchical clustering dendrogram of proteins 
also showed the analogous results (Figure  2C). Numbers of pro-
teins in each module were displayed in Figure 2D, and the detailed 
result is summarized in Additional file 3. Afterward, the interactive 
relations among all modules and all proteins were visualized by a 
heatmap plot based on TOM (Figure 3).

3.2  |  Brown module significantly relates to HGSOC

To determine whether co-expression modules were associated with 
sample types and clinical traits, the module-trait relationship analy-
ses were performed (Figure 4A). The brown module was identified 
to be positively related to HGSOC with the top relevance and to 
survival time and negatively to stage and grade. In addition to brown 
module, the tan module also showed a lower correlation with above 
traits compared with brown module. Then, the correlation between 
GS for HGSOC and MM in brown module was analyzed, and the cor-
relation coefficients value was of 0.82 (Figure 4B).

3.3  |  Functional enrichment analysis of proteins in 
brown module

To further explore the biological function of the proteins in brown 
module, GO and KEGG pathway enrichment analyses were per-
formed (Figure 5 and additional file 4). The top 5 terms ranked by 
adjusted p value of results of enrichment analysis were visualized 
with the chord diagram. The proteins in brown module were signifi-
cantly enriched in terms of extracellular matrix organization, extra-
cellular structure organization, platelet degranulation, regulation of 
complement activation and complement activation of BP category 
(Figure 5A), and collagen-containing extracellular matrix, blood mi-
croparticle, vesicle lumen, secretory granule lumen and cytoplasmic 
vesicle lumen of CC category (Figure 5B), and extracellular matrix 
structural constituent, enzyme inhibitor activity, peptidase regulator 
activity, endopeptidase regulator activity and actin binding of MF 
category (Figure 5C). While for the enrichment of KEGG pathway, 
these proteins were mainly enriched in complement and coagulation 
cascades, ECM-receptor interaction, focal adhesion, amoebiasis and 
carbon metabolism (Figure 5D).

3.4  |  Identification of biomarkers related to the 
prognosis of HGSOC

The 545 proteins in brown module were uploaded and analyzed by 
STRING database to identify the interaction between them, and 
then the top 10 proteins (ALB, AKT1, APOB, C3, APOA1, FGA, FGG, 
SERPINA1, MAPK1 and AHSG) ranked by degree of connectivity 
were selected as hub genes by cytoHubba plug-in of Cytoscape soft-
ware. The network with neighbors generated by topological analysis 
of degree is shown in Figure 6. Furthermore, the relationships be-
tween the 10 hub genes and the overall survival time of patients with 

F I G U R E  1 Scale independence and mean connectivity of co-expression modules based on different soft threshold
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HGSOC were analyzed based on our data. Notably, low expression 
of ALB, APOB, MAPK1 and SERPINA1 significantly correlated with 
the poor survival time of patients with HGSOC (p < 0.05; Figure 7). 
Next, the ROC analysis revealed that ALB (AUC: 0.797), APOB (AUC: 
0.648) and SERPINA1 (AUC: 0.686) had high diagnostic value and 
could serve as biomarkers for the prognosis of HGSOC (Figure 8).

3.5  |  Gene set enrichment analysis

To further understand the biological function of ALB, APOB and 
SERPINA1 in HGSOC, we performed the GSEA based on our prot-
eomic data. As shown in Figure 9, all of low expression of ALB, APOB 

and SERPINA1 were significantly associated with terms of “DNA re-
pair,” “G2 M checkpoint” and “MYC targets V2.”

4  |  DISCUSSION

High-grade serous ovarian cancer remains the most common type of 
ovarian cancer with the highest incidence and the strongest fatality 
rate all over the world, and there is no definite research conclusion on 
its tumorigenesis mechanism. Meanwhile, due to the lack of effective 
early screening methods, most patients with HGSOC are diagnosed at 
the advanced stage, accompanied by extensive peritoneal metastasis, 
and furthermore, most patients will experience tumor recurrence, the 

F I G U R E  2 Identification of co-expression modules using WGCNA. (A) Eigengene adjacency analysis of different modules plotted with a 
heatmap. Red represents a high correlation, and blue represents a low correlation. (B) Hierarchical cluster analysis of different modules. The 
red line represents cut height of 0.3. (C) Hierarchical clustering of genes with dissimilarity based on topological overlap is shown with the 
modules detected and the merged modules. (D) Count of gene in different modules
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F I G U R E  3 Interaction analysis of 
co-expression genesin different modules. 
The different colors of the horizontal 
and vertical axes represent different 
modules. The yellow brightness in the 
middle indicates the degree of correlation 
between different modules based on the 
topological overlap matrix (TOM)

F I G U R E  4 Module-traitrelationship analysis. (A) The relationship between different modules and trait including sample type, stage, 
grade and survival time was visualized with a heatmap. Red represents a positive correlation and blue represents a negative correlation. 
(B) The correlation of gene significance for HGSOC versus the module membership in the brown module is depicted as a scatter plot. The 
correlation coefficient is calculated through Pearson's correlation analysis
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above two factors together lead to a very poor prognosis for patients 
with HGSOC.2,5 However, the 5-year survival rate of patients with 
early stages of HGSOC is as high as 92%, which is 62% higher than 
that with later stages of HGSOC,26 which suggests the possibility 
that patients with HGSOC can benefit from efficient early screen-
ing methods. Many researchers have conducted extensive research 
in this field and have also discovered some novel diagnostic markers 
with clinical application value.9–11 But the objects of these studies are 

almost at the transcript level, and protein, as a more direct manifesta-
tion of the life activities of cells, organs and even the body, may be a 
better research target for the screening of high-efficiency diagnostic 
or prognostic biomarkers. More importantly, current researches show 
transcript levels that by themselves are not sufficient to predict pro-
tein levels in many scenarios.27 Furthermore, with the accumulation of 
proteomic of data in public databases, it also provides more feasibility 
to do this kind of research.

F I G U R E  5 Enrichment analysis of proteins in brown module with the chord diagram. (A) Biological process category of GO enrichment 
analysis. (B) Cellular component category of GO enrichment analysis. (C) Molecular function category of GO enrichment analysis. (D) KEGG 
pathway enrichment analysis
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In this study, we obtained proteomic data of HGSOC samples 
from the CPTAC database. Then, these data were assessed by 
WGCNA, and the brown module was identified to be significantly 
related to HGSOC. Interestingly, the brown module is not only sig-
nificantly related to HGSOC but also significantly related to the pa-
tient's survival time and significantly negatively related to the clinical 
stage and histological grade of HGSOC. The results of enrichment 
analysis of proteins in brown module show that most of these pro-
teins are related to the organization and function of the extracellular 
matrix (ECM) components including collagen (COL1A1, COL1A2, 
COL4A1, COL4A2, COL6A1, COL6A2, etc.), proteoglycan (LUM, 

DCN), laminin (LAMA4, LAMB1, LAMB2, LAMC1) and other pro-
teins as linkers to connect the above proteins (NID1, PRELP,TNXB), 
covering almost all types of ECM components, and most of these 
proteins were downregulated in our data and were consistent with 
the results of previous proteomics studies.2 The metastasis-prone 
characteristics of HGSOC play an important role in its relatively poor 
prognosis.6,7 Tumor invasion and metastasis is a complicated patho-
logical process which involving interactions between tumor cells and 
various biologically active molecules from tumor microenvironment 
including ECM,28 and for malignant tumor cells derived from epithe-
lial cells like HGSOC, epithelial-mesenchymal transition (EMT) is the 

F I G U R E  6 Diagram of interaction network of the proteins in brown module. The large red node is the node with a high degree of 
connectivity, while the small blue node is the node with a low degree of connectivity

C3

C8B

LYZ

SERPING1

HPX

AHSG

APOH

QSOX1

PLG

ITGB1

LAMB1

LRG1

VWF
CST3

CLU

SERPINC1

LAMC1

FGG

GC

APOE

APOA4

FGB

VTN

AMBP

ALB

RBP4

SERPINA1

KNG1

HRG

VCL

FGA

ITIH2

F2

C8A

APOA1

TF

SERPINA7

HSPG2

APOA2

ITIH3

SERPINF2

AKT1

APOB

LTBP1

AGT

F13A1

CFB

ARRB1

LAMB2

TTRF9

KLKB1

CP

A2M

ORM1

MAPK1

C9

C4B

C6

PECAM1

A1BGITIH4

ORM2

SERPIND1

FBN1

HP



    |  9 of 13WANG et al.

key first biological step for these tumors cells to metastasize, which 
is accompanied by disorders of ECM composition and organization, 
and in turn enhancing tumor cell mobility and protecting tumor cells 
from immune attack via collagen remodeling, and finally promoting 
the invasion and metastasis of HGSOC.5,29,30 These facts not only 
prove the credibility of the correlation between the brown module 
and the clinical stage, histological grade and survival time of patients 
but also indirectly prove the validity of the results of our analysis.

Moreover, the PPI analysis was conducted to screen hub genes, 
which were further verified with survival and ROC analysis. Finally, 
ALB, APOB and SERPINA1  showed significant correlations with 
the patient's prognosis, and moreover the AUCs of ALB, APOB and 
SERPINA1, especially ALB were high enough to serve as the biomark-
ers for the prognosis of HGSOC. ALB encodes the secreted and main 

protein of human blood, lymph, cerebrospinal and interstitial fluid, 
which plays important roles in a variety of physiological functions.31 
And ALB has been reported to participate in the development and 
treatment of tumors with different mechanisms. First, previous stud-
ies have shown that ALB is significantly inhibited during cancer-related 
systemic inflammation, which is regulated by a variety of cytokines and 
growth factors produced by tumor cells and immune cells.32 Secondly, 
the decrease in plasma ALB concentration reflects the poor nutritional 
condition of patients with cancers, which may be related to the che-
motherapy resistance of patients.33 Further, the low concentration of 
serum ALB is related to the poor survival time of patients with vari-
ous cancers,32 as well as for ovarian cancer.34 However, these stud-
ies have not clarified how low plasma levels of ALB could lead to the 
poor prognosis of patients with cancers, and our research may provide 

F I G U R E  7 Survival analysis. The survival analysis of ALB (A) APOB (B) MAPK1 (C) and SERPINA1 (D) based on our proteomic data and 
patient information
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some new supports for these conclusions. In turn, these conclusions 
also support our findings. Moreover, the samples in our study were 
collected from patients with new-onset HGSOC, which may provide 
a certain research basis for the further understanding of the role of 
ALB in the occurrence of HGSOC. APOB is the main apolipoprotein of 
chylomicrons and low-density lipoproteins (LDL) and is the ligand for 
the LDL receptor,35 and the low or absent levels of APOB in plasma 
usually lead to familial hypobetalipoproteinemia and abetalipoprotein-
emia.36 Interestingly, increasing studies uncover that loss-of-function 
mutations of APOB frequently occur in multiple cancers including 
melanoma, liver cancer, stomach, esophageal, head and neck, uterine, 

and lung cancers. For liver cancer, Lee et al.37,38 find that loss or inacti-
vation of APOB in hepatocellular carcinoma is significantly associated 
with poor survival of HCC patients, whereas another group finds that 
elevated APOB predicts poor prognosis after surgery in patients with 
hepatocellular carcinoma,39 indicating that there is no consensus on 
the role of APOB in predicting the prognosis of hepatocellular carci-
noma. Meanwhile, APOB also might be associated with the immune 
cell infiltration in cholangiocarcinoma.40 SERPINA1 is a serine prote-
ase inhibitor belonging to the serpin surperfamily, elevated level of 
which is related to the invasive potential of gastric, lung and colorec-
tal adenocarcinoma,41–43 On the contrary, other studies have proved 

F I G U R E  8 ROC analysis. (A) ALB. (B) APOB. (C) MAPK1. (D) SERPINA1. The red circle represents the optimal threshold of ROC
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that SERPINA1 is significantly downregulated in a variety of cancers, 
and patients with high expression of SERPINA1 have a longer over-
all survival than patients with low expression, showing an anti-cancer 
effect.44–46  The above completely opposite effects of APOB and 
SERPINA1 on predicting prognosis of tumors indicate the complex-
ity of tumorigenesis and tumor development. But for HGSOC, there 
are currently no reports indicating an association between APOB or 
SERPINA1 and the tumorigenesis or prognosis of HGSOC, and our 
study provides first-hand information for subsequent researches in 
this field.

The limitation of this study is that our results were left without 
verification due to the lack of other independent proteomic data. 
Secondly, due to the limitation of mass spectrometry technology, 
the relative abundance of most proteins is missing, and in order 

to ensure the reliability of the results, these proteins are not in-
cluded into our analysis, which may cause bias to our conclusion. 
Furthermore, these findings need to be confirmed by further clinical 
practices in the future.

In summary, the HGSOC-associated module was revealed 
through WGCNA. ALB, APOB and SERPINA1 were identified as the 
prognostic biomarkers for HGSOC, the protein levels of which were 
positively correlated with the survival time of patients with HGSOC.
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F I G U R E  9 Gene set enrichment analysis. The top 5 enriched entries of low-expression group of ALB (A) APOB (B) and SERPINA1 (C)
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