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Abstract

Identifying protein targets for a bioactive compound is critical in drug discovery.

Molecular similarity is a main approach to fish drug targets, and is based upon an axiom

that similar compounds may have the same targets. The molecular structural similarity

of a compound and the ligand of a known target can be gauged in topological (2D), steric

(3D) or static (pharmacophoric) metric. The topologic metric is fast, but unable to repre-

sent steric and static profile of a bioactive compound. Steric and static metrics reflect the

shape properties of a compound if its structure were experimentally obtained, and could

be unreliable if they were based upon the putative conformation data. In this paper, we

report a pharmaceutical target seeker (PTS), which searches protein targets for a bio-

active compound based upon the static and steric shape comparison by comparing a

compound structure against the experimental ligand structure. Especially, the crystal

structures of active compounds were taken into similarity calculation and the predicted

targets can be filtered according to multi activity thresholds. PTS has a pharmaceutical

target database that contains approximately 250 000 ligands annotated with about 2300

protein targets. A visualization tool is provided for a user to examine the result.

Database URL: http://www.rcdd.org.cn/PTS

Introduction

For decades, the paradigm of drug discovery and de-

velopment has been one-drug-for-one-target (1). Recent

advances in systems biology (2) and chemical biology dem-

onstrate that existing drugs can interact with multiple tar-

gets (3, 4). However, multi-target interactions are either

unknown or insufficiently understood in most cases. There

are increasing needs to predict drug targets for an agent

due to growing number of bioactive compounds identified

from phenotypic assays (5–7). The prediction has to be

validated by experiments, such as structure biological

approaches or proteomics. The in silico approaches can

significantly reduce the costs and improve the performance

of the experimental approaches for drug target fishing.

A drug target prediction method can be categorized into

structure-based or ligand-based method. INDOCK (8) and
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TarFisDock (9) are typical structure-based target fishing

tools using molecular docking algorithms, which rely on

the target structure availability and the structure diversity

of the binding pocket. However, a ligand-based target fish-

ing approach uses the ligand-compound similarity based

on topological structures (fingerprints) (10, 11), molecular

shapes, pharmacophores (12) or compound activity pro-

files (13). The ligand-based target fishing approaches are

being adopted due to the increasing availability of

bioassay data (14–16). SEA (17) and SuperPred (18) are

typical ligand-based approaches that use ligand databases

and compound topological (2D) similarity measurements.

Other methods, such as Chemmapper (19), Superimpose

(20) and wwLigCSRre (21) use 3D structure similarity

metric to predict protein targets. 2D and 3D similarity

measurements are complimentary, and 3D similarity meas-

urements seem capable of picking novel chemotypes (22) if

the template structures were experimentally obtained.

In this work, we have implemented a pharmaceutical tar-

get seeker (PTS), which uses the experimental 3D structures

of ligands with known targets to calculate the similarity of

the ligand and a compound. For those ligands for which

experimental structure data are not available, their energy-

minimized conformations are generated for the 3D similarity

calculations. The 3D similarity search engine is Weighted

Gaussian Algorithm (WEGA) (23), which can take steric and

pharmacophoric profile into account. The user can rule out

impossible targets by setting activity thresholds in order to

expedite the target fishing process. PTS contains approxi-

mately 250 000 ligands annotated with 2300 protein targets.

Materials and methods

Data preparation

The data of bioactive compounds and their targets were

collected from public databases.

Target data were derived from therapeutic target data-

base (TTD version 2015) (24) and reference (25). Through

UniProt ID, ligand data and their relations with targets

were extracted from UniProt (26), ChEMBL20 (27) and

BindingDB (28, 29), PDBbind (version 2014) (30–32) and

RCSB PDB databases.

The data were pre-processed with the following steps:

1. removing obsolete UniProt IDs from TTD target data;

2. removing counter ion moieties from bioactive ligands;

3. removing compounds from ChEMBL20 data if their ac-

tivity (IC50/Ki/Kd) values are greater than 50 lM;

4. removing small compounds (heavy atoms < 6) and

large compounds (MW> 1000 Da).

This resulted in 266 866 ligands associated with 2298 pro-

tein targets, 537 095 bioactivity data points, 4391 crystal

structures and 16 590 related articles in the PTS built-in

database (Table 1). Among the targets, 14% of them have

drugs in the market, 41% of them have drug candidates

under clinic trails, 40% of them have ligands under the in-

vestigations and 5% of them have compounds that were

discontinued for pharmaceutical studies.

Similarity algorithm

The target fishing process is based upon an axiom that

similar compounds may have the same targets. An

in-house algorithm, WEGA, is used to compute the steric

and static similarity of a ligand-compound pair. WEGA is

based on the first order Gaussian approximation, which

simplifies the shape density functions of the molecules by

avoiding expensive higher order terms calculation.

WEGA offers three similarity calculation methods: 1)

shape matching, which is only the molecular volumetric

overlay, 2) feature matching, which is the pharmacophore

mapping of molecule pair, 3) combination matching,

which integrates the advantage of the above two aspects

and is the most precise approach. The detailed method of

WEAG is described in reference (23).

Webserver implementation

PTS uses a browser and server framework. Client interface

was implemented in HTML and Javascript. The back-end

is implemented in Golang language and MySQL database

system. The molecule editor and chemical structure view-

ers are supported with Marvin JS and ChemDoodle web

component. All tools have been summarized in Table 2.

Results

Workflow

PTS provides an intuitive interface to predict small

molecule protein targets. A user can input a query molecule

by uploading a file (mol/SDF format) or drawing a chem-

ical structure with its built-in chemical structure editor

(Figure 1B). PTS will generate the possible 3D conform-

ations for the query and, employ WEGA to compute the

3D similarities of the molecular conformations and the lig-

and structures in PTS ligand database (Figure 1C). A typ-

ical task of PTS takes about 30–60 min, depending on the

flexibility of the query compound and calculation method

assigned by users. Each user’s query is automatically as-

signed with a Job-ID that allows the user to receive and in-

spect the target prediction result (Figure 1D). The result

page lists the predicted targets with their common names

linked to UniProt (26) database if they are available.

Targets are ranked according to their score with respect to

the query molecule. Thus, the most possible target is placed

Page 2 of 7 Database, Vol. 2017, Article ID bax095

Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: takes
Deleted Text: ,
Deleted Text: , 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: , 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text:  (weighted Gaussian algorithm)
Deleted Text:  (FOGA)
Deleted Text: : 
Deleted Text: &hx2009;
Deleted Text: &hx2009;


at the top of the list. Sometimes, multiple targets may be

inferred for the query compound based on a single similar

compound. If so, the order of the target presented in the

table has no specific meaning regarding to prediction sig-

nificance. Besides, predicted targets can be tailored by the

activity threshold of a template ligand (such as 10, 20 or

50mM) (Figure 1D).

By clicking on the check button, a user can inspect the

predicted template ligands for a query molecule (Figure

1D). In the result page, target data fields include UniProt

ID, CHEMBL ID, TTD ID, type, organism, gene and bio-

logical functions (Figure 1E). The template ligands are

ranked based upon their similarity values to the query mol-

ecule. The resulting targets can be tailored by setting the

3D similarity values to the query molecule (default thresh-

old is 0.6, and ligands show low similarity with the query

if below this threshold). For the template ligands with ex-

perimental structure data, the query molecular structure is

superimposed with the ligands in the binding pocket of the

predicted target (Figure 1F), and downloadable.

Table 2. The tools used for PTS implementation

Tool Use Availability

Marvin JS Chemical structure input marvinjs-demo.chemaxon.com/latest/

ChemDoodle Web Structure draw and 3D display web.chemdoodle.com/

Open Babel Chemical file format conversion openbabel.org/wiki/Main_Page

Discovery Studio 3D conformation generation accelrys.com/products/collaborative-science/biovia-discovery-studio/

MySQL Storage database www.mysql.com/

JQuery Foreground and background interaction jquery.com/

Golang Web server language golang.org/

Figure 1. PTS working protocol. (A) Main menu, (B) chemical structure editor, (C) ligand structure from PTS builtin ligand database, (D) predicted tar-

get list, (E) target profile and (F) query molecules docked in the binding pocket of a predicted target.

Table 1. Statistics data of PTS

Data Number Source Number Availability

(extracted) (original)

Target 2298 TTD (2015) 2875 bidd.nus.edu.sg/group/cjttd/

Compound 266 866 ChEMBL20 1 463 270 www.ebi.ac.uk/chembl/

PDB 4391 PDBbind (2014) 10 656 www.pdbbind-cn.org/

Activity record 537 095 ChEMBL20 13 520 737 www.ebi.ac.uk/chembl/

Reference 16 590 ChEMBL20 59 610 www.ebi.ac.uk/chembl/
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Case study 1: seeking targets for Afatinib

Afatinib is an irreversible kinase inhibitor targeting epider-

mal growth factor receptor (EGFR) and inhibiting tyrosine

kinase auto-phosphorylation (33) to stop tumor cells

growth. Afatinib is available for the first-line treatment of

patient with metastatic non-small cell lung cancer. The tar-

gets predicted by PTS are listed in Table 3.

Experimental data indicate that Afatinib is an EGFR

inhibitor (IC50¼ 1 nM) (34). EGFR (UniProt ID: P00533)

is ranked at the top of the predicted target list by PTS

(Table 3). The predicted Afatinib binding poses are aligned

with the native EGFR ligands as shown in Figure 2. PTS

also predicted other potential targets, however, there are

no evidences showing that Afatinib is strongly binding

with them. The data for the alignments of Afatinib and

the native ligands of these targets can be found in

Supplementary Figure S1.

Case study 2: seeking targets for Tamoxifen

Estrogen receptors (ERs) are well-known targets for

Tamoxifen (35–37). The targets predicted by PTS for tam-

oxifen are listed in Table 2. ERa (UniProt ID: P03372) and

ERb (UniProt ID: Q92731) are ranked as the top-1 and

top-6. The predicted Tamoxifen binding poses aligned with

the native ERa and ERb ligands are depicted in Figure 3.

In Table 4, PTS places top-10 targets. After examing

the other predicted targets besides ERs, we find that

CYP2D6 (38), Prostaglandin synthase (40), 3-b-hydroxys-

teroid-d(8),d(7)-isomerase (39) and Collagenase 3 (41, 42)

has been experimentally reported as off-targets. In fact, 38

proteins have been experimentally validated to interact

with tamoxifen or 4 H-tamoxifen (Supplementary Table

S1). In the top-100 PTS predicted targets for Tamoxifen,

15% proteins are experimentally confirmed off-targets,

which can be found in Supplementary Table S2.

Case study 3: validating a target for

Chlorprothixene

Chlorprothixene is an old antipsychotic drug. It antagon-

izes dopaminergic D1 (UniProt ID: P21728) and D2

(UniProt ID: P14416) receptors in the brain to exert its

antipsychotic effect (43). Chlorprothixene also antagonizes

histamine H1 receptor (44). But, there is no direct evidence

to show Chlorprothixene interacts with H1. PTS predicts

H1 receptor is the target of Chlorprothixene, the results

are listed in Supplementary Table S3 (Figure 4). Sridhar R.

Table 3. The predicted targets for Afatinib

Rank UniProt ID Target name Organism Score

1 P00533 EGFR Homo sapiens (Human) 0.74

2 P25440 Bromodomain-containing protein 2 Homo sapiens (Human) 0.72

3 Q15059 Bromodomain-containing protein 3 Homo sapiens (Human) 0.72

4 O60885 Bromodomain-containing protein 4 Homo sapiens (Human) 0.72

5 P34969 5-hydroxytryptamine 7 receptor Homo sapiens (Human) 0.72

6 Q07820 Induced myeloid leukemia cell differentiation protein Mcl-1 Homo sapiens (Human) 0.72

7 P09917 mRNA of human 5-lipoxygenase Homo sapiens (Human) 0.72

8 P17948 Vascular endothelial growth factor receptor 1 Homo sapiens (Human) 0.72

9 P08253 72 kDa type IV collagenase Homo sapiens (Human) 0.71

10 P24557 Thromboxane-A synthase nil 0.71

Figure 2. Afatinib (yellow) aligned with known EGFR inhibitor CHEMBL484108 (A, red) and CHEMBL482489 (B, red).
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Vasudevan proved experimentally that Chlorprothixene

binds with H1 receptor and selectively inhibit histamine-

induced calcium release with IC50 of 1 nM.

Case study 4: predicting potential side-effects for

Fluoxetine

hERG (the human Ether-à-go-go-Related Gene, UniProt ID:

Q12809) is known as a potassium (Kþ) ion channel

mediating the repolarizing IKr current in the cardiac action

potential. A drug that potentially interacts with hERG can

result in lethal side-effect (45). Fluoxetine is a selective sero-

tonin reuptake inhibitor for treating depressive disorder. The

potential targets PTS predicted for Fluoxetine are listed in

Table 5.

Sodium-dependent serotonin transporter (UniProt ID:

P31645) is the primary target of Fluoxetine, which is

ranked at fourth in the list. By inspect the potential target

list, we find the top-10 target is hERG. Further literature

studies reveal that Fluoxetine is experimentally proved as

hERG inhibitor (IC50¼ 3.1 lM) (46).

Figure 3. Tamoxifen (yellow) aligned with ERa (A, red, PDB Code: 1XQC) and ERb (B, red, PDB Code: 2QTU) selective ligands in binding pocket.

Table 4. Experimentally proved Tamoxifen targets and off-targets predicted by PTS

Rank UniProt ID Target name Organism Score

1 P03372 ER alpha Homo sapiens (Human) 0.82

2 P04035 3-hydroxy-3-methylglutaryl-coenzyme A reductase Homo sapiens (Human) 0.82

3 P08684 mRNA of CYP3A4 Homo sapiens (Human) 0.82

4 P23458 JAK1 Homo sapiens (Human) 0.81

5 P41145 Kappa-type opioid receptor Homo sapiens (Human) 0.81

6 Q92731 ER beta Homo sapiens (Human) 0.81

7 O14965 Aurora kinase A Homo sapiens (Human) 0.80

8 Q96GD4 Serine/threonine protein kinase 12 Homo sapiens (Human) 0.80

9 P29597 TYK2 Homo sapiens (Human) 0.80

10 P52333 Tyrosine-protein kinase JAK3 Homo sapiens (Human) 0.80

11 P10635 Cytochrome P450 2D6 Homo sapiens (Human) 0.80

Figure 4. Chlorprothixene (red) aligned with H1 receptor antagonist promazine (A, yellow) and CHEMBL363581 (B, yellow).
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Discussion

PTS predicts targets for a compound through superimpos-

ing the compound structure onto the 3D ligand structures

of putative targets. This approach considers pharmaco-

phore shape similarity that 2D approaches cannot do.

Other 3D approaches use molecular docking techniques,

while PTS does not employ ligand-receptor docking

techniques and can still produce results where the receptor

structure data are not available. Both PTS and

SwissTargetPrediction are web-based target fishing tools.

The four testing cases were tested on both tools, which

produced similar results. Additionally, small scale of struc-

turally diverse drugs that targeting four classes of biologi-

cal systems (GPCR, Ion channel, Nuclear receptor and

kinase) were extracted to test the success rate and applic-

ability of PTS. Averagely, at least one known targets of

each drug is found among the top 20 predicted targets for

70% of the ligands (Supplementary Material). The advan-

tage of PTS is able to superimpose the query molecule into

the binding pockets of the putative targets when the experi-

mental structure data are available. However, there are

limits for PTS, too. The activity cliff issue, i.e. a subtle

change in the chemical structure cause the great loss of bio-

activity, may be a common concern for all ligand-based

methods, including the 3D approaches.

To date, PTS has received >500 queries from 11 coun-

tries in the world since 10 August 2016. It can be used for

target identification, drug repurposing, toxic risk estimation

and molecular interaction simulation pre-processing tool.
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