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Abstract
Background: Ovarian	cancer	is	the	gynecologic	tumor	with	the	highest	fatality	rate,	
and	high-	grade	serous	ovarian	cancer	(HGSOC)	is	the	most	common	and	malignant	
type	of	ovarian	cancer.	One	important	reason	for	the	poor	prognosis	of	HGSOC	is	the	
lack	of	effective	diagnostic	and	prognostic	biomarkers.	New	biomarkers	are	neces-
sary	for	the	improvement	of	treatment	strategies	and	to	ensure	appropriate	health-
care decisions.
Methods: To	construct	 the	co-	expression	network	of	HGSOC	samples,	we	applied	
weighted	 gene	 co-	expression	 network	 analysis	 (WGCNA)	 to	 assess	 the	 proteomic	
data	obtained	from	the	Clinical	Proteomic	Tumor	Analysis	Consortium	(CPTAC),	and	
module-	trait	relationship	was	then	analyzed	and	plotted	in	a	heatmap	to	choose	key	
module	associated	with	HGSOC.	Subsequently,	hub	genes	with	high	connectivity	in	
key	 module	 were	 identified	 by	 Cytoscape	 software.	 Furthermore,	 the	 biomarkers	
were	selected	through	survival	analysis,	followed	by	evaluation	using	the	relative	op-
erating	characteristic	(ROC)	analysis.
Results: A	total	of	9	modules	were	identified	by	WGCNA,	and	module-	trait	analysis	
revealed	that	the	brown	module	was	significantly	associated	with	HGSOC	(cor	=	0.7).	
Ten	hub	genes	with	the	highest	connectivity	were	selected	by	protein-	protein	inter-
action	analysis.	After	survival	and	ROC	analysis,	ALB,	APOB	and	SERPINA1	were	sug-
gested	to	be	the	biomarkers,	and	their	protein	levels	were	positively	correlated	with	
HGSOC	prognosis.
Conclusion: We	conducted	the	first	gene	co-	expression	analysis	using	proteomic	data	
from	HGSOC	 samples,	 and	 found	 that	 ALB,	 APOB	 and	 SERPINA1	 had	 prognostic	
value,	which	might	be	applied	for	the	treatment	of	HGSOC	in	the	future.

K E Y W O R D S
biomarker,	high-	grade	serous	ovarian	cancer,	hub	gene,	proteomics,	WGCNA

mailto:
https://orcid.org/0000-0001-6227-2042
http://creativecommons.org/licenses/by/4.0/
mailto:bo_guo_baoan@163.com


2 of 13  |     WANG et Al.

1  |  INTRODUC TION

Ovarian	 cancer	 is	 the	 gynecologic	 cancer	with	 the	 highest	mor-
tality	in	the	world,	and	ranks	third	in	the	incidence	of	gynecologic	
cancers,	next	to	cervical	cancer	and	endometrial	cancer;	313,959	
new	cases	and	207,252	deaths	were	estimated	to	have	happened	
in 2020.1	High-	grade	serous	ovarian	cancer	(HGSOC),	belonging	to	
epithelial	ovarian	cancer	(EOC),	is	the	most	common	and	fatal	type	
of	ovarian	 cancer,	 and	 the	 first	 leading	 cause	of	ovarian	 cancer-	
related deaths.2– 4	Since	the	ovaries	are	located	deeply	in	the	pelvic	
cavity,	and	there	are	no	specific	symptoms	and	effective	screening	
methods	of	the	early	stages	of	HGSOC,	most	patients	are	often	in	
an	advanced	clinical	stage	(stage	III/IV)	with	metastasis	at	the	time	
of	diagnosis.	The	standard	treatment	of	HGSOC	is	similar	to	other	
ovarian	cancers,	which	is	to	perform	primary	debulking	surgeries	
followed	 by	 chemotherapy	 combining	 platinum	 and	 paclitaxel.2 
But	 80%	 of	 patients	 with	 advanced	HGSOC	will	 experience	 re-
currence	 and	 chemotherapy	 resistance,	 leading	 to	 a	 5-	year	 sur-
vival	rate	of	30%,5 and more and more evidences indicate that the 
metastasis-	prone	characteristics	of	HGSOC	play	an	important	role	
in	its	relatively	poor	prognosis.6,7	In	advanced	HGSOC,	tumor	cells	
have spread out from the ovaries and pelvic organs to the perito-
neum	and	abdominal	organs,	which	could	impede	the	normal	func-
tion	of	vital	organs	in	the	abdomen	by	uncontrolled	proliferation,	
as	well	as	function	of	circulatory	and	respiratory	system	by	gen-
erating large amounts of ascites and increasing intra- abdominal 
pressure,5,8	which	eventually	causing	the	HGSOC	patients	to	die	
of	various	complications.	However,	patients	diagnosed	with	early-	
stage	HGSOC	usually	have	a	good	prognosis	after	standard	clinical	
interventions.	Therefore,	the	studies	on	the	biomarkers	for	early	
diagnosis	or	judging	the	prognosis	of	HGSOC	are	of	great	help	to	
develop	new	effective	therapies	and	improve	the	prognosis	of	pa-
tients	with	HGSOC.

Over	 the	 past	 two	 decades,	 with	 the	 breakthrough	 of	 high-	
throughput	 sequencing	 technology,	 a	 huge	 amount	 of	 next-	
generation	 sequencing	 data	 of	 various	 human	 tissues	 has	 been	
accumulated,	 which	 has	 greatly	 promoted	 the	 progress	 of	 bio-
medicine	 research,	 such	 as	 the	 screening	 of	 probable	 cancer	
prognostic	biomarkers.	Specifically,	 in	the	field	of	ovarian	cancer	
research,	 a	 variety	 of	 mRNA-		 or	 lncRNA-	based	 signatures	 have	
been	 identified	 for	 survival	 prediction	 in	 patients	 with	 ovarian	
cancer.	 For	 example,	 one	 study	 analyzed	 the	 differentially	 ex-
pressed genes in samples of ovarian cancer at different clinical 
stages and discovered specific gene co- expression modules re-
lated	to	the	clinical	stage	and	finally	identified	COL3A1,	COL1A1,	
COL1A2,	KRAS	and	NRAS	as	potential	prognostic	genes	for	ovar-
ian cancer.9	Another	study	showed	that	5	 lncRNAs	 (LINC00664,	
LINC00667,	 LINC01139,	 LINC01419	 and	 LOC286437)	 could	 be	
used	 as	 independent	 risk	 factors	 for	 recurrence	 of	 ovarian	 can-
cer.10	Meanwhile,	other	researchers	have	proved	that	changes	 in	
expression	levels	of	genes	were	related	to	platinum	resistance	in	
ovarian cancer.11	But	 almost	 all	 of	 these	 integrated	analyses	 are	
performed	at	the	transcriptome	 level,	not	at	the	proteome	 level.	

It	is	well	known	that	protein	is	the	main	executor	of	life	activities,	
and all life activities depend on the correct function of protein. 
And	with	 the	 advancement	 of	 research	methods	 for	 proteomics	
and	the	accumulation	of	public	proteomic	data,	performing	 inte-
grated	proteomics	analysis	is	completely	feasible	at	present.

In	 the	post-	genomic	era,	 the	consensus	 that	 the	occurrence	of	
complex	diseases	such	as	cancer	is	not	determined	by	a	single	gene	
that	has	gradually	gained	the	approval	of	most	researchers.	Gene	co-	
expression	network	research	can	provide	us	with	information	about	
gene	expression	correlations	and	potential	functional	relationships,	
thereby	assisting	us	comprehend	biological	systems	and	explore	the	
relationship	between	the	relevant	functional	genes.12	And	weighted	
gene	 co-	expression	 network	 analysis	 (WGCNA)	 is	 a	 method	 for	
concretizing	this	 idea,	which	has	been	comprehensively	applied	to	
multiple	cancer-	associated	studies	to	identify	hub	genes	related	to	
various traits.

Recent proteomics studies using ovarian tissue samples from 
HGSOC	patients	by	Clinical	Proteomic	Tumor	Analysis	Consortium	
(CPTAC)	have	aided	us	better	understand	the	mechanism	of	tumori-
genesis from a novel insight and have also identified some candidate 
therapeutic targets.2,13,14	In	this	study,	we	applied	WGCNA	to	rean-
alyze	these	published	proteomic	data	in	order	to	discover	proteins	
and	pathway	related	to	occurrence	and	development	of	HGSOC	and	
identified	a	significant	correlation	between	the	brown	module	and	
the	HGSOC,	 clinical	 stage,	 histological	 grade	 and	 patient	 survival	
time.	Ten	hub	genes	were	selected	from	this	module	and	verified	by	
survival	and	relative	operating	characteristic	(ROC)	analysis.	Finally,	
it	was	identified	that	ALB,	APOB	and	SERPINA1	might	be	the	poten-
tial	biomarkers	related	to	the	prognosis	of	HGSOC.	To	our	knowl-
edge,	 this	 is	 the	 first	 study	 of	 prognostic	 biomarkers	 for	 HGSOC	
applying	proteomic	data,	which	provides	some	new	insights	into	the	
occurrence	and	progress	of	HGSOC.

2  |  MATERIAL S AND METHODS

2.1  |  Proteomic data collection and pre- processing

The	 quantitative	 proteomic	 data	 and	 clinical	 information	 of	
HGSOC	 were	 obtained	 from	 CPTAC	 Data	 Portal	 (https://cptac	
-	data-	portal.georg	etown.edu/studi	es/filte	rs/prima	ry_site:Ovary).	
And	the	unshared	peptides	expression	matrices	analyzed	through	
the	 Common	 Data	 Analysis	 Pipeline	 were	 used	 for	 subsequent	
data	 analysis.	 Samples	 lacking	 information	 about	 clinical	 stage,	
tumor	 histological	 grade	 and	 survival	 time	 and	 proteins	 with	
missing	value	of	 relative	abundance	among	all	 samples	were	ex-
cluded	 from	our	 study.	Other	 sample	 inclusion	 criteria	 and	 data	
processing	 procedures	were	 described	 in	 previous	 studies,2,13,14 
in	 short,	 that	were	 (1)	 five	 samples	were	 removed	causing	with-
out TP53	 mutation;	 (2)	 the	 median	 values	 of	 relative	 protein	
abundance	over	all	proteins	in	every	sample	were	calculated	and	
re-	centered	to	value	of	0;	(3)	the	normalized	relative	protein	abun-
dances	of	 overlapping	 samples	were	 averaged	 and	used	 as	 their	

https://cptac-data-portal.georgetown.edu/studies/filters/primary_site:Ovary
https://cptac-data-portal.georgetown.edu/studies/filters/primary_site:Ovary
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protein	abundances.	Finally,	2,892	proteins	were	identified	to	per-
form	WGCNA	analysis.

2.2  |  Co- expression network construction and 
module detection

We	used	the	WGCNA	package	(Version	1.70,	https://CRAN.R-	proje	
ct.org/packa	ge=WGCNA)	 to	 construct	 the	 co-	expression	network	
for the identified proteins.15	 First,	 sample	 cluster	 analysis	 was	
carried	 out	 by	 the	 function	 hclust	 of	WGCNA	 package	 to	 assess	
whether	there	were	any	significant	outliers	in	the	selected	sample.	
Next,	 a	 suitable	 soft	 threshold	power	 for	 scale-	free	network	 con-
struction	 was	 calculated	 and	 chosen	 with	 the	 function	 pickSoft-
Threshold	of	WGCNA	package.	After,	an	adjacency	matrix	was	built	
to	bring	about	weighted	separation	of	co-	expression	with	the	cho-
sen	soft	threshold	power	value.16	Co-	expression	similarity	for	paired	
proteins	 from	 adjacency	 matrix	 was	 calculated	 by	 measuring	 the	
topological	overlap	dissimilarity,	and	then	we	got	a	topological	over-
lap	matrix	(TOM)	for	next	identification	and	similarity	analysis	of	co-	
expression	gene	modules	and	combination	of	similar	modules	with	
the	following	major	parameters:	deepSplit	of	2,	minModuleSize	of	15	
and mergeCutHeight of 0.3. The resulting protein co- expression net-
work	was	visualized	as	the	heatmap	based	on	dissimilarity	of	TOM	
with	hierarchical	clustering	dendrogram,	and	the	number	of	proteins	
in	each	module	was	counted	and	plotted	with	the	barplot	(ggplot2,	
Version	3.3.5,	https://CRAN.R-	proje	ct.org/packa	ge=ggplot2).

2.3  |  Identification of module- trait correlations and 
module preservation

The	correlations	between	modules	and	clinical	traits	including	sam-
ple	 type,	 clinical	 stage,	 pathological	 grade	 and	 survival	 time	were	
assessed	by	the	Pearson	correlation	coefficients	and	a	heatmap	was	
plotted	to	demonstrate	the	correlation	value	of	interaction	between	
modules and traits. The student t-	test	was	used	to	get	the	p value of 
the	correlation,	and	a	p value of <	0.05	was	considered	statistically	
significant.	The	brown	module	with	the	highest	value	of	correlation	
coefficients	 was	 mainly	 focused	 on	 and	 the	 correlation	 between	
gene	 significance	 (GS)	 for	HGSOC	 and	module	membership	 (MM)	
in	brown	module	was	checked	to	identify	module-	trait	associations.

2.4  |  Functional annotation of modules

Gene	ontology	(GO)	enrichment	analysis	and	KEGG	pathway	enrich-
ment	analysis	were	performed	for	brown	module	via	Cluster	Profiler	
package	 (Version	 3.16.1,	 https://bioco	nduct	or.org/packa	ges/relea	
se/bioc/html/clust	erPro	filer.html),17	and	the	top	5	 results	with	ad-
justed p value of <	0.05	of	enrichment	analysis	was	visualized	using	
chord	diagram	by	GOplot	package	(Version	1.0.2,	https://CRAN.R-	
proje	ct.org/packa	ge=GOplot).18

2.5  |  Identification of hub genes

Genes	 closely	 connected	 to	 the	 intramodular	nodes	 are	 regarded	as	
hub	 genes	 which	 usually	 have	 more	 important	 biological	 function	
than other nodes.19	Protein-	protein	interaction	(PPI)	network	analysis	
was	 performed	 via	 the	 online	 database	 Search	 Tool	 for	 Retrieval	 of	
Interacting	Genes	(STRING,	Version	11,	https://strin	g-	db.org/),20 then 
the	result	of	PPI	analysis	was	imported	to	Cytoscape	software	(Version	
3.8.0)	to	screen	out	top	10	hub	genes	ranked	by	degrees	in	the	network	
of	key	modules	using	CytoHubba	plug-	in	(Version	0.1).21,22

2.6  |  Kaplan- Meier survival and ROC analysis

Survival	analysis	of	hub	genes	was	conducted	and	visualized	via	the	
Survival	package	(Version	3.2–	11,	https://CRAN.R-	proje	ct.org/packa	
ge=survival)	 and	 Survminer	 package	 (Version	 0.4.9,	 https://cran.r-	
proje	ct.org/packa	ge=survm	iner),	 respectively.	 The	 relative	 protein	
abundances	and	overall	survival	time	from	our	data	were	used	to	plot	
the	Kaplan-	Meier	curves.	The	cut-	off	values	of	the	hub	genes	to	sepa-
rate	the	samples	were	determined	by	Survminer	package.	The	hazard	
ratio	(HR)	was	calculated	with	95%	confidence	interval.	Log-	rank	tests	
were	 performed	 to	 provide	 the	 statistical	 significance,	 and	p value 
of <	0.05	was	considered	statistically	significant.	To	evaluate	the	pos-
sibility	of	the	hub	genes	acting	as	the	biomarkers,	we	conducted	the	
receiver	operating	characteristic	 (ROC)	analysis	and	 the	ROC	curve	
was	plotted	by	ggplot2	package.	And	the	area	under	the	ROC	curve	
(AUC)	was	calculated	by	the	pROC	package.23

2.7  |  Gene set enrichment analysis

Gene	 set	 enrichment	 analysis	 (GSEA)	 of	 the	 biomarkers	 was	 per-
formed	 with	 GSEA	 software	 (Version	 4.1.0).24	 The	 package	 “h.all.
v7.4.symbols.gmt”of	 the	 Molecular	 Signature	 Database	 (MsigDB,	
https://www.gsea-	msigdb.org/gsea/msigd	b/)	 was	 selected	 as	 ref-
erence gene set.25	 The	 normalized	 enrichment	 scores	 and	 p value 
were	generated,	 and	p value of <	 0.05	was	 considered	 statistically	
significant.

3  |  RESULTS

3.1  |  Identification of co- expression modules using 
WGCNA

It	 is	believed	 that	genes	with	comparable	co-	expression	patterns	
are	usually	controlled	by	relative	regulatory	manner	or	have	similar	
or	parallel	pathways	of	 functional	 interaction.12	 In	 this	 study,	we	
obtained	 the	 proteomic	 data	 from	 the	 CPTAC	 database	 accord-
ing	 to	Data	 Use	 Agreement.	 After	 the	 necessary	 quality	 control	
and	manual	 check	 and	 screening,	 a	matrix	 of	 relative	 abundance	
of	2,892	proteins	from	25	normal	fallopian	tube	and	235	HGSOC	

https://CRAN.R-project.org/package=WGCNA
https://CRAN.R-project.org/package=WGCNA
https://CRAN.R-project.org/package=ggplot2
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://CRAN.R-project.org/package=GOplot
https://CRAN.R-project.org/package=GOplot
https://string-db.org/
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://cran.r-project.org/package=survminer
https://cran.r-project.org/package=survminer
https://www.gsea-msigdb.org/gsea/msigdb/


4 of 13  |     WANG et Al.

samples	 with	 clinical	 information	 were	 selected	 to	 construct	
the	 co-	expression	 networks.	 To	 ensure	 the	 reliability	 of	 the	 co-	
expression	network,	sample	clustering	analysis	was	performed	to	
investigate	 the	 outliers	 among	 all	 samples,	 and	 no	 outliers	were	
detected	 (Additional	 file	 1).	 Finally,	 the	 relative	 abundances	 of	
these	 2,892	 proteins	 and	 260	 samples	 were	 applied	 to	 identify	
the	modules	of	co-	expression	genes	 (Additional	 file	2).	To	obtain	
scale-	free	topology,	a	value	of	7	of	soft	threshold	power	was	se-
lected	 based	 on	 scale	 independence	 analysis	 (R^2	=	 0.927),	 and	
the	mean	connectivity	analysis	was	also	relatively	high	under	this	
soft	threshold	power	(Figure	1).	Thirteen	modules	were	generated	
firstly,	and	4	modules	were	merged	into	adjacent	modules	due	to	
their	high	relevance	of	module	eigengenes	with	adjacent	modules,	
thus	a	total	of	9	modules	were	included	in	our	subsequent	analysis	
(Figure	2A,	B).	The	hierarchical	clustering	dendrogram	of	proteins	
also	 showed	 the	 analogous	 results	 (Figure	 2C).	Numbers	 of	 pro-
teins	in	each	module	were	displayed	in	Figure	2D,	and	the	detailed	
result	is	summarized	in	Additional	file	3.	Afterward,	the	interactive	
relations	among	all	modules	and	all	proteins	were	visualized	by	a	
heatmap	plot	based	on	TOM	(Figure	3).

3.2  |  Brown module significantly relates to HGSOC

To	determine	whether	co-	expression	modules	were	associated	with	
sample	types	and	clinical	traits,	the	module-	trait	relationship	analy-
ses	were	performed	(Figure	4A).	The	brown	module	was	identified	
to	 be	 positively	 related	 to	HGSOC	with	 the	 top	 relevance	 and	 to	
survival	time	and	negatively	to	stage	and	grade.	In	addition	to	brown	
module,	the	tan	module	also	showed	a	lower	correlation	with	above	
traits	compared	with	brown	module.	Then,	the	correlation	between	
GS	for	HGSOC	and	MM	in	brown	module	was	analyzed,	and	the	cor-
relation	coefficients	value	was	of	0.82	(Figure	4B).

3.3  |  Functional enrichment analysis of proteins in 
brown module

To	further	explore	the	biological	function	of	the	proteins	in	brown	
module,	 GO	 and	 KEGG	 pathway	 enrichment	 analyses	 were	 per-
formed	 (Figure	5	and	additional	 file	4).	The	top	5	terms	ranked	by	
adjusted p	 value	of	 results	 of	 enrichment	 analysis	were	 visualized	
with	the	chord	diagram.	The	proteins	in	brown	module	were	signifi-
cantly	enriched	in	terms	of	extracellular	matrix	organization,	extra-
cellular	structure	organization,	platelet	degranulation,	regulation	of	
complement	activation	and	complement	activation	of	BP	category	
(Figure	5A),	and	collagen-	containing	extracellular	matrix,	blood	mi-
croparticle,	vesicle	lumen,	secretory	granule	lumen	and	cytoplasmic	
vesicle	 lumen	of	CC	category	 (Figure	5B),	 and	extracellular	matrix	
structural	constituent,	enzyme	inhibitor	activity,	peptidase	regulator	
activity,	 endopeptidase	 regulator	 activity	 and	 actin	binding	of	MF	
category	 (Figure	5C).	While	 for	 the	enrichment	of	KEGG	pathway,	
these	proteins	were	mainly	enriched	in	complement	and	coagulation	
cascades,	ECM-	receptor	interaction,	focal	adhesion,	amoebiasis	and	
carbon	metabolism	(Figure	5D).

3.4  |  Identification of biomarkers related to the 
prognosis of HGSOC

The	545	proteins	in	brown	module	were	uploaded	and	analyzed	by	
STRING	 database	 to	 identify	 the	 interaction	 between	 them,	 and	
then	the	top	10	proteins	(ALB,	AKT1,	APOB,	C3,	APOA1,	FGA,	FGG,	
SERPINA1,	MAPK1	 and	 AHSG)	 ranked	 by	 degree	 of	 connectivity	
were	selected	as	hub	genes	by	cytoHubba	plug-	in	of	Cytoscape	soft-
ware.	The	network	with	neighbors	generated	by	topological	analysis	
of	degree	 is	shown	in	Figure	6.	Furthermore,	the	relationships	be-
tween	the	10	hub	genes	and	the	overall	survival	time	of	patients	with	

F I G U R E  1 Scale	independence	and	mean	connectivity	of	co-	expression	modules	based	on	different	soft	threshold
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HGSOC	were	analyzed	based	on	our	data.	Notably,	low	expression	
of	ALB,	APOB,	MAPK1	and	SERPINA1	significantly	correlated	with	
the	poor	survival	time	of	patients	with	HGSOC	(p <	0.05;	Figure	7).	
Next,	the	ROC	analysis	revealed	that	ALB	(AUC:	0.797),	APOB	(AUC:	
0.648)	and	SERPINA1	 (AUC:	0.686)	had	high	diagnostic	value	and	
could	serve	as	biomarkers	for	the	prognosis	of	HGSOC	(Figure	8).

3.5  |  Gene set enrichment analysis

To	 further	 understand	 the	 biological	 function	 of	 ALB,	 APOB	 and	
SERPINA1	in	HGSOC,	we	performed	the	GSEA	based	on	our	prot-
eomic	data.	As	shown	in	Figure	9,	all	of	low	expression	of	ALB,	APOB	

and	SERPINA1	were	significantly	associated	with	terms	of	“DNA	re-
pair,”	“G2	M	checkpoint”	and	“MYC	targets	V2.”

4  |  DISCUSSION

High-	grade	serous	ovarian	cancer	remains	the	most	common	type	of	
ovarian	cancer	with	the	highest	incidence	and	the	strongest	fatality	
rate	all	over	the	world,	and	there	is	no	definite	research	conclusion	on	
its	tumorigenesis	mechanism.	Meanwhile,	due	to	the	lack	of	effective	
early	screening	methods,	most	patients	with	HGSOC	are	diagnosed	at	
the	advanced	stage,	accompanied	by	extensive	peritoneal	metastasis,	
and	furthermore,	most	patients	will	experience	tumor	recurrence,	the	

F I G U R E  2 Identification	of	co-	expression	modules	using	WGCNA.	(A)	Eigengene	adjacency	analysis	of	different	modules	plotted	with	a	
heatmap.	Red	represents	a	high	correlation,	and	blue	represents	a	low	correlation.	(B)	Hierarchical	cluster	analysis	of	different	modules.	The	
red	line	represents	cut	height	of	0.3.	(C)	Hierarchical	clustering	of	genes	with	dissimilarity	based	on	topological	overlap	is	shown	with	the	
modules	detected	and	the	merged	modules.	(D)	Count	of	gene	in	different	modules
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F I G U R E  3 Interaction	analysis	of	
co- expression genesin different modules. 
The	different	colors	of	the	horizontal	
and vertical axes represent different 
modules.	The	yellow	brightness	in	the	
middle indicates the degree of correlation 
between	different	modules	based	on	the	
topological	overlap	matrix	(TOM)

F I G U R E  4 Module-	traitrelationship	analysis.	(A)	The	relationship	between	different	modules	and	trait	including	sample	type,	stage,	
grade	and	survival	time	was	visualized	with	a	heatmap.	Red	represents	a	positive	correlation	and	blue	represents	a	negative	correlation.	
(B)	The	correlation	of	gene	significance	for	HGSOC	versus	the	module	membership	in	the	brown	module	is	depicted	as	a	scatter	plot.	The	
correlation	coefficient	is	calculated	through	Pearson's	correlation	analysis
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above	two	factors	together	lead	to	a	very	poor	prognosis	for	patients	
with	HGSOC.2,5	However,	 the	5-	year	 survival	 rate	of	 patients	with	
early	stages	of	HGSOC	is	as	high	as	92%,	which	is	62%	higher	than	
that	 with	 later	 stages	 of	 HGSOC,26	 which	 suggests	 the	 possibility	
that	 patients	with	HGSOC	 can	 benefit	 from	 efficient	 early	 screen-
ing	methods.	Many	 researchers	have	conducted	extensive	 research	
in	this	field	and	have	also	discovered	some	novel	diagnostic	markers	
with	clinical	application	value.9–	11	But	the	objects	of	these	studies	are	

almost	at	the	transcript	level,	and	protein,	as	a	more	direct	manifesta-
tion	of	the	life	activities	of	cells,	organs	and	even	the	body,	may	be	a	
better	research	target	for	the	screening	of	high-	efficiency	diagnostic	
or	prognostic	biomarkers.	More	importantly,	current	researches	show	
transcript	levels	that	by	themselves	are	not	sufficient	to	predict	pro-
tein	levels	in	many	scenarios.27	Furthermore,	with	the	accumulation	of	
proteomic	of	data	in	public	databases,	it	also	provides	more	feasibility	
to	do	this	kind	of	research.

F I G U R E  5 Enrichment	analysis	of	proteins	in	brown	module	with	the	chord	diagram.	(A)	Biological	process	category	of	GO	enrichment	
analysis.	(B)	Cellular	component	category	of	GO	enrichment	analysis.	(C)	Molecular	function	category	of	GO	enrichment	analysis.	(D)	KEGG	
pathway	enrichment	analysis
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In	 this	 study,	we	 obtained	 proteomic	 data	 of	HGSOC	 samples	
from	 the	 CPTAC	 database.	 Then,	 these	 data	 were	 assessed	 by	
WGCNA,	and	 the	brown	module	was	 identified	 to	be	significantly	
related	to	HGSOC.	Interestingly,	the	brown	module	is	not	only	sig-
nificantly	related	to	HGSOC	but	also	significantly	related	to	the	pa-
tient's	survival	time	and	significantly	negatively	related	to	the	clinical	
stage	and	histological	grade	of	HGSOC.	The	results	of	enrichment	
analysis	of	proteins	in	brown	module	show	that	most	of	these	pro-
teins	are	related	to	the	organization	and	function	of	the	extracellular	
matrix	 (ECM)	 components	 including	 collagen	 (COL1A1,	 COL1A2,	
COL4A1,	 COL4A2,	 COL6A1,	 COL6A2,	 etc.),	 proteoglycan	 (LUM,	

DCN),	 laminin	 (LAMA4,	 LAMB1,	 LAMB2,	 LAMC1)	 and	 other	 pro-
teins	as	linkers	to	connect	the	above	proteins	(NID1,	PRELP,TNXB),	
covering	almost	 all	 types	of	ECM	components,	 and	most	of	 these	
proteins	were	downregulated	in	our	data	and	were	consistent	with	
the results of previous proteomics studies.2 The metastasis- prone 
characteristics	of	HGSOC	play	an	important	role	in	its	relatively	poor	
prognosis.6,7 Tumor invasion and metastasis is a complicated patho-
logical	process	which	involving	interactions	between	tumor	cells	and	
various	biologically	active	molecules	from	tumor	microenvironment	
including	ECM,28 and for malignant tumor cells derived from epithe-
lial	cells	like	HGSOC,	epithelial-	mesenchymal	transition	(EMT)	is	the	

F I G U R E  6 Diagram	of	interaction	network	of	the	proteins	in	brown	module.	The	large	red	node	is	the	node	with	a	high	degree	of	
connectivity,	while	the	small	blue	node	is	the	node	with	a	low	degree	of	connectivity
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key	first	biological	step	for	these	tumors	cells	to	metastasize,	which	
is	accompanied	by	disorders	of	ECM	composition	and	organization,	
and	in	turn	enhancing	tumor	cell	mobility	and	protecting	tumor	cells	
from	immune	attack	via	collagen	remodeling,	and	finally	promoting	
the	 invasion	and	metastasis	of	HGSOC.5,29,30	These	facts	not	only	
prove	the	credibility	of	the	correlation	between	the	brown	module	
and	the	clinical	stage,	histological	grade	and	survival	time	of	patients	
but	also	indirectly	prove	the	validity	of	the	results	of	our	analysis.

Moreover,	 the	PPI	 analysis	was	conducted	 to	 screen	hub	genes,	
which	were	 further	 verified	with	 survival	 and	ROC	analysis.	 Finally,	
ALB,	 APOB	 and	 SERPINA1	 showed	 significant	 correlations	 with	
the	patient's	prognosis,	 and	moreover	 the	AUCs	of	ALB,	APOB	and	
SERPINA1,	especially	ALB	were	high	enough	to	serve	as	the	biomark-
ers	for	the	prognosis	of	HGSOC.	ALB	encodes	the	secreted	and	main	

protein	 of	 human	 blood,	 lymph,	 cerebrospinal	 and	 interstitial	 fluid,	
which	plays	 important	roles	 in	a	variety	of	physiological	functions.31 
And	ALB	 has	 been	 reported	 to	 participate	 in	 the	 development	 and	
treatment	of	tumors	with	different	mechanisms.	First,	previous	stud-
ies	have	shown	that	ALB	is	significantly	inhibited	during	cancer-	related	
systemic	inflammation,	which	is	regulated	by	a	variety	of	cytokines	and	
growth	factors	produced	by	tumor	cells	and	immune	cells.32	Secondly,	
the	decrease	in	plasma	ALB	concentration	reflects	the	poor	nutritional	
condition	of	patients	with	cancers,	which	may	be	related	to	the	che-
motherapy	resistance	of	patients.33	Further,	the	low	concentration	of	
serum	ALB	is	related	to	the	poor	survival	time	of	patients	with	vari-
ous	cancers,32	as	well	as	 for	ovarian	cancer.34	However,	 these	stud-
ies	have	not	clarified	how	low	plasma	levels	of	ALB	could	lead	to	the	
poor	prognosis	of	patients	with	cancers,	and	our	research	may	provide	

F I G U R E  7 Survival	analysis.	The	survival	analysis	of	ALB	(A)	APOB	(B)	MAPK1	(C)	and	SERPINA1	(D)	based	on	our	proteomic	data	and	
patient information
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some	new	supports	for	these	conclusions.	In	turn,	these	conclusions	
also	support	our	 findings.	Moreover,	 the	samples	 in	our	 study	were	
collected	from	patients	with	new-	onset	HGSOC,	which	may	provide	
a certain research basis for the further understanding of the role of 
ALB	in	the	occurrence	of	HGSOC.	APOB	is	the	main	apolipoprotein	of	
chylomicrons	and	low-	density	lipoproteins	(LDL)	and	is	the	ligand	for	
the	LDL	receptor,35	and	the	low	or	absent	 levels	of	APOB	in	plasma	
usually	lead	to	familial	hypobetalipoproteinemia	and	abetalipoprotein-
emia.36	Interestingly,	increasing	studies	uncover	that	loss-	of-	function	
mutations of APOB	 frequently	 occur	 in	 multiple	 cancers	 including	
melanoma,	liver	cancer,	stomach,	esophageal,	head	and	neck,	uterine,	

and	lung	cancers.	For	liver	cancer,	Lee	et	al.37,38 find that loss or inacti-
vation	of	APOB	in	hepatocellular	carcinoma	is	significantly	associated	
with	poor	survival	of	HCC	patients,	whereas	another	group	finds	that	
elevated	APOB	predicts	poor	prognosis	after	surgery	in	patients	with	
hepatocellular	carcinoma,39 indicating that there is no consensus on 
the	role	of	APOB	in	predicting	the	prognosis	of	hepatocellular	carci-
noma.	Meanwhile,	APOB	also	might	be	associated	with	the	 immune	
cell infiltration in cholangiocarcinoma.40	SERPINA1	is	a	serine	prote-
ase	 inhibitor	 belonging	 to	 the	 serpin	 surperfamily,	 elevated	 level	 of	
which	is	related	to	the	invasive	potential	of	gastric,	lung	and	colorec-
tal	adenocarcinoma,41– 43	On	the	contrary,	other	studies	have	proved	

F I G U R E  8 ROC	analysis.	(A)	ALB.	(B)	APOB.	(C)	MAPK1.	(D)	SERPINA1.	The	red	circle	represents	the	optimal	threshold	of	ROC
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that	SERPINA1	is	significantly	downregulated	in	a	variety	of	cancers,	
and	patients	with	high	expression	of	SERPINA1	have	a	 longer	over-
all	survival	than	patients	with	low	expression,	showing	an	anti-	cancer	
effect.44– 46	 The	 above	 completely	 opposite	 effects	 of	 APOB	 and	
SERPINA1	on	predicting	 prognosis	 of	 tumors	 indicate	 the	 complex-
ity	of	tumorigenesis	and	tumor	development.	But	for	HGSOC,	there	
are	currently	no	reports	 indicating	an	association	between	APOB	or	
SERPINA1	 and	 the	 tumorigenesis	 or	 prognosis	 of	HGSOC,	 and	 our	
study	 provides	 first-	hand	 information	 for	 subsequent	 researches	 in	
this field.

The	limitation	of	this	study	is	that	our	results	were	left	without	
verification	due	 to	 the	 lack	 of	 other	 independent	 proteomic	 data.	
Secondly,	 due	 to	 the	 limitation	 of	mass	 spectrometry	 technology,	
the	 relative	 abundance	 of	 most	 proteins	 is	 missing,	 and	 in	 order	

to	 ensure	 the	 reliability	 of	 the	 results,	 these	 proteins	 are	 not	 in-
cluded	 into	 our	 analysis,	which	may	 cause	 bias	 to	 our	 conclusion.	
Furthermore,	these	findings	need	to	be	confirmed	by	further	clinical	
practices in the future.

In	 summary,	 the	 HGSOC-	associated	 module	 was	 revealed	
through	WGCNA.	ALB,	APOB	and	SERPINA1	were	identified	as	the	
prognostic	biomarkers	for	HGSOC,	the	protein	levels	of	which	were	
positively	correlated	with	the	survival	time	of	patients	with	HGSOC.
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F I G U R E  9 Gene	set	enrichment	analysis.	The	top	5	enriched	entries	of	low-	expression	group	of	ALB	(A)	APOB	(B)	and	SERPINA1	(C)
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