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Colour vision allows animals to use the information contained in the spectrum
of light to control important behavioural decisions such as selection of habitats,
food ormates. Among arthropods, the largest animal phylum,we find comple-
tely colour-blind species aswell as specieswith up to 40 different opsin genes or
more than 10 spectral types of photoreceptors, we find a large diversity of opti-
cal methods shaping spectral sensitivity, we find eyes with different colour
vision systems looking into the dorsal and ventral hemisphere, and species in
which males and females see the world in different colours. The behavioural
use of colour vision shows an equally astonishing diversity. Only the neural
mechanisms underlying this sensory ability seems surprisingly conserved—
not only within the phylum, but even between arthropods and the other
well-studied phylum, chordates. The papers in this special issue allow a
glimpse into the colourful world of arthropod colour vision, and besides
giving an overview this introduction highlights how much more research is
needed to fill in the many missing pieces of this large puzzle.

This article is part of the theme issue ‘Understanding colour vision:
molecular, physiological, neuronal and behavioural studies in arthropods’.
1. Introduction
Arthropods are the largest phylum in the animal kingdom, with respect to the
number of species (an estimated 7 million species of terrestrial arthropods, [1])
and, despite recent declines, also the number of individual animals roaming our
planet. Arthropods inhabit any habitat on the Earth, from the deep sea to
mountain tops, from the arctic regions to the tropics, in air and water. Their
sophisticated senses help them to find habitats, food, mates and nests, and
here arthropods set another record: their colour vision shows by far the highest
diversity among all animal phyla. Among arthropods we find species which are
completely colour-blind, but also the animals with the most complex colour
vision systems. This high diversity extends to all functional levels from the
molecular opsin-based visual pigments, the physical and anatomical adap-
tations determining spectral sensitivity of photoreceptor cells and eyes to
colour-guided behaviours and ecology of colour vision.

Colour vision allows animals to extract information from the spectral com-
position of light reaching the eyes, by comparing the number of photons in
different spectral ranges absorbed by photoreceptors differing in spectral sensi-
tivity and subsequent neural processing. The dimensionality of colour vision is
defined by the number of receptor types that provide input into colour proces-
sing. As in vertebrates, di-, tri- and tetrachromatic colour vision (based on two,
three and four receptor types, respectively) has been described in arthropods.
Spectral information—seen as colour—is found everywhere. The sky changes
colour over the day [2] and differs in colour between its solar and antisolar
half (e.g. [3]). Water bodies change colour with depth and scattering particles
(e.g. [4]), the predominantly green colour of vegetation stems largely from
the absorbance spectrum of chlorophyll and secondary metabolites, while
bird feathers, the cuticle of arthropods, wing scales of insects and integuments
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of other animals can produce colour by combining structural
mechanisms and pigments (e.g. [5–7]). Finally, colourful flow-
ers and other plant structures stand out from the green
foliage (e.g. [8–10]).

As early as in the seventh century, Sprengel [11] had
noticed that the flower colours were aimed at attracting
pollinating insects rather than pleasing the human eye. The
first clear evidence for colour vision in an arthropod—the
water-flea Daphnia—was presented by Lubbock [12], but
this sensory ability was still discussed fiercely in the 1910s
(e.g. [13]). More than 100 years later, we have gained a
solid body of knowledge on the topic. Among arthropods,
insects remain the best-studied clade (e.g. [14,15]), but spec-
tral sensitivity, colour vision and related questions have
also been investigated in chelicerata (e.g. [16–18]) and crus-
taceans (e.g. [19,20]). This special issue aims to present the
current state of knowledge on arthropod colour vision by
combining reviews, new research articles and a methods
paper reporting a novel tool for generating colour stimuli.
Given the large volume of recent research, it can only give
a glimpse into the vast diversity of arthropod colour vision.
The contributions highlight important advances made in
recent years and point towards areas in which knowledge
is still sparse, ranging from topics such as opsin gene diver-
sity and opsin gene evolution, receptor sensitivity and
physiology, neuronal processing to behavioural and ecologi-
cal studies including the use of colour vision in navigation
and communication.
2. Diversity of arthropods opsins
Living organisms have evolved different types of photosensi-
tive pigments, including, for instance, phytochromes and
cryptochromes. However, animal vision is almost exclusively
(but see [21]) based on photopigments in which an opsin—a
light-sensitive G-protein coupled receptor—binds a vitamin
A-derived chromophore. Of the large family of opsin pro-
teins, arthropods mainly express the visual Gq coupled
rhabdomeric or r-opsins in the rhabdomeric photoreceptors
of their eyes [22], while vertebrates express ciliary or
c-opsins in their rods and cones. Whereas the common ances-
tor of Tardigarda is reported to only have had one visual
r-opsin [23], and a similar situation is found in the Onycho-
phora [24], the ancestral arthropod supposedly possessed
five visual r-opsins, two sensitive to light of long wavelengths
(green-sensitive; LWS1 and LWS2), two sensitive to light of
medium wavelengths (blue-sensitive; MWS1 and MWS2)
and one to light of short-wavelengths (ultraviolet-sensitive;
SWS or sometimes named UVS) [25]. In addition to the
visual r-opsins, arthropods have other opsins in their genomes,
including pteropsin expressed in the brain [26] and some,
specifically among chelicerates and possibly dragonflies, also
express peropsins/retinal G-protein coupled receptors in
eyes [25,27].

Arthropod opsin evolution has been very dynamic [25],
with repeated losses and gene duplications leading to the
complex pattern we see today. Groups such as deep-sea
crustaceans are using a single opsin while most clades have
some type of colour vision, with extremes of up to 40 r-
opsin genes in the genome, as in dragonflies [15,28], or up
to 15 opsins expressed in the eyes, as in some stomatopod
crustaceans [20].
Among Chelicerata, opsins diversity of horseshoe crabs
[27] and some spiders [29] have been studied. Pancrustaceans
have been covered well by Henze & Oakley [25], but Pale-
canda et al. [19] present the most comprehensive study on
opsins in crustaceans to date and report some clades to
have only one or two visual opsins (r-opsins) while others
have multiple gene duplications specifically of LWS and
MWS opsins. A detailed report on the best studied and
likely most diverse clade among crustaceans, the stomato-
pods, is presented by Cronin et al. [20]. Among insects,
some orders have been heavily studied, for instance Hyme-
noptera (for ants, see [30]) and Lepidoptera [31], while for
others, including the large orders of Diptera (flies) and
Coleoptera (beetles), knowledge is still scarce [14]. McCulloch
et al. [15] give an overview of the present state of knowledge
on insect opsins.

Owing to the advancement of sequencing methods, the
number of known visual opsins has increased dramatically
for arthropods, but characterization of their spectral sensi-
tivities has lagged behind. It has also become evident that
opsins belonging to the same gene family can code for
pigments with quite different sensitivities (e.g. [31]). The
LWS opsins have been the most interesting case recently;
while ancestral genes code for green-sensitive pigments,
with peak absorbance somewhere between 500 and 540 nm,
tuning mechanisms allowing for long-wavelength shifts and
thus leading to red-sensitive opsins have been described in
stomatopods [32] and various butterflies (e.g. [33,34]). Lie-
nard et al. [31] discuss methods suitable to gain even
further insights into spectral tuning and the evolution of
opsin pigments in arthropods.
3. Diversity of opsin expression patterns
The expression patterns of opsin genes in eyes and photo-
receptors add another dimension to the diversity. Different
opsin genes can be expressed at different times during devel-
opment (e.g. in odonates: [28]; in tardigrades, [23]), in
different eye types (e.g. insect ocelli and compound eyes;
see [25]) and even different regions of compound eyes (e.g.
odonates: [28]). Colour vision is only possible if opsins are
expressed simultaneously, in the same eyes (unless signals
from different eyes influence behavioural choices), and in
different photoreceptors, which, however, share the same
visual field.

Among arthropods, both simple and compound eyes are
found, and many clades have multiple eyes, such as ocelli
and compound eyes in insects [25,35] or the four eye pairs
of spiders [29]. Species with multiple eye types often express
different opsins in different eyes, which make their use for
colour vision highly unlikely. Similarly, two or several
opsins expressed in the same photoreceptors, do only con-
tribute to colour vision if this receptor’s signal is compared
to that of another type. Horseshoe crabs, for instance, express
different subsets of their 18 opsins (including peropsin) in
their lateral compound eyes and the two median eyes. Most
photoreceptors co-express multiple LWS (and/or MWS)
opsins, and each eye type, as well as light-sensitive segmental
ganglia also contain UVS opsin [27], and thus, fulfil the basic
precondition for colour vision. In spiders, the expression of
LWS and UVS opsins can differ between eye types; among
the species investigated by Morehouse et al. [29] the majority
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express two LWS and one (or two) UVS, often in different
retinal layers, but they also found spiders in which no UVS
opsin was apparent, and which thus may not have the poten-
tial for colour vision.

In many crustaceans, larval eyes express only one opsin,
but in some, UV and LWS opsins are found, allowing for
colour vision [36]. Many insect clades also have multiple
opsin types expressed in larval eyes [37–39], and some also
express two opsins (LWS and UVS) in the ocelli, allowing
for spectral comparisons [40]. While the same UVS opsin is
expressed in ocelli and compound eyes, the LWS expressed
opsins can differ between the eye types [25].

In insects, colour vision is mainly based on the compound
eyes, and the number of expressed opsins differs dramatically
between species. Many species express three types of opsins
in the compound eyes (one LWS, one MWS and one UVS,
for a review, see [14]) allowing for trichromatic colour
vision, but in some clades the numbers can be much
higher. McCulloch et al. [15] summarize what is presently
known on expression patterns and their development in the
best-studied model Drosophila and other insects. Since the
homology of fly and butterfly expression patterns has been
recognized [41,42], it has become apparent that findings on
Drosophila can often be generalized to other insects. Many
insect compound eyes have complex opsin expression pat-
terns, with two (flies) or three (Hymenoptera, Lepidoptera,
Hemiptera) or even more (some Lepidoptera, see [43,44])
types of ommatidia arranged in a random mosaic, each
expressing a different subset of opsins in their seven to nine
photoreceptors [42,45]. While the control of mosaics with
two or three ommatidial types by stochastic expression of a
transcription factor (spineless) is now understood [41,42,46],
additional mechanisms still await detection [43].

On top of this, the compound eyes of many insects and
crustaceans show some form of regionalization of opsin
gene expression. Some stomatopod crustaceans, for instance,
express two opsins in the ommatidia of the large ventral and
dorsal hemispheres of their eyes, but a large number in
photoreceptors of the midband ommatidial rows, and more-
over, different subsets of opsins in each of the six midband
rows (comprehensively reviewed by Cronin et al. [20]).
Dragonflies express different subsets of opsins not only
between the larval and adult eyes, but also between the
dorsal and ventral halves of their eyes [28]. Many butterflies,
and also mosquitos [47] and crickets ([24], and reviewed by
McCulloch et al. [15]) have regionalized opsin expression in
the eyes. Moreover, butterflies of many species express differ-
ent opsins between males and females [44,48], leading to
different and complex colour vision systems in both sexes.

Co-expression of two visual r-opsins in the same photo-
receptor has first been reported in crustaceans [49], and
since, been found quite often, for instance in some butterfly
eyes (e.g. [50]). It can influence and broaden the spectral sen-
sitivity of the receptor, but does not otherwise contribute to
colour vision. By contrast, co-expression is one reason why
the dimensionality of colour vision is often lower than the
number of opsins in a genome may suggest.

Besides the co-expression of visual r-opsins and probably
small amounts of peropsin in some chelicerate eyes [27,29],
Koyanagi et al. [51] report on the co-expression of opn3, an
opsin belonging to the c-opsins, with op9, a blue-sensitive
visual r-opsin, in one type of photoreceptor in the eyes of
mosquitos and Drosophila. The effect of this co-expression of
two opsins with different phototransduction cascades for
vision, and specifically, colour vision, is yet unknown.
4. Diversity of optical mechanisms tuning the
spectral sensitivity of photoreceptors

In addition to opsin expression, a number of optical mechan-
isms that can strongly modify both the spectral sensitivity of
photoreceptors in an eye and the dimensionality of colour
vision have been described in arthropods (see [14,30,52]).

Opsin-based pigments have broad spectral sensitivities,
which are overlapping to a large extent, specifically in the
UV range, where all pigments, independent of the main
(alpha) peak sensitivity, have a beta peak (see the template
functions by Stavenga et al. [53] and Govardovskii et al.
[54]). The most basic mechanisms of influencing spectral sen-
sitivity is the spatial organization of retinal photoreceptors.
Long rhabdoms of photoreceptors have broader sensitivity
than the pigment, owing to self-screening, at least in low
light intensities. By contrast, if the rhabdoms of photo-
receptors in a single ommatidium are fused as, for instance,
in bees, they act as lateral filters for each other, thereby nar-
rowing spectral sensitivity ([55]; for illustrations of both
mechanisms, see [56]). Many arthropod eyes—both simple
eyes and compound eyes—have tiered retinae, in which the
rhabdoms are stacked in two or more layers. In these retinae,
the more distal rhabdoms filter the light reaching rhabdoms
in proximal and basal layers, again narrowing sensitivity.
As SWS-sensitive receptors commonly contribute their rhab-
doms to the most distal layer, this structure often removes the
UV-sensitivity of the opsin-based MWS and LWS pigments
expressed in the more proximal retinal layers. Layered retinae
have been described in many crustaceans [20] and diverse
insects, including, among others, odonates (e.g. [57]), flies
[15] and butterflies [43,44,48] and the principal eyes of
jumping spiders [18,58].

Additional filter mechanisms have been found on all
levels of the optical systems of arthropod eyes [14]. Absorb-
ing and fluorescing pigments have been found in the
cornea (e.g. in flies: [59]; reviewed by Stavenga [60]) and crys-
talline cone (e.g. stomatopods: [61]; reviewed by [20]), where
some of them influence spectral sensitivity. By contrast,
López Reyes et al. [62] report that the function of fluorescing
filters observed in thysanopteran insects (thrips) still awaits
understanding. Filter pigments can also be placed more
proximally in the light path, affecting only part of the photo-
receptors. In a salticid spider, which expresses two visual
pigments (UVS and LWS) in the retina, a red photostable pig-
ment is placed in the light path to a subset of the
photoreceptors with the LWS pigment, shifting its peak sen-
sitivity from green to red, and thus creating a trichromatic
visual system based on only two opsin-based pigments
[18]. In stomatopods, additional filter pigments between
rhabdom tiers act as long-pass filters for the proximal tiers,
narrowing and shifting the peak sensitivity of photoreceptors
to longer wavelengths. Maybe most surprisingly, these pig-
ments change flexibly and over only a few days depending
on the experienced light environment [20].

In insects such as many butterflies, filter pigments are
placed in close vicinity to the rhabdoms which are narrow
enough to act as light guides, thus filtering the light and
again, changing the spectral properties of underlying receptors
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(e.g. [50,63], reviewed by Arikawa [48]). Pirih et al. [43] and Ilic ́
et al. [44] give additional examples for this mechanism. Finally,
in flies, sensitizing pigments in the receptors broaden the spec-
tral sensitivity to shorter wavelengths (e.g. [64]).
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5. Neural coding of colour is conserved
The diversity of visual pigments, photoreceptor types and
ommatidial structures that underlies colour vision systems
in arthropods is now well understood, but it is also evident
that not all opsin genes and photoreceptors contribute to
colour vision. Until recently, very little was known on the
neural circuitry that analyses the signals from different recep-
tor types in the small arthropod brains [42] and extracts the
spectral information relevant to guide behavioural reactions.
Colour processing requires inhibitory interactions between
neurons with different spectral tuning (e.g. [65]), and it is
now understood that colour coding involves multiple stages
[66] including inhibitory interactions already at the photo-
receptor stage.

In photoreceptors of butterflies spectrally opponent sig-
nals had been recorded already by Matic ́ et al. [67]. Yet
only recent work in flies and butterflies (e.g. [43,68,69]) has
clearly proved that direct mutual inhibition between different
spectral types of photoreceptors crucially contributes to
insect colour coding. Flies have two spectral types of omma-
tidia (named P and Y) in which photoreceptors (named R7
and R8) express different opsins [70]. Two types of inhibition
are critically involved in colour processing. In addition to
direct inhibition between the receptors R7 and R8 in the
same ommatidium, an interneuron mediates inhibition
between these receptors in one ommatidial type and the
equivalent receptors in adjacent ommatidia of the other
type [68,71,72]. In butterflies with three ommatidial types
[48]), ultraviolet-sensitive (SWS) receptors and blue-sensitive
(MWS) receptors within the same ommatidium receive
inhibitory input from green-sensitive (LWS) receptors, allow-
ing for trichromatic colour vision. In some nymphalid
butterfly species additional types of ommatidia contain red-
sensitive receptors, which provide additional inhibitory
input to green-sensitive receptors, potentially allowing for
tetrachromatic colour vision in these species [43]. These
recent findings are even more exciting as very similar inhibi-
tory mechanisms on the receptor level have also been found
in vertebrates (for comparisons, see [42,71]) pointing towards
a common neural solution for colour coding.

How colour coding works in the retinae of stomatopod
crustaceans with up to 12 different spectral sensitivities in
photoreceptors in the midband rows of their eyes, remains
an open question. The similarities in the structure of the
neural substrate [20,73,74] and the presence of a high
number of spectrally diverse photoreceptors in some butter-
fly species [44,48] indicate that colour coding in the
arthropod subphylum of pancrustaceans may share the
same basic mechanisms of neural colour coding.

For chelicerates, the situation still needs to be resolved. In
jumping spiders, probably the best-studied colour-seeing
clade in chelicerates, receptors from the four layers of photo-
receptors, which have different spectral sensitivities, project
to four different regions of their first optic ganglion, with no
sign of direct inhibition, making it likely that colour
processing happens at higher—hitherto unknown—brain
regions [75].

In insects, a sub-group of photoreceptors in each ommati-
dium project to the first optic neuropil, the lamina (as short
visual fibres, svf), while the remaining receptors project
directly to the second optical neuropil, the medulla (as long
visual fibres, lvf). Spectral opponency has been recorded in
lamina neurons (e.g. [57,69,76]) even though not all spectral
receptor types have terminations in this neuropile. However,
the medulla has been assumed to take a more important role
in colour coding, as this is where signals from both svf recep-
tors (via lamina interneurons) and lvf receptors (directly)
feed into colour-opponent neurons (e.g. [77–79]). Colour-
opponent neurons have been also described in the third
optic neuropil, the lobula complex (e.g. [80]). From here infor-
mation reaches higher visual centres including mushroom
bodies, the anterior optic tubercle and central complex (e.g.
[78,81–84]), but the circuits and projections are not yet fully
understood (for reviews, see [14,42,52,66]). Given recent
advances in the functional understanding of brain structures
with genetic tools and physiological recordings, in combi-
nation with behavioural assays, the processing of chromatic
information in the optic lobes is presently best described in
Drosophila (reviewed by Schnaitmann et al. [85]).

Even though colour information is most importantly used
for phototaxis (e.g. [12]) and for object detection (see, for
instance, [86]), it can also serve other tasks (e.g. dung beetle
navigation: [87,88]; butterfly motion vision: [89]). Accord-
ingly, colour-sensitive neurons and pathways have been
found in multiple central brain regions including the mush-
room bodies (e.g. [82,90]), the anterior optic tubercle (e.g.
[91,92]) and the central complex (e.g. [66] and references
therein), and most recently, the motion pathway of butterflies
[93]. Conserved, not only among arthropods, but probably in
a vast majority of colour vision systems, are also the mechan-
isms on the receptor and neuronal level that allow for colour
constancy, the ability to recognize object colours under
spectrally different illuminations [94].
6. Diversity of colour-guided behaviour and
colour ecology

The ecological diversity of arthropods is reflected by their be-
havioural use of colour information and their colour ecology,
as has been studied in different groups (e.g. [14]). Arthropods
occur in a wide range of aquatic and terrestrial habitats and
thus, in very different colour worlds. Generally, as water
absorbs and scatters light of different wavelengths to differ-
ent degrees [7], the demands on colour vision are high, and
animals such as some stomatopod crustaceans can change
the tuning of the photoreceptors depending on light habitat
[20]. Nocturnal or deep-sea species are often colour-blind
but there are exceptions. For instance, large flower-visiting
insects can discern colour even in starlight, as summarized
by Warrant & Somanathan [95]. Specifically for nocturnal
species, the increasing degree of artificial light pollution at
night may pose challenges for their colour vision which
may impair pollination (e.g. [96,97]).

Similar to other animals, arthropods use colour infor-
mation for two major purposes: the choice of a suitable
light habitat by phototaxis and reliable detection, discrimi-
nation and recognition of relevant objects, where the latter
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includes innate colour preference as well as learned colour
choice [86,98,99].

Phototaxis does not require high resolution and is there-
fore found in many more species which may have little
other use of colour. Water fleas of the genus Daphnia were
the first arthropods, for which habitat choice was proved to
depend on the chromatic aspect of light, as they prefer light
habitats with a high intensity of long-wavelength light to
habitats with overall high intensity [12]. This is in contrast
to colour-blind phototaxis as found, for instance, in the
sister phylum, Onychophora [24,100]. Colour-guided habitat
choices are common among caterpillars before pupation (e.g.
[101]), and preference for light of long wavelengths is found
in many herbivorous pest insects, which either feed or ovipo-
sit on green leaves [102,103]. López Reyes et al. [62] review
what is presently known for thrips (the insect order Thysa-
noptera), and Döring & Kirchner [104] provide a model
explaining the choice of aphids (Hemiptera) for substrates
appearing green or yellow to the human eye.

Studies of colour-guided object detection and discrimi-
nation by arthropods have long focused on flowers and
pollinators (e.g. [9]), which is still an important field (e.g.
[105–107]). In addition, many other object classes are now
known to be detected and recognized by arthropods using
colour. These include conspecifics, specifically mates (e.g. in
fiddler crabs: [108]; and probably in stomatopods: [109];
jumping spiders: [110]; and butterflies: [111]; fireflies:
[112,113]), as well as food unrelated to flowers (e.g. in stoma-
topods: [114]), leaves as oviposition substrates (e.g. [103,115])
and landmarks (e.g. [116,117]; for reviews see [86,118]).

Many objects and substrates are not uniformly coloured.
The pigmentation of flower petals, for instance, often varies
within and between individual flowers, changing chromatic
contrast (e.g. [10]) and influencing detectability (e.g. [119]).
Patterns of multiple colours are found in flowers with
nectar guides [99] and the bodies and appendages of
animals such as mantis shrimps [20], fiddler crabs [108],
spiders [120] or butterflies (e.g. [111]). Probably, such colour
patterns have evolved to facilitate learning, recognition and
communication. Analysing the behaviour of animals towards
colour patterns may help to better understand the processing
of context and natural scenes, in which objects are viewed
[94], or more broadly reveal, which aspects of coloration are
important given the low resolution of arthropod eyes [99].

It is currently unknown whether and how arthropods dis-
tinguish between dimensions in perceptual colour space that
would be equivalent to human colour dimensions of hue,
brightness and saturation (for discussions, see [52,86,121]).
These questions can only be studied in animals such as honey-
bees or Papilio butterflies, for which sufficient data on
photoreceptors are available (e.g. [93,94,99]) and established
models, such as the Receptor Noise Limited Model [122,123]
appropriately describe psychophysical performances. How
colour-coded information is integrated in the brain with other
visual functions is another fascinating and little explored topic.

Only quite recently, and taking many researchers by sur-
prise, it has become obvious that arthropods may rely on
colour signals when performing tasks which are classically
considered colour-blind, such as motion vision [89,93,124]
or skylight navigation [87,88].

7. Outlook: diverse colour vision requires more
and diverse studies

This brief overview highlights how much more research is
needed to fill in the many missing pieces of this large
puzzle. Diverse colour vision requires a diversity of study
tools including genetics, anatomy, physiology and importantly,
behavioural tests. In this special issue Lienard et al. [31] review
bioinformatic approaches specifically well suited to gain a
better understanding of opsin diversity in arthropods. Ulti-
mately, the hallmark is the behavioural evidence for colour
perception—to demonstrate how colour information is used
to guide behaviour. It continues to be challenging and labor-
ious to conduct appropriate tests for demonstrating colour
discrimination and colour constancy, and even more for show-
ing that an animal can ignore achromatic cues. If the
photoreceptor sensitivities are known, behavioural methods,
such as described by Cheney et al. [125], Christenson et al.
[126], Hempel de Ibarra et al. [99] and Werner [94], allow
experimenters to design visual stimuli that are well suited
to map the colour space of a species and allow for a better
understanding of their perceptual colour worlds.
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