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INTRODUCTION

Multidetector computed tomography (MDCT) has rapidly 
developed since the 1980s, and 64-detector CT is an 
acceptable imaging modality for non-invasive assessment 
of the coronary arteries. The major difficulties in MDCT for 
cardiac imaging are the restricted temporal and spatial 
resolutions and limited z-axis coverage, which could 
produce stair-step artifacts. In this regard, the development 
of the wide-area-coverage (16-cm) CT scanner has enabled 
volumetric imaging of the entire heart within one cardiac 
cycle, free of stair-step artifacts. These advancements have 
not only improved the diagnostic performance of coronary 
CT angiography (CCTA) but also lowered the radiation dose 

Clinical Applications of Wide-Detector CT Scanners  
for Cardiothoracic Imaging: An Update
Eun-Ju Kang, MD, PhD
Department of Radiology, College of Medicine, Dong-A University, Busan, Korea

Technical developments in multidetector computed tomography (CT) have increased the number of detector rows on the z-axis, 
and 16-cm wide-area-coverage CT scanners have enabled volumetric scanning of the entire heart. Beyond coronary arterial 
imaging, such innovations offer several advantages during clinical imaging in the cardiothoracic area. The wide-detector CT 
scanner markedly reduces the image acquisition time to less than 1 second for coronary CT angiography, thereby decreasing 
the volume of contrast material and radiation dose required for the examination. It also eliminates stair-step artifacts, 
allowing robust improvements in myocardial function and perfusion imaging. Additionally, new imaging techniques for the 
cardiothoracic area, including subtraction imaging and free-breathing scans, have been developed and further improved by 
using the wide-detector CT scanner. This article investigates the technical developments in wide-detector CT scanners, 
summarizes their clinical applications in the cardiothoracic area, and provides a review of the recent literature.
Keywords: Multidetector computed tomography; Wide-area detector; Coronary artery disease; Imaging; Technology

Received May 10, 2019; accepted after revision July 23, 2019.
This study was supported by research funds from Dong-A 
University.
Corresponding author: Eun-Ju Kang, MD, PhD, Department 
of Radiology, College of Medicine, Dong-A University, 32 
Daesingongwon-ro, Seo-gu, Busan 49201, Korea.
• Tel: (8251) 240-5367 • Fax: (8251) 253-4931
• E-mail: medcarrot@dau.ac.kr
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution Non-Commercial License 
(https://creativecommons.org/licenses/by-nc/4.0) which permits 
unrestricted non-commercial use, distribution, and reproduction in 
any medium, provided the original work is properly cited. 

and contrast material volume. Moreover, they offer several 
advantages over various clinical imaging modalities, such as 
triple-rule-out (TRO) scan as well as myocardial perfusion 
and functional imaging. This article summarizes the 
technical aspects of commercially available wide-detector CT 
scanners and suggests their potential clinical applications 
and benefits in cardiothoracic imaging.

Technical Aspects of the Wide-Detector CT 
Scanner System 

Development of Wide-Detector MDCT
Clinical interest in the application of CT for imaging the 

coronary arteries started in 1998, with the introduction 
of “4-detector-row” CT scanners. However, these early 
MDCT models showed limitations in performing coronary 
angiography; therefore, their use in cardiac applications 
was confined to coronary calcium scoring, a technique 
originally established on electron-beam CT scanners (1). 
Since the development of 16-detector-row CT scanners, CCTA 
became feasible with the retrospective electrocardiogram 
(ECG)-gating data-acquisition method; nevertheless, its use 
is still limited to routine clinical practice (2). Following 
the introduction of 64-detector-row CT scanners, the 
diagnostic accuracy of CCTA improved, and it became a 
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clinically feasible technique owing to the smaller detector 
element size (0.5–0.65 mm) and faster rotation time 
(350–420 ms). Although 64-detector-row CT represents a 
marked improvement over conventional MDCT, especially in 
cardiac imaging, its craniocaudal coverage without gantry 
movement is typically only 20–40 mm, which limits the 
width of coverage on cine imaging in the craniocaudal 
direction. 

To overcome this disadvantage, the development of 
wide-area detectors that would enable > 40-mm coverage 
per rotation was led by Canon Medical Systems (formerly, 
Toshiba Medical Systems), Japan. They developed a 
prototype 256-detector-row CT scanner in 2005, which was 
designed to allow wide craniocaudal coverage, imaging 
approximately 100 mm in one rotation (3-5). Thereafter, the 
first commercially available wide-range detector scanner was 
released in November 2007 (Aquilion One; Canon Medical 
Systems, Otawara, Japan). It had a detector configuration of 
320-detector rows x 0.5-mm detector element width, which 
enabled 16-cm coverage and a 350-ms gantry rotation time 
at a single focal spot. This configuration allowed three-
dimensional (3D) volumetric whole-heart imaging during the 
diastole of one R-R interval; however, the standard temporal 
resolution was approximately 175 ms (one-half the gantry 
rotation time), which remains significantly longer than the 
33 ms achieved using catheter coronary angiography. This 
320-detector-row CT scanner shows promising temporal 
homogeneity and is free of the stair-step artifacts noted 
when performing volume scans, but it often suffers from 
cone-beam geometry-related artifacts and insufficient 
temporal resolution. Since 2011, Canon Medical Systems 
has adopted the dual focal spot (two alternating z-focal 
spot positions) technique and a faster gantry rotation time 
(275 ms). Therefore, the latest-generation wide-detector 
scanners allow imaging of 640 slices with a 137-ms 
temporal resolution. GE Healthcare introduced a new volume 
CT scanner (Revolution CT; GE Healthcare, Waukesha, WI, 
USA) in 2015; it had 256 detector rows (512 slices), which 
enabled 16-cm coverage, with a 0.625-mm detector element 

width, and a gantry rotation speed of 280 ms. In addition, 
the integration of new algorithms allowed the reduction of 
cone-beam artifacts (6, 7).

Philips Healthcare introduced a wide-coverage scanner 
in early 2008 (Brilliance iCT; Philips Healthcare, Cleveland, 
OH, USA), which had 128 detector rows that enabled 8-cm 
coverage with a 0.625-mm individual detector row width 
and a 270-ms gantry rotation time. The third-generation 
dual-source CT scanner SOMATOM Force developed by 
Siemens Healthineers (Forchheim, Germany) has 6-cm 
coverage (96-detector rows x 0.6-mm detector element 
width) but enables fast scan coverage because of the use 
of double helices and higher pitch values owing to the 
presence of two X-ray tubes and detector arrays. Generally, 
the length of the cardiac area that has to be covered in 
a coronary CT scan is typically around 120–140 mm (1); 
therefore, in this review, we will focus on the 16-cm-
coverage CT scanners (256–320 detector rows) that enable 
volume scans of the entire heart within one cardiac cycle 
(Table 1). 

Contrast Media and Radiation Dose
A relatively large proportion of patients suspected to 

have cardiovascular disease also have accompanying 
diseases such as diabetes, which is a risk factor for 
contrast-induced nephropathy (8-10). Moreover, patients 
with significant stenoses diagnosed on CCTA may require 
subsequent percutaneous coronary arterial intervention, 
which will expose them to more amount of contrast 
material. Therefore, optimization of the contrast material 
protocol and proper opacification of the vessel lumen are 
essential in CCTA examinations. Technical improvements in 
CT systems, with larger numbers of detector rows and faster 
rotation times, have reduced the image acquisition time, 
which is also associated with a reduction in the contrast 
material volume from 100–140 mL for 16-detector-row CT 
systems to 75–100 mL for 64-detector-row CT systems (11, 
12). Wide-detector CT scanners allow an acquisition time of 
less than 1 second with single-heartbeat CCTA; therefore, 

Table 1. Technical Parameters of Commercially Available Wide-Detector CT Systems

Vendor CT System
No. of

Detector
Rows

Detector Element
z-Dimension 

(mm)

Total Detector
z-Axis Coverage

(mm)

Cone 
(Degrees)

Rotation
Time
(ms)

Temporal 
Resolution

(ms)

X-Ray 
Generator 

Power (kW)

Canon Medical 
  Systems

Aquilion ONE 320 0.5 160 15.2 350 175 72
Aquilion ONE vision 320 0.5 160 15.2 275 137 100
Aquilion ONE genesis

GE Healthcare Revolution CT 256 0.625 160 10.5 280 140 103

CT = computed tomography
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these require a very short window of coronary opacification, 
leading to a marked reduction in the required contrast 
material volume. Moreover, simultaneous developments 
in the iterative reconstruction technique in combination 
with low tube potential (70–100 kV) acquisition have 
contributed to a reduction in contrast material volume. 
Several researchers have reported the feasibility of using 
a lower volume (less than 60 mL) of contrast material in 
wide-detector CT scanners (13-15). In 2011, Kumamaru et 
al. (13) compared the image quality between the 60-mL 
and 80-mL contrast material injection protocols for CCTA by 
using 320-detector-row CT, and they reported that 96% of 
the coronary segments showed sufficient enhancement (> 
300 Hounsfield units [HU]) when using the 60-mL protocol, 
thus supporting the general use of 60-mL protocols for 
clinical wide-area-detector CCTA. Hein et al. (14) reported 
the diagnostic image quality achieved using 40 mL of 
contrast material in prospective ECG-triggered CCTA with a 
320-detector-row CT scanner; however, they only enrolled 
patients with body weight ≤ 85 kg, normal cardiac function, 
and low heart rate (≤ 65 beats per minute [bpm]). Several 
years later, Kim et al. (15) reported that 320-detector-row 
CCTA with the 40-mL contrast material protocol showed 
comparable image quality and diagnostic accuracy to the 
conventional 60-mL protocol irrespective of patient-related 
factors; they applied an iterative reconstruction technique 
(AIDR 3D; Canon Medical Systems), tailored tube voltages 
(80, 100, and 120 kVp), and tailored contrast injection, 
which enabled manually-triggered scan commencement by 
an experienced operator. Nevertheless, optimal enhancement 
of the coronary arteries for accurate evaluation of coronary 
arterial stenosis or plaque characterization remains a matter 
of debate (16-18). Recently published papers proposed that 
attenuation values > 250–330 HU were acceptable and that 
values greater than 450 HU may lead to underestimation of 
coronary arterial stenosis (11-20). 

Axial volumetric acquisition of CCTA with a wide-detector 
CT scanner eliminates redundant radiation exposure from 
helical oversampling or overlapping of sequential axial 
acquisition (21); thus, it has the potential to markedly 
reduce the radiation dose. The initial experience with first-
generation 320-detector-row CT scanners showed that 
they yielded a mean effective dose of 8.3 ± 3.4 mSv (14.0 
mSv for retrospective gating and 7.2 mSv for prospective 
gating), with tube current modulation and modification 
of the X-ray output based on the patient’s body habitus 
(22). Several years later, the combination of a faster gantry 

rotation time, iterative reconstruction, and other ancillary 
developments in CT scanners has provided excellent image 
quality over a wide range of body sizes and heart rates at 
low radiation doses (less than 1 mSv) (23-25).

Effect of Heart Rate and Image Quality
Heart rate and heart rate variability have been major 

factors affecting the image quality and difficulties in the 
interpretation of coronary arteries and may necessitate 
higher radiation doses in CCTA. In CCTA, there are two 
types of cardiac motion artifacts that produce poor image 
quality in the assessment of coronary arteries: in-plane 
(x-y axis) motion artifacts that are determined by the 
temporal resolution (half of the gantry rotation speed) 
and misregistration artifacts (stair-step artifacts) that 
are determined by the detector coverage in the z-axis 
(1, 26). As mentioned above, the 16-cm-coverage wide-
detector scanners completely avoided misregistration 
artifacts using volume scans of the heart within one cardiac 
cycle, particularly in patients with irregular heartbeats. 
However, in-plane motion artifacts are still a problem 
in CCTA with wide-detector CT scanners, which depends 
on the intrinsic gantry rotation time of each CT scanner. 
Multisegment reconstruction can be used to improve 
the effective temporal resolution and is available on all 
kinds of CT scanners using a lower pitch and scanning in 
the retrospective gated helical scan mode. On the wide-
detector CT scanner, multisegment reconstruction can also 
be performed in the prospective ECG-triggered volume mode 
without full cardiac cycle coverage; however, this technique 
requires a steady heart rate and generally leads to a higher 
radiation dose. 

Another approach to improving the in-plane motion 
artifact is the use of vendor-specific motion correction 
algorithms (27, 28). The motion velocity and path 
of coronary arteries from adjacent cardiac phases are 
characterized, and the information is used to calculate an 
optimal estimation of the vessel lumen at the target phase 
by the snapshot freeze (SSF) reconstruction technique (GE 
Healthcare) (29). Several previous studies reported that the 
SSF technique improves diagnostic accuracy using a 64-row 
detector CT scanner (29-31), and this technique is currently 
available on wide-detector CT scanners (32-34). 

In the 16-cm wide-detector CT scanner of GE Healthcare 
(Revolution CT), using the one-beat auto-gating technique 
to identify the ideal time within one cardiac cycle at any 
heart rate in combination with the SSF motion correction 
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technique can achieve coronary artery images with 
diagnostic quality even in patients with a high heart rate or 
high heart rate variability (32-34). 

Applications of Wide-Detector CT in 
Cardiothoracic Imaging 

Volumetric Cardiac Imaging for Function and Perfusion
Although CCTA is extensively used to evaluate the 

coronary arteries, it can also provide 3D volumetric 
information regarding the cardiac chambers or the 
myocardium. In retrospective ECG-gated CCTA, volumetric 
left ventricular (LV) functional parameters can be measured 
simultaneously with the LV mass and volume. The 
quantification of LV function using CCTA has been validated 
in many prior studies through a comparison with cardiac 
MRI, which is considered the gold standard for assessing LV 
function (35, 36). The conventional method for assessing 
LV function with a 64-detector-row CT scanner is a helical 
scanning technique with retrospective ECG gating, which 
covers the entire heart in multiple heartbeats; however, 
this approach is associated with the risk of motion artifacts 
due to arrhythmias or breathing (37). The wide-detector 
CT scanner allows volumetric imaging for a 16-cm z-axis 
coverage with one heartbeat and no time delay; thus, it 
can acquire both isophasic and isochronic CT data and can 
yield volumetric and functional measurements of the cardiac 
chamber with greater accuracy and less radiation exposure 
(37, 38). 

Although CT has high sensitivity and negative predictive 
value for the detection of significant coronary stenosis, the 
evidence of coronary stenosis is not predictive of inducible 
ischemia; while the presence and extent of myocardial 
ischemia are important determinants of adverse outcomes 
(39-41). Groothuis et al. (42) compared CCTA with MR 
myocardial perfusion imaging and found that only 42.3% 
of patients with obstructive coronary arterial disease on 
CCTA showed myocardial ischemia on MR perfusion. Thus, 
additional functional assessments, such as fractional flow 
reserve (FFR) measurements, cardiac single-photon emission 
computed tomography (SPECT), stress echocardiography, 
or stress perfusion MR, are needed to determine the 
indications for revascularization (42-44). Recent advances 
in CT technology have enabled myocardial CT perfusion 
imaging with high temporal resolution and a reasonable 
radiation dose. Two approaches in CT perfusion imaging—
static and dynamic—are currently available. Static CT 

perfusion imaging refers to the assessment of myocardial 
enhancement acquired at a single time point of the first 
pass of the contrast material bolus. Since Kurata et al. (45) 
first reported static myocardial CT perfusion in 2005, the 
application of CT for assessing myocardial ischemia has 
become widespread, and several clinical studies, including 
multicenter/multivendor trials, have demonstrated the 
feasibility of static CT perfusion imaging (46-48). However, 
the success of static CT perfusion is highly dependent on 
contrast material bolus timing and cardiac motion, and 
the single-shot technique cannot provide quantitative 
values of myocardial perfusion (49, 50). In contrast, 
dynamic CT perfusion is assessed on the basis of myocardial 
enhancement at multiple time points of the first pass of the 
contrast material, which is robust in terms of bolus timing 
and allows for fully quantitative analysis of myocardial 
perfusion (51). However, the clinical implementation of 
dynamic CT perfusion assessment has been challenging 
because of the limited z-axis coverage of 64-detector-
row CT scanners and the relatively high radiation dose 
inherent to repetitive image acquisition. Although coverage 
of the LV myocardium is possible using narrower detector 
scanners in the shuttle mode, the sampling rate for a 
given part of the myocardium is not high (every second 
to fourth heartbeat, depending on the heart rate) and the 
myocardium is temporally different in the cranial and caudal 
parts (44, 51). Wide-detector CT scanners enable dynamic 
whole-heart volumetric scanning, thereby eliminating the 
time discrepancy between the base and apex of the heart 
seen with helical imaging. This opens up the possibility 
of determining myocardial perfusion precisely (39). In 
addition, using a wide-detector CT system has several 
other advantages, including temporal uniformity in image 
acquisition as well as the possibility of targeting a specific 
portion of the contrast bolus and reducing the radiation 
dose and contrast material volume (52). The “CORE-320” 
multicenter trial group, which was established to support 
coronary artery evaluation using 320-row MDCT angiography, 
published several papers regarding the diagnostic accuracy 
of 320-row MDCT for detecting myocardial perfusion deficits 
with perfusion CT scanning and compared it with the 
reference standard of SPECT myocardial perfusion imaging 
(48, 53-55).

Transluminal Attenuation Gradient
CCTA is an established noninvasive method for anatomic 

assessment of coronary stenosis; however, it has limited 
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specificity for densely calcified lesions and provides 
no information about their hemodynamic significance. 
Transluminal attenuation gradient (TAG), defined as the 
linear regression coefficient between luminal attenuation 
and axial distance, has been continuously developed since 
2010 in an attempt to improve the diagnostic performance 
of CCTA (56, 57). The methodology of TAG is similar in most 
studies: on the cross-sectional images perpendicular to 
the centerline for target coronary artery, the mean luminal 
attenuation is measured at 1–5-mm intervals, from the 
ostium to the distal level where the lumen area fell below 

2 mm2. Then, TAG is determined from the change in HU 
per 10-mm length of coronary artery (Fig. 1). This simple 
technique retains the functional significance of coronary 
stenosis without additional radiation exposure or contrast 
material. 

The diagnostic performance of TAG was reported to differ 
among CT scanners with varied longitudinal coverage, 
and coronary attenuation variability may occur because 
of the lack of temporal uniformity among 64-detector-
row CT scanners (58-61). Chow et al. (62) attempted to 
overcome this inherent limitation of 64-detector-row CT 

Fig. 1. Representative images of abnormal TAG in LAD of 55-year-old man with nonspecific chest pain. 
A. Coronary CT angiography showed LAD with significant dense calcified plaque burden that was suspicious for severe obstructive lesion (arrows). 
B. Invasive coronary angiography showed severe luminal narrowing of LAD (arrows). C. TAG of LAD measured with semi-automated method by 
using dedicated computer software (Canon Medical Systems). Mean luminal radiologic attenuation (HU) was measured at 1-mm intervals, from 
ostium to distal level (cross-sectional area < 2 mm2). TAG was -24.98, which indicates significantly low value (generally accepted cutoff value: 
-15 to -18). CT = computed tomography, HU = Hounsfield units, LAD = left anterior descending coronary artery, TAG = transluminal attenuation 
gradient
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scanners; they suggested corrected coronary opacification 
(CCO), which was calculated as the quotient of the mean 
HU in the coronary artery and aorta (CCO = coronary 
artery attenuation/aortic attenuation), to normalize the 
attenuation values of the coronary lumen to the aorta. 
Theoretically, whole-heart coverage with single-rotation, 
single-beat imaging using a wide-detector CT scanner 
may be ideal for TAG measurement. Several studies have 
demonstrated that TAG with a 320-detector-row CT scanner 
has a higher accuracy than does CCTA alone, owing to 
improvements in specificity and positive predictive value 
(59, 61). 

However, clinical validation studies have reported 
conflicting results despite performing TAG using wide-
detector CT scanners, and Park et al. (63) suggested that 
TAG may be affected by changes in the coronary luminal 
diameter (i.e., the transluminal diameter gradient [TDG]), 
implying that TAG may be a secondary result of differences 
in diameters. A recently published study suggested that 
TAG, TAG-CCO, and TDG do not discriminate between 
vessels with or without ischemia as defined by quantitative 
positron emission tomography or FFR (64). 

Triple-Rule-Out Scan and Pulmonary Vascular Imaging
TRO CT protocols can serve as cost-effective diagnostic 

tools for simultaneously evaluating the coronary arteries, 
aorta, and pulmonary arteries in patients with acute chest 
pain; however, these protocols require larger radiation 
exposures and contrast material volumes to obtain sufficient 
opacification of the thoracic vessels and appropriate 
diagnostic image quality. Because of the use of detailed-
pitch retrospective ECG-gated scanning for the coronary 
arteries and the overlapping coverage of the same anatomic 
area for ruling out different causes, TRO CT examinations 
involve higher radiation doses and larger contrast material 
volumes owing to the longer scan time compared to that 
of CCTA. In addition, approximately 10% of TRO CT images 
are non-diagnostic in coronary arterial evaluation because 
of inadequate image quality, especially when using the 
conventional 64-detector-row CT scanner (65, 66). 

Various CT techniques have been proposed to reduce 
the radiation dose and contrast material volume for TRO 
CT, including the lower kVp protocol and prospective ECG-
triggered high-pitch dual-spiral technique with dual-source 
CT. However, these techniques could only be applied in 
specific patient populations: the low kVp protocol in non-
obese patients and the high-pitch mode in patients with a 

low regular heartbeat (below 65 bpm) (67-69). 
Wide-detector CT scanners enable whole-chest CT 

angiography with two to three axial volume scan acquisitions, 
which reduce stair-step artifacts and lead to a lower radiation 
exposure (Fig. 2) (70-72). Kang et al. (72) compared the 
wide-volume and helical modes of TRO CT using a 320-row-
detector CT scanner and reported that the use of the wide-
volume scan mode reduces the radiation dose by around 
60% and yields similar image quality to that of helical scans; 
moreover, even patients with fast or irregular heart rates can 
be scanned using the wide-volume scan mode and diagnostic 
images of the coronary arteries can be obtained. Recently, a 
similar study by Chen et al. (73) using a 256-detector-row CT 
scanner also reported results consistent with those obtained 
using a 320-detector-row CT scanner. 

Transcatheter Aortic Valve Implantation Evaluation
Transcatheter aortic valve implantation (TAVI) is a 

valid alternative therapeutic procedure for patients with 
symptomatic severe aortic stenosis who are ineligible 
for surgery or are high-risk surgical candidates (74, 75). 
Currently, the indications for TAVI have expanded to include 
patients at intermediate risk for conventional surgical valve 
replacement (76, 77). While CT was initially used primarily 
for the assessment of peripheral access, the role of CT 
has grown substantially, and it is now the gold standard 
tool for annular sizing, determining the risk of annular 
injury and coronary occlusion, and providing appropriate 
projection angles for fluoroscopic procedures (78). Using 
a conventional 64- or a 128-row-detector scanner, the 
TAVI planning CT protocol usually requires two separate 
acquisitions: a retrospective ECG-gated helical acquisition of 
the aortic root, followed by an ungated helical acquisition 
of the aorta and iliofemoral arteries (78, 79). This 
separate acquisition approach requires the injection of two 
separate boluses of the contrast material, resulting in the 
administration of a considerable amount of iodine. However, 
most TAVI candidates are elderly patients who frequently 
have compromised renal function (80-82). Moreover, 
accurate measurement of the aortic root annulus maximum 
size is critical for TAVI planning; thus, image acquisition 
with retrospective ECG gating to cover the entire cardiac 
cycle should be considered (78). Therefore, the application 
of the prospective ultra-high-pitch mode with dual-source 
scanners seems inappropriate for TAVI planning (78, 82). 

Many authors have suggested various acquisition 
protocols for TAVI to reduce the contrast material volume 
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and radiation dose using the wide-detector CT scanner (73-
75), and the suggested methods could be roughly divided 
into two types: 1) axial ECG-gated volume acquisition 
for the aortic root and heart followed by ungated helical 
acquisition for the abdomen and pelvis (82, 83) and 2) axial 
ECG-gated volume acquisition for the aortic root and heart 
followed by three or four ungated volume acquisitions for 
the abdomen and pelvis (84). According to previous studies, 
wide-detector CT scanners enable 30–44% reduction in the 
iodine load and 32–48% reduction in the radiation dose 
in TAVI planning, while maintaining or providing better 
image quality than that of the conventional protocol using 
64-detector-row CT scanners (82, 84). 

Pediatric Cardiothoracic Imaging
Wide-detector CT scanners have additional potential 

advantages in pediatric thoracic imaging beyond their CCTA 
applications because they can provide rapid imaging of a 
16-cm-long anatomic area (which could be the entire thorax 
in pediatric patients) in a single gantry rotation without 
table motion (Fig. 3). For pediatric imaging, infant chest CT 
studies can be performed without sedation using the single-
rotation volumetric acquisition mode with a wide-detector 
CT scanner; this reduces the radiation dose and eliminates 
the potential risks of sedation (85-87). Zhu et al. (88) 
compared the image quality, patient preparation time, and 
radiation dose when performing a single volume scan with 
16-cm wide-detector CT imaging of the infant chest without 
sedation to those of 64-detector-row CT imaging with 
sedation; they found that the scan time was significantly 
reduced by 83%, preparation time by 57%, and radiation 
dose (CT dose index) by 42% when using a wide-detector 

Fig. 2. Triple-rule-out scan using wide-volume scan method in 40-year-old woman diagnosed with acute pulmonary arterial 
thromboembolism. 
A. Detector width is set at 14–16 cm to cover half of entire thorax, and whole chest is covered with two axial volume scan acquisitions. B. 
Whole-chest CT scan acquired using two axial volume scans that are automatically stitched immediately after reconstruction. C. Data from second 
scan are separately reconstructed for coronary angiography. Multifocal low-density filling defects in both lobar and segmental pulmonary arteries 
suggesting pulmonary arterial thromboembolism (arrows in B). No definite abnormality is observed in thoracic aorta and coronary arteries. RCA = 
right coronary artery

A
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CT scanner. The use of wide-detector CT for rapid scanning 
is best suited for scan lengths less than the 16-cm width, 
which limits its application to infants and small children 
(weighing < 10 kg). When the scan length exceeds 16 cm (in 
children weighing > 10 kg), a delay of at least 2 seconds 
between the two axial acquisitions increases the overall 
scan time and can result in greater motion artifacts or a 
stair-step artifact than when using helical scanning (87-89).

In addition, wide-detector CT scanners have a potential 
use in free-breathing dynamic airway evaluation in 
children suspected of having airway abnormalities such 
as tracheobronchomalacia (80). Traditionally, airway 
abnormalities have been diagnosed using bronchoscopy, 
which has significant disadvantages: it is invasive, requires 
general anesthesia, and has limited application in infants 
or small children (90, 91). Moreover, stenosis may impede 
the passage of the bronchoscope and endoscopy may not 
enable evaluation of the airway distal to a severe stenosis. 
Therefore, attempts have been made to use MDCT as an 
alternative evaluation tool for airway assessment (90-

94). However, 64-detector-row MDCT shows an inherent 
limitation in z-axis coverage, and hence, different airway 
segments are imaged at varying phases of respiration for 
acquiring images of the entire central airway (92). The 
development of a wide-detector CT scanner (with 16 cm of 
anatomical coverage) facilitates dynamic imaging of the 
entire airway at all phases of respiration (90, 95-97). Wide-
detector CT scanners also allow for volumetric assessment 
of the airway during free breathing, without anesthesia 
and without having to move the table through the gantry. 
Generally, the protocol for dynamic pulmonary scanning 
involves four to five gantry rotations within a total time 
of 1.4 seconds and the reconstruction of 8–10 phases (90, 
96, 97). Since the initial study on dynamic airway volume 
CT in 2010 (the mean effective radiation doses were 5–8.2 
mSv) (95), researchers have been trying to reduce the 
radiation dose using low-voltage, low-current, and iterative 
reconstructions (94-97), and the mean effective dose 
reported in the most recent study by Andronikou et al. (97) 
is 1.0 mSv. 

A

Fig. 3. Thoracic CT images of 4-month-old boy with repaired tracheoesophageal fistula. 
Images are obtained using conventional helical acquisition method with sedation (A) and single-axial volume scan method without sedation 
(B) using 16-cm wide-detector CT scanner. A. Helical mode images show severe motion artifacts with blurring (arrowheads), especially near 
diaphragm (arrows). B. Axial volume scan images show relatively good image quality with few respiratory motion artifacts near diaphragm (arrows) 
and more clearly defined lung parenchymal structures, bronchi (arrowheads), vessels, and lung fissures.

B
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Challenging Techniques in Cardiothoracic Imaging: 
Free-Breathing Scans and Subtraction Imaging

CCTA examinations are usually performed in a breath-
holding state to reduce the artifacts caused by respiration. 
However, CCTA cannot be performed successfully in some 
patients who cannot hold their breath (e.g., patients who 
are deaf or have hearing weakness, those with severe 
pulmonary disease, and those who are uncooperative). 
Sometimes, the heart rate increases and the variations 
caused by breath-holding may result in poor image quality. 
Wide-detector CT scanners are capable of performing one 
cardiac cycle axial volume scans for CCTA with very short 
acquisition times without table motion; thus, cardiac 
shifting caused by respiration during the scan should be 
insignificant. Kang et al. (98) reported the feasibility of 
performing CCTA during free breathing by using a first-
generation 320-detector-row CT scanner in patients with 
heart rates lower than 75 bpm; they also reported that 
axial volume scans for CCTA resulted in noninferior image 
quality compared to that acquired using breath-holding 
CCTA. With the improvements in gantry rotation time and 
the application of motion-correction algorithms, the latest 
version of wide-detector CT scanners (256 detector rows) 
enables the acquisition of images with excellent quality and 
remarkable diagnostic accuracy despite the high heart rate 
during the scan (99, 100). 

Given the improvements in CT technology, CCTA can 
exclude stenotic coronary arterial lesions with high 
diagnostic accuracy. Despite these technological advances, 
which have improved both spatial and temporal resolutions, 
extensive coronary calcification or stents are still frequently 
uninterpretable or overestimated in terms of their severity 
due to blooming artifacts (101, 102). Volumetric CCTA 
acquisition using a wide-detector CT scanner allows 
coronary subtraction technology, which is a recently 
developed method that removes calcium and stents from 
CCTA images. Briefly, the subtraction images are obtained 
using corresponding non-contrast and contrast datasets, 
and both of them are registered and subtracted. The result 
is a 3D volume in which coronary calcifications/stents have 
been removed, leaving the contrast-enhanced blood in the 
lumen as the only high-intensity material (103, 104). Since 
Yoshioka and Tanaka (103) reported the initial experiences 
with subtraction CCTA using a 320-detector-row CT scanner 
in 2011, many researchers have attempted to develop 
better acquisition methods or subtraction algorithms. 
The most important factors for successful achievement of 

subtraction CCTA should be accurate registration of the two 
datasets; therefore, most current studies are based on the 
single breath-hold method to decrease the likelihood of 
misregistration between the two datasets (104-108). 

The feasibility of subtraction CCTA has been verified by 
several studies, and subtraction CCTA allows for a significant 
improvement in diagnostic accuracy owing to its higher 
specificity and positive predictive value for the assessment 
of coronary artery stenosis than those of conventional CCTA 
alone (103-109). However, the proportion of segments 
excluded because of misregistration is still high even 
in the most recently published study, which reported 
misregistration in approximately half (53%) of all target 
segments (109). Manual correction can be considered in 
case of significant lesions, but it is highly time-consuming. 
Moreover, although the breath-holding times of this single 
breath-hold method have been shortened to approximately 
15–18 seconds, this breath-holding time remains 
problematic in some patients (107, 108). In highly selected 
patients for whom CCTA can be challenging because of 
an extensive calcium load or inability to tolerate breath-
holding, with successful registration, subtraction CCTA may 
be helpful in the current technique. 

CONCLUSION

Wide-detector CT scanners provide advantages in terms 
of improvement in image quality and reduction of the 
radiation dose and contrast material volume in routine CCTA 
examination than in conventional 64- or 128-detector-
row scanners. Moreover, given their unique characteristic 
of z-axis coverage, several new technologies (such as 
myocardial function/perfusion, TAG, or subtraction imaging) 
have become more feasible and better reflect the exact 
physiological status of patients. Further development of 
wide-detector CT scanners, especially for improvements in 
temporal and spatial resolutions (with faster rotation times 
and thinner individual detector widths), may provide great 
clinical advantages in the future. 
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