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ARTICLE INFO ABSTRACT

Keywords: Introduction: A recent study from our laboratory demonstrated a number of neurobehavioral abnormalities in mice
Vaccines colony injected with a mouse-weight equivalent dose of all vaccines that are administered to infants in their first
Neurode\{elfcipment. 18 months of life according to the U. S. pediatric vaccination schedule.

I(:I;izﬁfneg nflammation Cytokines have been studied extensively as blood immune and inflammatory biomarkers, and their association

Netroimmune abnormalities with neurodevelopmental disorders. Given the importance of cytokines in early neurodevelopment, we aimed to

IL-5 investigate the potential post-administration effects of the U. S. pediatric vaccines on circulatory cytokines in a
mouse model.
In the current study, cytokines have been assayed at early and late time points in mice vaccinated early in
postnatal life and compared with placebo controls.
Materials and methods: Newborn mouse pups were divided into three groups: i) vaccine (V1), ii) vaccine x 3 (V3)
and iii) placebo control. V1 group was injected with mouse weight-equivalent of the current U. S. pediatric
vaccine schedule. V3 group was injected with same vaccines but at triple the dose and the placebo control was
injected with saline. Pups were also divided according to the sampling age into two main groups: acute- and
chronic-phase group. Blood samples were collected at postnatal day (PND) 23, two days following vaccine
schedule for the acute-phase group or at 67 weeks post-vaccination for the chronic-phase groups. Fifteen cyto-
kines were analyzed: GM-CSF, IFN-y, IL-1p, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17A, MCP-1, TNF-
o, and VEGF-A. Wilcoxon Rank Sum test or unpaired Student's t-test was performed where applicable.
Results: IL-5 levels in plasma were significantly elevated in the V1 and V3 group compared with the control only in
the acute-phase group. The elevation of IL-5 levels in the two vaccine groups were significant irrespective of
whether the sexes were combined or analyzed separately. Other cytokines (VEGF-A, TNF-q, IL-10, MCP-1, GM-
CSF, IL-6, and IL-13) were also impacted, although to a lesser extent and in a sex-dependent manner. In the acute-
phase group, females showed a significant increase in IL-10 and MCP-1 levels and a decrease in VEGF-A levels in
both V1 and V3 group compared to controls. In the acute-phase, a significant increase in MCP-1 levels in V3 group
and CM-CSF levels in V1 and V3 group and decrease in TNF-a levels in V1 group were observed in treated males as
compared with controls. In chronic-phase females, levels of VEGF-A in V1 and V3 group, TNF-a in V3 group, and
IL-13 in V1 group were significantly decreased in contrast with controls. In chronic-phase males, TNF-a levels
were significantly increased in V1 group and IL-6 levels decreased in V3 group in comparison to controls. The
changes in levels of most tested cytokines were altered between the early and the late postnatal assays.
Conclusions: IL-5 levels significantly increased in the acute-phase of the treatment in the plasma of both sexes that
were subjected to V1 and V3 injections. These increases had diminished by the second test assayed at week 67.
These results suggest that a profound, albeit transient, effect on cytokine levels may be induced by the whole
vaccine administration supporting our recently published observations regarding the behavioral abnormalities in
the same mice. These observations support the view that the administration of whole pediatric vaccines in a
neonatal period may impact at least short-term CNS functions in mice.
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1. Introduction

Vaccines are generally considered as very safe and effective prophy-
lactic agents against infectious diseases. For this reason, the risks of side
effects, if not entirely overlooked, are often discounted and/or deemed
insignificant. However, growing evidence from the peer-reviewed sci-
entific literature suggests that this “safe” assertion is not as fully sub-
stantiated as often claimed. For instance, vaccine trials may not have an
adequate study design and true placebo controls, may be subject to
various sources of bias, and lack realistic reporting outcomes. These
deficiencies bring into question some conventional assertions about
vaccine safety (Demicheli et al., 2005; Tomljenovic and Shaw 2013).

Another reason for increasing doubts concerning vaccine safety could
be attributed to the fact that regulatory agencies have historically not
viewed vaccines as inherently toxic (FDA 2002). Furthermore, a large
volume of studies have reported the occurrence of serious immune and
autoimmune disorders post vaccination, including those affecting the
nervous system (Bardage et al., 2011; Karussis and Petrou 2014; Gui-
maraes et al., 2015; Soriano et al., 2015; Toussirot and Bereau 2015;
Vadala et al., 2017; Segal and Shoenfeld 2018; Herve et al., 2019; Sirbu
et al., 2020). Finally, there appear to be legitimate reasons regarding the
veracity of the conclusions on vaccine safety typically drawn from the
Vaccine Adverse Events Reporting System (VAERS). Indeed, the pro-
portion of adverse reactions following specific vaccinations may be vastly
underestimated given that VAERS relies exclusively on self-reporting.
Moreover, many of the more serious immune-related adverse outcomes
are not acute in nature, and the awareness of the possibility of their
occurrence post-vaccination in the general public is very low, all of which
decreases the chance of them being reported to VAERS (Lazarus 2010).

The current U. S. pediatric vaccination schedule recommended for
newborns up to 18 months of age is shown in Table 1. This age window,
in which children receive many of their vaccines, is critically important
for the development of the central nervous system (CNS). Moreover,
convincing research data suggest that high immune stimulation during
this phase can significantly alter brain developmental processes (Custo-
dio et al., 2018; Li et al., 2018; Bergdolt and Dunaevsky 2019; Carlezon
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et al., 2019), an outcome which in turn can result in lifelong impacts on
brain functions. For example, various studies have shown that immune
activation during early postnatal life leads to increased fear and
anxiety-like behaviors, altered cognitive functions, and other abnormal
behavioral responses, including impaired social interactions, deficits in
object recognition memory and sensorimotor gating deficits in later life
(Shi et al., 2003; Hornig et al., 2004; Bilbo et al., 2005; Spencer et al.,
2005; Ibi et al., 2009; Konat et al., 2011; Olczak et al., 2011; French et al.,
2013). Together these adverse outcomes suggest that immune activation
during critical periods of both immune and neurological development
may be a serious risk factor for developing neurobehavioral disorders
including those of the autism spectrum disorder (ASD) (Belmonte et al.,
2004; Dietert and Dietert 2008; Hertz-Picciotto et al., 2008).

Some constituents that can be included in vaccine formulations are
very well known to act as neurotoxins, in particular aluminum (Cohen
and Shoenfeld 1996; Agmon-Levin et al., 2009; Israeli et al., 2009;
Tomljenovic et al., 2012; Tomljenovic and Shaw 2012). Other additives
that may act as toxicants and which are frequently found in vaccines
include phenol red, formaldehyde, polysorbate 80, and phenoxyethanol
(Eldred et al., 2006; CDC 2020). Though, these potentially toxic con-
stituents are not considered harmful as their formulation quantity is very
low (Offit and Jew 2003; Eldred et al., 2006), evidence from animal
experiments show that when aluminum and mercury are administered
individually in the same dosages as found in vaccines, they were both
able to induce serious detrimental neuro-immunological outcomes
(Hornig et al., 2004; Authier et al., 2006; Petrik et al., 2007; Shaw and
Petrik 2009; Hewitson et al., 2010; Olczak et al. 2010, 2011; Dorea 2011;
Duszczyk-Budhathoki et al., 2012). Furthermore, studies have shown
that aluminum adjuvants in vaccines are strongly associated with CNS
disorders and autoimmune/inflammatory conditions in human adults
(Passeri et al., 2011; Shoenfeld and Agmon-Levin 2011; Tomljenovic and
Shaw 2012; Terhune and Deth 2013; Cadusseau et al., 2014; Exley 2014;
Rigolet et al., 2014; Shaw et al., 2014a,b; Gherardi et al., 2015).

Children may be at a greater risk for possible neuro-immunotoxic
complications with vaccines as they receive aluminum and other
potentially toxic additives from vaccines in much larger amounts per

Table 1
Administration of vaccines in mice according to the U. S. CDC 2018 recommended vaccination schedule for preschool children of 0-18 months old (CDC 2018).
Infant age (months) 0 2 4 6 12 15 18
Equivalent mouse 7 8 9 10 14 18 21
age (days)
The details of the 1.Recombivax HB 1.Recombivax HB 1. Pentacel (DTaP, 1.Recombivax HB 1. Varivax 1. Recombivax HB 1. Fluzone
applied vaccines (hepatitis B) (hepatitis B) Hib, IPV) (hepatitis B) (varicella) (hepatitis B) (Influenza)
i.m injection im injection im injection im injection s.c injection im injection im injection
Al hydroxide Al hydroxide Al phosphate Al hydroxide No Al Al hydroxide No Al adjuvant
Merck Merck Sanofi Pasteur Merck adjuvant Merck Sanofi Pasteur
Limited Merck Limited
- 2. Pentacel (DTaP, 2. Rotateq 2. Pentacel (DTaP, 2. MMR II 2. Pentacel (DTaP, 2. Vaqta
Hib, IPV) i.m injection (Rotavirus) Hib, IPV) i.m injection s.c injection Hib, IPV) i.m (hepatitis A)
Al phosphate Oral Al phosphate No Al injection im
Sanofi Pasteur Limited ~ administration Sanofi Pasteur Limited ~ adjuvant Al phosphate Al hydroxide
No Al adjuvant Merck Sanofi Pasteur Merck
Merck Limited
- 3.Rotateq (Rotavirus) 3. Prevnar 13 3. Rotateq (Rotavirus) 3. Fluzone 3. Prevnar 13 -
Oral administration (Pneumoc) Oral administration (Influenza) (Pneumoc) i.m
No Al adjuvant im injection No Al adjuvant im injection injection
Merck Al phosphate Merck No Al Al phosphate
Wyeth Pharm Inc adjuvant Wyeth Pharm Inc
Sanofi Pasteur
Limited
- 4. Prevnar 13 - 4. Prevnar 13 4. Vaqta - -
(Pneumoc) (Pneumoc) (hepatitis A)
im injection im injection im injection
Al phosphate Al phosphate Al hydroxide
Wyeth Pharm Inc Wyeth Pharm Inc Merk
Vaccines/day 1 4 3 4 4 3 2
Total (vaccinations) 21

DTaP: diphtheria, tetanus, acellular pertussis; Hib: Heamophilus influenzae; Pneumoc: pneumococcal; IPV: inactivated polio; MMR: measles mumps rubella; s.c: sub-
cutaneous; i.m: intramuscular.
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Table 2
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Total number of male and female mice in each treatment group in acute- and chronic-phase group.

Treatment groups Acute-phase

Chronic-phase

Mice (total) Litters Females Males Mice (total) Litters Females Males
Control 24 3 6 18 26 4 7 19
Vaccine (V1) 24 3 13 11 25 4 14 11
Vaccine x 3 (V3) 23 3 11 12 25 4 12 13
Total 71 9 30 41 76 12 33 43

body weight in comparison to adults (Tomljenovic and Shaw 2012; Shaw
et al., 2014). Moreover, since vaccines are considered safe, the whole
pediatric vaccine schedule has in fact, never been adequately studied for
possible long-term adverse neurological and immune-related impacts,
even though animal experimental studies investigating the effect of sin-
gle constituents suggest a potential risk for such outcomes (e.g, ethyl
mercury (Dorea 2011); aluminum (Petrik et al., 2007; Shaw et al., 2013);
formalin (Moghaddam et al., 2006)). It would appear therefore that a
comprehensive analysis of vaccine safety warrants a more thorough ex-
amination than has been provided to date, especially for CNS disorders
that are not necessarily acute and easily diagnosable (Freed et al., 2010).

Various cytokines are well-studied for their roles in immune re-
sponses and their association with neurodevelopmental disorders. Re-
sults from animal experimental models have shown that maternal
immune activation during infection can modulate the developing fetal
brain by increasing circulating cytokine levels (Patterson 2002; Yama-
shita et al., 2003), thus indicating the involvement of cytokines in
alteration of normal brain maturation. For instance, Borna disease virus
infection in neonatal rats results in neuronal death in hippocampus,
neocortex, and cerebellum along with behavioral abnormalities similar
to autism (Hornig et al., 2001). These results are associated with major
changes in the cytokine expression at various locations in the brain,
suggesting a potential involvement of cytokines during CNS injury
(Plata-Salaman et al., 1999; Sauder and de la Torre 1999). Elevated levels
of cytokines and their association with severity of diagnostic features in
ASD (Ashwood et al., 2011c; Hashim et al., 2013) have also been docu-
mented. In addition, cytokines play an important role in regulating im-
mune responses via pro- and anti-inflammatory pathways. Cytokine
expression in the brain tissues of autistic patients has been observed and
association of marked activation of microglia and astrocyte in the cere-
bellum with increased cytokine profiling indicate microglial
neuro-immune reactions (Vargas et al., 2005).

Elevated levels of pro-inflammatory cytokines were also detected in
the cerebrospinal fluid of autistic patients and these results further point
to the important role of cytokines in ASD (Vargas et al., 2005; Chez et al.,
2007). Furthermore, several studies reported the association between
changes in cytokine levels and the worsening of clinical behavioral
outcomes in autism patients (Ashwood et al., 2008; Al-Ayadhi and
Mostafa 2012; Hashim et al., 2013). Association between cytokines
profile and immune activation in autistic subjects has also been explored
extensively (Croonenberghs et al., 2002; Jyonouchi et al., 2005; Vojdani

Study Design
o)

Chronic-phase group

%

4

et al., 2008; Saresella et al., 2009; Ashwood et al., 2011b; Malik et al.,
2011). Results from a study that screened cytokine profiles in neonatal
dried blood samples of children diagnosed with ASD in later life obtained
from The Danish Newborn Screening Biobank suggested a depressed or
hypoactive immune cell function during the early neonatal phase in ASD
(Abdallah, Larsen, Mortensen, et al., 2012). Results from human and
animal studies indicate the potential role of both pro- (Patterson et al.,
2008; Parker-Athill and Tan 2010) and anti-inflammatory cytokines
(Molloy et al., 2006; Goines et al., 2011) in accelerating clinical outcomes
associated with ASD. Pro- and anti-inflammatory cytokines regulate
many normal biological functions including neural development and
functions. Any disruption in this balance may result in abnormal brain
development and behaviors (Yirmiya and Goshen 2011).

The first part of our vaccine study included the assessment of short
and long-term behavioral outcomes in mice receiving the weight-
equivalent doses of pediatric vaccines versus a saline placebo and is re-
ported elsewhere (Eidi et al., 2020). The present report is the continua-
tion of the same study protocol and includes the assays of circulatory
cytokines in the same groups of animals tested at two age time points,
namely at 23 postnatal days (PND) and at 67 postnatal weeks.

2. Materials and methods
2.1. Animals, breeding and experimental groups

The experimental protocols were in accordance with the Canadian
Council on Animal Care and were approved by the Animal Care Com-
mittee at the University of British Columbia (protocol #A16-0125 and
#A16-0052 for breeding and experimental procedures, respectively).

This study included two cohorts with breeding pairs purchased from
Jackson Laboratories. The breeders for the first cohort (acute-phase
group) consisted of fourteen female and seven male C57BL/6 mice. The
breeders for the second cohort (chronic-phase group) had sixteen female
and eight male C57BL/6 breeder mice. The female and male mice were
aged eight and five weeks old, respectively. Upon arrival, the breeders
were housed separately in a room with 14/10 h light/dark cycle and 22
°C temperature for one week of acclimatization period. Breeder mice
were fed Purina chow diet and water available ad libitum. After the
acclimatization period, breeding pairs were established for one week
where one male with two female mice were housed together. Male mice
were separated from female mice after impregnation and body weights of

C57BL/6) Breeding. \ e/

/~ Cohort1  \
(Acute-phase group)

—.»
\iz

#

Blood cytokine
profiling

Fig. 1. Flow-chart of study design for acute- and chronic-phase group.



S.C. Bairwa et al.

Acute-phase Group
IL-5
a Female + Male
504
Kkk dedede
4
£ ¥ +
)
2 20- L
o =
" Control VA V3
b Female
50+
Kk Sk
w T
- i e
g
o
2 20-
10] ==
0 . : ;
Control vi V3
c Male
40-
Kkk ke
30
E
S 20-
o

o

10+
=

Control Vi V3

Brain, Behavior, & Immunity - Health 15 (2021) 100267

Chronic-phase Group
IL-5
d Female + Male
15
*
_, 104 T
E
o
Q ——
5-
— 1 =
—t— —_ _I_
" Control Vi V3
e Female
15-
_, 101
E
(=
[=%
54
" control V1 V3
f Male
4
3- —_—
-l
‘E’ 2 | —— | +
= I
—r
14
"~ Control V1 V3

Fig. 2. IL-5 levels in the plasma obtained from the mice in the acute- and the chronic-phase groups. *p < 0.05 and ***p < 0.001 vs. control.

female mice were monitored closely.

During the second week of gestation, female mice were separated and
housed individually. Newborn pups were assigned into three treatment
groups having three litters in acute-phase and four litters in chronic-
phase group. The treatment groups and number of mice in each group
are described in Table 2.

The vaccine group was injected in a manner designed to model the U.
S. pediatric vaccination schedule, with dosages adjusted to animal body
weight to reflect the dosages received by human infants. The V3 group
was injected with one shot of the triple dose vaccine each of the mice-
weight equivalent doses given to the V1 group and the saline control
group was injected with sterile saline buffer (PBS) (Table 1). The injec-
tion volumes were adjusted to 10 pl for all groups to minimize variability.

Mice in the acute-phase group were sacrificed two days after the last
injections, namely at PND 23 and mice in the chronic-phase group went
through several behavioral tests and were monitored for 67 weeks before
sacrifice (Fidi et al., 2020). (See Fig. 1 for study design of acute- and
chronic-phase group).

2.2. Plasma and organs sample preparation

In all cases, mice were deeply anesthetized with 4% isoflurane and 2
L/min oxygen and later maintained at 2% isoflurane and 1 L/min oxygen.
Blood was collected immediately by cardiac puncture with a syringe

coated with heparin and kept on ice. Blood samples were centrifuged at
4000xg for 14 min at 4 °C to isolate plasma and kept at —80 °C until
ready to analyze. Following blood collection, the mice were perfused
transcardially with PBS or 10% formalin and the brains, spinal cords, and
other organs were collected for molecular or histological analysis.

2.3. Cytokine analysis

Plasma concentrations of 15 cytokines were determined using the
Meso Scale Discovery (MSD) platform (Meso-Scale Diagnostics, LLC,
Rockville, MD, USA, Cat. #K15069L-2). The MSD U-PLEX platform is an
electrochemiluminesence-based multiplex assay capable of detecting
quantity as low as picogram per milliliter (pg/mL). The U-PLEX
Biomarker Group 1 (ms) Assays were used to determine the concentra-
tions of GM-CSF, IFN-y, IL-1p, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70,
IL-13, IL-17A, MCP-1, TNF-a, and VEGF-A. MSD assays were carried out
according to the manufacturer's instructions. Briefly, individual U-PLEX
Coupled Antibody Solution was prepared by coupling each biotinylated
antibody to a specific linker in separate Eppendorf tubes. This solution
was mixed by vortexing and incubated at room temperature for 30 min.
After that, stop solution was added and mixed by vortexing followed by
incubation at room temperature for 30 min. All the U-PLEX Coupled
Antibody Solution were pooled in a falcon tube and vortexed. 96-well U-
PLEX plates were coated with U-PLEX Coupled Antibody Solution and
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Fig. 3. VEGF-A levels in the plasma obtained from the mice the acute- and the chronic-phase groups. **p < 0.01 and ***p < 0.001 vs. control.

incubated at room temperature on a shaker for 1 h. Plates were washed
three times with PBS-T. In the U-PLEX plate, Diluent was added to each
well followed by Calibrator Standards or plasma samples. All the stan-
dards and plasma samples were loaded in duplicates. The Calibrator
Standards were prepared by reconstituting the provided Calibrator vial
with Diluent. After inverting the reconstituted Calibrator at least 3 times,
this solution was kept for 30 min at room temperature. This Calibrator
Standard is now Calibrator Standard 1 that gives highest point in the
standard curve. After brief vortexing, Calibrator Standard 1 was 4-fold
serially diluted with Diluent to make Standard Calibrator 2-7. Tubes
were vortexed between each serial dilution. To make the Standard
Calibrator 8, only the Diluent was used. The plates were sealed with an
adhesive plate seal and incubated at room temperature on a shaker for 1
h. Plates were washed 3 times with PBS-T and detection antibody solu-
tion was added to each well. Plates were sealed again with an adhesive
plate seal and incubated at room temperature on a shaker for 1 h. Plates
were washed again 3 times with PBS-T and Read Buffer was added to
each well and were read on MSD QuickPlex SQ 120. Cytokine concen-
trations were measured and presented in pg/mL. The experimenter was
blinded to the identity of the plasma samples. This MSD kit and method
has been used and validated by a number of scientific studies (Soh et al.,
2016; Wiehagen et al., 2017; Xu et al., 2018; Burmeister et al., 2019;
Santos et al., 2019; Song et al., 2019; Pang et al., 2020; Unger et al.,
2020).

2.4. Statistical analysis

All statistical analyses were performed using GraphPad Prism
(GraphPad Software, Inc., San Diego, CA). Wilcoxon rank-sum test was
performed to compare cytokines profile among treatment groups. Un-
paired Student's t-test was used to compare between controls from acute
and chronic-phase groups of both sexes combined and separated. The box
plots display the range of cytokines from minimum to maximum.
Table data are presented as mean + standard error (SE). Sample size was
6-24 mice per group. A p-value of <0.05 was considered statistical
significant.

3. Results

Acute-phase plasma levels of IL-5 were significantly higher in the V1
and V3 groups (Fig. 2a, b and 2c: p < 0.001) compared to the controls for
both sexes combined and separated. In the chronic-phase group, IL-5
levels were significantly higher only in the V1 group in comparison
with the control group for both sexes combined (Fig. 2d: p < 0.05). No
other significant difference in IL-5 levels was detected in the chronic-
phase group in any of the treatment groups compared with the control
when both sexes were separated (Fig. 2e and f).

In the acute-phase group, VEGF-A levels were significantly lower in
the V1 group for both sexes combined and separated compared with the
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Fig. 4. IL-10 levels in the plasma obtained from the mice in the acute- and the chronic-phase groups. *p < 0.05 and ***p < 0.001 vs. control.

corresponding control animals (Fig. 3a, b, and 3c: p < 0.001). In addition,
VEGF-A levels in V3 group were significantly decreased in females and
increased in males (Fig. 3b and c: p < 0.01). Chronic-phase VEGF-A levels
were significantly reduced in the V1 group for both sexes combined and
in females compared to corresponding controls (Fig. 3d and e: p < 0.01).
V3 group females showed significant lower levels of VEGF-A compared
with control females (Fig. 3e: p < 0.01). No significant changes in VEGF-
A levels were observed in male mice (Fig. 3f).

Acute-phase IL-10 levels werer significantly higher in the V1 and V3
group for both sexes combined and in females alone compared to cor-
responding control animals (Fig. 4a and b: p < 0.001). Chronic-phase IL-
10 levels were significantly altered only in the male animals where they
were increased in the V1 group and decreased in the V3 group (Fig. 4f: p
< 0.05).

Acute-phase TNF-a levels were significantly lower in the V1 group for
both sexes combined and in males (Fig. 5a: p < 0.01, Fig. 5¢: p < 0.001).
V3 group females showed significantly increased TNF-a levels compared
with controls (Fig. 5b: p < 0.01). In chronic-phase group, TNF-a levels
were significantly increased in the V1 group males (Fig. 5f: p < 0.05). The
V3 group for both sexes combined had significantly decreased levels of
TNF-a levels, as did female animals separately when compared with
corresponding controls (Fig. 5d and e: p < 0.05).

In the acute-phase mice, MCP-1 levels were significantly higher in V1
group for both sexes combined and in females (Fig. 6a and b: p < 0.01).

Similarly, V3 group had significantly increased MCP-1 levels for both
sexes combined and separated compared to respective controls (Fig. 6a:
p < 0.001, Fig. 6b and c: p < 0.05). In chronic-phase, MCP-1 levels in the
V1 group were significantly decreased compared with controls (Fig. 6d:
p < 0.05).

GM-CSF levels in the V3 group were significantly elevated in the
acute-phase when both sexes were combined and in males (Fig. 7a and c:
p < 0.05) while a decrease was observed in females (Fig. 7b: p < 0.05). In
the acute-phase, V1 group GM-CSF levels were significantly increased in
males (Fig. 7c: p < 0.001). Chronic-phase CM-CSF levels were not found
to be significantly different in any of the vaccine groups when compared
with controls.

Acute-phase group IL-6 levels were significantly elevated in the V1
group when both sexes were combined and compared with control ani-
mals (Fig. 8a: p < 0.001). In chronic-phase mice, IL-6 levels were
significantly decreased in the V3 group for both sexes combined (Fig. 8d:
p < 0.05) and in males (Fig. 8f: p < 0.001) compared with corresponding
controls.

Chronic phase IL-13 levels were significantly decreased in V1 group
females and in the V3 group for both sexes combined (Fig. 9d and e: p <
0.05).

Acute- and chronic-phase IFN-y, IL-4, IL-2, I[L-17A, IL-9, IL-12p70, and
IL-1p were not significantly different in any of the treatment groups
compared to the controls (supplementary data, Tables 1-6).
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Fig. 5. TNF-« levels in the plasma obtained from the mice in the acute- and the chronic-phase groups. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control.

Furthermore, IL-2, IL-17A, IL-9, IL-12p70, and IL-1B levels were not
detected by the MSD assay kit in the plasma samples of the acute-phase
animals. Analysis of cytokines in control groups between acute- and
chronic-phase groups for both sexes combined and separated show an
age-dependent cytokine level modulation (Tables 3-5). Overall qualita-
tive assessment of cytokines is summarized in Tables 6 and 7.

4. Discussion

Difference in pathophysiological levels of circulating pro- and anti-
inflammatory cytokines depends on various factors such as treatment,
sex, and age (Klingstrom et al., 2008; Prather et al., 2009; Cruz-Almeida
et al., 2015; Cai et al., 2016; Surcel et al., 2017; Toft et al., 2018; Zou
et al., 2018). Studies have shown that peripheral cytokines modulate CNS
functions by crossing the blood-brain barrier (BBB) via active protein
transport mechanisms and by recruiting immune cells to the brain pa-
renchyma (Banks 2005; Erickson et al., 2012; Fung et al., 2012). These
cytokines act as mediators between neurons and microglia and regulate
neuronal cell migration, proliferation, and differentiation (Biber et al.,
2008; Patterson 2009).

In our recently published study (Eidi et al., 2020), we detected
decreased sociability, increased anxiety-like behaviors, and alteration of
visual-spatial learning and memory in male and female mice vaccinated
according to the U. S. pediatric vaccine schedule. We also detected a

slower acquisition of some neonatal reflexes in vaccinated female mice
compared to vaccinated males and controls. The neurodevelopmental
alterations observed in this study seemed to be sex-dependent and for
most part — and consistent with the results presented herein — transient
with age. In particular, the majority of treated mice at the end of the
experimental period did not significantly differ from the control popu-
lation such that, most of the abnormalities detected did not persist until
the final evaluations at 67 weeks of age, although some persisted into
adulthood.

In the current study, the observed alterations of certain cytokines can
be seen as sex-, age- and vaccine dose-dependent (Tables 6 and 7). For
example, in the acute phase, while the MCP-1 alterations were observed
only in the female mice of V1 group, it was increased in females and
males of the group V3. Moreover, in the chronic phase, there was no
difference in the MCP-1 levels between males and females (Tables 6 and
7).

No sex-dependent effect has been observed in the case of IL-5 in the
V1 and V3 groups in both acute and chronic phase (Tables 6 and 7).

In this current study, we analyzed fifteen cytokines (see Tables 3-7) in
the plasma samples taken from mice following acute- and chronic-phase
post V1, V3, and saline injections. To determine the differences among
groups, individual mice (not the litters) were treated as the experimental
unit for sample size given that no litter effect was observed in our current
and previous studies (Eidi et al., 2020). Our observation revealed eight
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Fig. 6. MCP-1 levels in the plasma obtained from the mice in the acute- and the chronic-phase groups. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control.

cytokines (IL-5, VEGF-A, IL-10, TNF-a, MCP-1, GM-CSF, IL-6, and IL-13)
that were altered significantly in the acute- and/or chronic-phase of the
experiment. Of these, the most striking change were elevated levels of
IL-5 in the plasma of acute-phase in V1 and V3 groups compared to
controls (see Fig. 2).

IL-5 is known as anti-inflammatory cytokine and is produced by T
helper 2 (Th2) cells. Th2 cells produce anti-inflammatory cytokines
which play a major role in regulating humoral immunity. For example,
IL-5 acts against foreign pathogens by activating B cells and antibody
production (Spellberg and Edwards 2001; Wills-Karp 2001; Shinkai et al.,
2002). In a murine model, IL-5 has been found to be produced by brain
cells such as astrocytes and microglia, suggesting an association between
specific neural cells and immune cell interaction (Sawada et al., 1993).

In this current study, this robust increase in plasma IL-5 levels in V1
and V3 groups could be due to the Th2 cells activation in response to
vaccine injections as a counter mechanism to minimize vaccine-induced
effects, in turn increasing anti-inflammatory cytokines like IL-5. The
plasma levels of IL-5 were similar in both V1 and V3 group, a pattern that
was not dose-dependent and may indicate peaked production of IL-5 at
the “regular” vaccine dose. Control group IL-5 levels were significantly
reduced in the chronic-phase compared to the acute-phase, suggesting
age-dependent reduction in circulating IL-5 production (see supple-
mentary data, Tables 1-6). We also observed that plasma samples ob-
tained from adult mice did not show any significant difference in IL-5

levels in any group compared with control, supporting our behavior data
obtained from adult mice (Eidi et al., 2020) which likewise suggested a
transient nature of the observed changes. Furthermore, our recent pre-
liminary histological examination of IL-5 presence in the brain supports
these findings (data not shown).

IL-10 and MCP-1 levels were elevated significantly in acute-phase
mice but no difference in levels was seen in the chronic-phase group.
Again, this may suggest an age-depended effect.

MCP-1 functions as a chemoattractant during tissue injury and it
mediates activation and recruitment of monocytes and T-cells into
damaged areas (Conti and DiGioacchino 2001). Immunocytochemical
staining and confocal microscopy studies of brain indicated that astro-
cytes were the main source for MCP-1 (Vargas et al., 2005).

In the present study, we observed a significant reduction in the VEGF-
A levels in both acute- and chronic-phase V1 and V3 animals (Fig. 3a, b,
3c, 3d and 3e). The only exception to this pattern were V3 males, which
showed increased levels of VEGF-A (Fig. 3c). VEGF is an important
angiogenic growth factor that is crucially involved in the embryogenesis
and pre- and post-natal brain development and repair (Jesmin et al.,
2004). It is a key signaling molecule in the CNS due to its role in neu-
roprotection, neuronal survival, and axonal outgrowth (Yasuhara et al.,
2004). Critical reduction in VEGF levels is associated with hypoxia and
leads to degeneration of cerebral cortex and neonatal death (Haigh et al.,
2003; Virgintino et al., 2003; Skaper 2008).
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Fig. 7. GM-CSF levels in the plasma obtained from the mice in the acute- and the chronic-phase groups. *p < 0.05 and ***p < 0.001 vs. control.

In the present study, we observed both a reduction and increase in
TNF-« levels in both acute- and chronic-phase group animals. In partic-
ular, TNF-a was significantly increased in acute-phase V3 females
(Fig. 5b: p < 0.01) and chronic-phase V1 males (Fig. 5f: p < 0.05). TNF-a
is known for its involvement in systemic inflammation and it is produced
primarily by cells of monocytic lineage such as macrophages, microglia,
astroglia, and alveolar macrophages (Pfeffer et al., 1993; Flynn et al.,
1995).

Our study further showed significant increases in GM-CSF but only in
the acute-phase animals, in V1 group males and V3 group for both sexes
combined and in males (Fig. 7a and c).

Although the main purpose of our study was to examine the impact of
whole vaccine formulation on blood markers of inflammation, it is
possible that some of the observed outcomes in the vaccinated animals
reflect primarily the impact of the Al adjuvants which are the constitu-
ents of many of the vaccines administered under the pediatric schedule
(Table 2). Adjuvants are known to amplify the immune response and
increase the reactogenicity of vaccine antigens. Indeed, with the excep-
tion of attenuated viruses, in the absence of Al most antigenic compounds
fail to launch an adequate immune response (Dillon et al., 1992; Seubert
et al., 2008). It is therefore precisely because of its powerful immuno-
modulatory properties that Al has been, and remains, the most commonly
used vaccine adjuvant. The immune enhancing effects of Al were
discovered in 1926 and Al has been used in vaccines ever since (Glenny

et al, 1926). The adjuvant-mediated immune-enhancing effect is
accomplished via mechanisms that impinge on both the innate and
adaptive immune systems (Eisenbarth et al., 2008; Exley et al., 2010). In
this context, research shows that Al adjuvants activate 312 genes, 168 of
which play a role in immune activation and inflammation (Mosca et al.,
2008). At least 13 cytokines and chemokines are produced within 4 h of
Al adjuvant injection, including pro-inflammatory IL-1f and IL-6 (McKee
et al., 2009). Although historically vaccine Al adjuvants have been por-
trayed as inherently safe (Eickhoff and Myers 2002; Offit and Jew 2003),
studies in animal models and humans have demonstrated their ability to
inflict inflammatory manifestations and immune-mediated diseases
(Gherardi et al. 2001, 2015bib_Gherardi_et_al_2001; Shaw and Petrik
2009; Zivkovic et al., 2012bib_Gherardi_et_al_2015). Moreover, studies
by Khan et al. and other research groups showed that administration of Al
or an Al-containing vaccine was associated with Al deposits in distant
organs such as lymph nodes, spleen, liver, and brain (Wen and Wis-
niewski 1985; Redhead et al., 1992; Flarend et al., 1997; Khan et al.,
2013) where in some cases they were still detected up to one year after
injection (Khan et al., 2013). Khan et al. also found that Al adjuvant
particles once injected are sequestered by monocyte-lineage cells in
MCP-1 dependent fashion, and were thus carried to draining lymph
nodes, and from there reach other organs including the brain (Khan et al.,
2013). Notably, Al translocation into the brain was significantly elevated
after systemic and/or cerebral increase of the MCP-1/CCL2 signaling
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Fig. 8. IL-6 levels in the plasma obtained from the mice in the acute- and the chronic-phase groups. *p < 0.05 and ***p < 0.001 vs. control.

(Khan et al., 2013). These findings reveal a biologically plausible
mechanism to explain cognitive impairments which are well known to be
associated with administration of Al-adjuvanted vaccines and the
persistence of Al in the human body (Gherardi and Authier 2012; Rigolet
et al., 2014; Gherardi et al., 2015).

Our results show that MCP-1 levels are increased transiently in the
systemic circulation post pediatric vaccination schedule, as elevated
levels of this cytokine were almost exclusively observed in acute-phase
animals (Fig. 6). It is possible nonetheless, that during this time some
Al translocated to the brain of the animals since it was shown that Al
particles translocate from muscle to brain within 3 weeks post injection
(Eidi et al., 2015).

We fully recognize that any model system attempting to study human
disease requires a careful consideration as to whether or not the resulting
outcomes truly apply to humans. For example, the study by Seok et al.,
(2013) showed that genomic responses from the mouse models corre-
lating human inflammatory disease may not closely resemble those in
humans. We further realize that in a subject area that is as fraught with
controversy as vaccination, extra care needs to be taken so as to not over
interpret data to the human condition.

Even though our aim in the current study is to mimic the effects of
vaccines on human children using a rodent model, it is still not clear
whether the human corresponding cytokines could be affected by the
pediatric vaccines in the same manner in mice as observed in the present
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study. In the following paragraphs, some examples regarding the
involvement of the said cytokines in certain human neuro-developmental
disorders are discussed.

A recent meta-analysis found that serum IL-5 was slightly increased
and plasma IL-10 levels were moderately decreased in those with ASD
compared with controls (Saghazadeh et al., 2019). Plasma taken from
individuals who were high-functioning ASD showed that concentration
of IL-5 and IL-13 were significantly higher along with abnormal immune
responses in ASD subjects compared with matched controls (Suzuki et al.,
2011). Furthermore, a case-control study found that women with higher
IL-5 levels in serum at midgestation were significantly more likely to give
birth to a child who later would more likely be diagnosed with ASD
(Goines et al., 2011). Taken together, these studies suggest that elevated
levels of IL-5 in the circulation may cross the BBB or induce cytokine
release in the brain which may play some significant role in the etiology
of autism.

In the literature, it has been shown that decreased levels of IL-10 in
autistic patients compared with controls without autism (Manzardo et al.,
2012; El-Ansary et al., 2016; Saghazadeh et al., 2019) while other studies
found no significant association (Ashwood et al., 2011a; Suzuki et al.,
2011; Tostes et al., 2012; Napolioni et al., 2013; Inga Jacome et al., 2016;
Guloksuz et al., 2017). Vargas et al. however detected elevated IL-10
along with other pro-inflammatory cytokines in the anterior cingulate
gyrus of patients with autism (Vargas et al., 2005).
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Fig. 9. IL-13 levels in the plasma obtained from the mice in the acute- and the chronic-phase groups. *p < 0.05 vs. control.

Table 3
Comparison between the acute- and chronic-phase controls (both sexes
combined).

Cytokines  Control - acute-phase (Mean + Control - chronic-phase (Mean +

SE) pg/mL SE) pg/mL

GM-CSF 0.08 £ 0.02 0.08 £+ 0.02

IL-5 9.73 £ 0.57 2.41 £ 0.24***

MCP-1 0.48 + 0.43 25.79 + 4.88***

VEGF-A 13.14 £ 0.19 14.75 4 0.39%**

IL-4 0.00 £+ 0.00 0.12 £+ 0.09

1L-13 0.00 £+ 0.00 16.87 + 15.55

IFN-y 0.25 £ 0.14 10.21 + 4.31*

IL-10 4.01 £0.71 13.43 + 1.72%**

IL-6 0.29 £ 0.26 23.86 + 5.69***

TNF-ot 9.23 + 0.42 10.96 + 2.81

*p < 0.05 and ***p < 0.001 vs. control — acute-phase group.

IL-6, which in our case was found to be highly significantly elevated
in the acute-phase V1 group animals (Fig. 8a: p < 0.001) is another pro-
inflammatory cytokine strongly implicated in maternal immune activa-
tion associated neurological disorders, including those of the autistic-
and schizophrenia-like behaviors (Smith et al., 2007; Hsiao and Patterson
2011). In the fetal brain, studies have found elevated levels of IL-6 mRNA
and protein and phosphorylation of STAT3 after maternal immune acti-
vation (Gilmore et al., 2005; Meyer et al., 2006), which strengthen the
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Table 4
Comparison between the acute and chronic-phase control females.

Cytokines  Control - acute-phase (Mean + Control - chronic-phase (Mean +
SE) pg/mL SE) pg/mL
GM-CSF 0.13 £ 0.04 0.12 £ 0.07
IL-5 11.46 + 1.08 3.73 £ 0.73%**
MCP-1 0.00 =+ 0.00 21.58 + 6.14*
VEGF-A 13.53 + 0.37 14.58 + 0.98
1L-4 0.00 £+ 000 0.35 £ 0.35
IL-13 0.00 £ 0.00 63.61 + 62.14
IFN-y 0.00 =+ 0.00 6.67 + 3.45
IL-10 3.27 £1.42 12.11 £ 4.35
IL-6 0.55 £ 0.70 17.31 +£11.39
TNF-a 8.84 +1.02 20.20 + 10.71

*p < 0.05 and ***p < 0.001 vs. control — acute-phase group.

possibility that IL-6 acts on the developing brain in order to induce
neurogenesis, microglial activation, astrogliosis and synaptic pruning
(Conroy et al., 2004; Gilmore et al., 2004).

With respect to MCP-1, we note that elevated levels of this pro-
inflammatory cytokine have been consistently detected in a number of
neurological diseases. For example, plasma MCP-1 levels were found to
be elevated in Alzheimer's disease patients and this increase was asso-
ciated with greater severity and faster cognitive decline (Lee et al., 2018).
Increased MCP-1 levels were also found in autism patients (Vargas et al.,
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Table 5
Comparison between the acute and chronic-phase control males.

Cytokines  Control - acute-phase (Mean + Control - chronic-phase (Mean +
SE) pg/mL SE) pg/mL

GM-CSF 0.01 £+ 0.01

IL-5 7.81 + 0.34

MCP-1 1.01 £ 0.72 27.19 + 0.6.23%**

VEGF-A 12.71 +£ 0.19 14.81 + 0.42%**

IL-4 0.00 + 0.00 0.04 + 0.02

1L-13 0.00 + 0.22 1.29 + 0.60*

IFN-y 0.52 £ 0.83 11.38 £+ 5.66

IL-10 4.84 + 0.00 13.86 + 1.86%**

1L-6 0.00 + 0.00

TNF-o 9.67 + 0.33

*p < 0.05, **p < 0.01, and ***p < 0.001 vs. control — acute-phase group.

Table 6

Qualitative summary of cytokine results from acute-phase group.
Cytokines A1 V3

F+M F M F+M F M

GM-CSF N N Inc Inc Dec Inc
IL-5 Inc Inc Inc Inc Inc Inc
MCP-1 Inc Inc N Inc Inc Inc
VEGF-A Dec Dec Dec N Dec Inc
IL-13 N N N N N N
IL-10 Inc Inc N Inc Inc N
IL-6 Inc N N N N N
TNF-a Dec N Dec N Inc N

F & M represent Females and Males, respectively.
N, Inc and Dec represent, “normal”, “increased” (significantly) and “decreased”
(significantly) as compared to control, respectively.

Table 7

Qualitative summary of cytokine results from chronic-phase group.
Cytokines V1 V3

F+M F M F+M F M

GM-CSF N N N N N N
IL-5 Inc N N N N N
MCP-1 Dec N N N N N
VEGF-A Dec Dec N N Dec N
IL-13 N Dec N Dec N N
IL-10 N N Inc N N Dec
IL-6 N N N Dec N Dec
TNF-a N N Inc Dec Dec N

F & M represent Females and Males, respectively.
N, Inc and Dec represent, “normal”, “increased” (significantly) and “decreased”
(significantly) as compared to control, respectively.

2005). MCP-1 also modulates the recruitment of myeloid cells to
inflammation or injury sites and is increased during ischemia, Alz-
heimer's disease, and experimental autoimmune encephalomyelitis
(Ashwood et al., 2011c). Experimental studies have also found that in-
dividuals with autism have higher MCP-1 levels in plasma, brain, and
cerebrospinal fluid. In particular, Vargas et al. found that in comparison
to non-autistic controls, autistic patients had significantly increased
MCP-1 protein levels in the cerebellum and the anterior cingulate gyrus
(Vargas et al., 2005), both of which are regions involved in dysfunctional
brain activity in autism (Mundy 2003). The observed increase in MCP-1
production in autistic patients was significantly associated with aberrant
behavior scores and impairments in cognitive and adaptive functions
(Vargas et al., 2005; Ashwood et al., 2011c). Examination of chemokine
levels in amniotic fluid samples obtained from autistic individuals
revealed that increase risk for ASD was associated with increase in MCP-1
levels in contrast with controls (Abdallah, Larsen, Grove, et al., 2012).
MCP-1 has the ability to enhance synaptic transmission and neural
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excitability in hippocampal neurons and can modulate neuronal physi-
ology (Melik-Parsadaniantz and Rostene 2008; Zhou et al., 2011).

Samuelsson et al. found that prenatal exposure to IL-6 increased both
circulatory IL-6 levels and hippocampal expression of IL-6 mRNA. In
addition, all exposed offspring showed neuronal loss, astrogliosis and
impaired learning ability (Samuelsson et al., 2006). In addition, elevated
serum levels of IL-6 was more common for women who subsequently
gave birth to a child diagnosed with a neurodevelopmental delay but
without autism (Goines et al., 2011). Other studies have found increased
IL-6 levels in the plasma of ASD-affected children compared with typi-
cally developing children (Ashwood et al., 2011a). Autistic patients were
also found to have higher levels of IL-6 in the brain compared to in-
dividuals without autism (Vargas et al., 2005; Li et al., 2009). In partic-
ular, Vargas et al. observed significantly elevated IL-6 levels in both the
cerebrospinal fluid and the brain tissues of autistic patients. Increase in
IL-6 co-localized with the increase in MCP-1 and IL-10 in the anterior
cingulate gyrus of autistic brains when compared with controls (Vargas
et al., 2005).

It has been suggested that disruptions in VEGF signaling are linked
with cerebral cortex degeneration in patients of attention-deficit/
hyperactivity disorder (Jesmin et al., 2004a,b;). VEGF has been shown
to play an important role in mental disorders such as major depressive
disorders (Clark-Raymond et al., 2017). VEGF associated neurovascular
dysfunction has been well studied in autism, schizophrenia, and mood
disorders and these disorders are associated with hypoxic conditions
during early development phase leading to cognitive dysfunction
(Newton et al., 2013; Howell and Armstrong 2017). Experimental studies
report that serum VEGF levels in autistic patients are significantly
decreased suggesting the association of serum VEGF levels and increased
severity of presentation (Emanuele et al.,, 2010; Masi et al., 2017).
Decreased mRNA of VEGF in dorsolateral prefrontal cortex of schizo-
phrenia subjects compared with controls have been observed (Fulzele
and Pillai 2009). However, studies also indicate inconsistent association
of plasma VEGF levels with autism (Zakareia et al., 2012) or schizo-
phrenia (Emanuele et al., 2010; Lee et al., 2015; Pillai et al., 2016; Misiak
et al., 2018; Nguyen et al., 2018).

A study by Singh showed that plasma levels of TNF-a were not
significantly different in autistic subjects compared with controls (Singh
1996). However, Jyonouchi et al. studied autistic children and compared
them with their healthy siblings and other controls and found that TNF-a
levels were elevated in ASD children (Jyonouchi et al., 2001). These
latter authors also noted that ASD peripheral blood mononuclear cells
produced higher levels of TNF-a and IL-6 when activated by lipopoly-
saccharide, an innate immunity stimulant. This study concluded that
these ASD children had aberrant innate immune response. In addition, Li
et al. found that TNF-a, along with IL-6, and GM-CSF, was significantly
increased in the brains of ASD subjects compared with control subjects
(Li et al., 2009). Furthermore, TNF-a was also found elevated in cere-
brospinal fluid (Chez et al., 2007) and peripheral blood mononuclear
cells of autistic subjects (Ashwood et al., 2011b). These studies suggest
that TNF-a likely plays an important role during neurodevelopment.

Finally, a role for increased GM-CSF activity in autism is suggested by
the previously mentioned study by Li et al., (2009).

Given the abovementioned caveats in the animal models, we note that
the current results merely warrant further follow up studies. In the pre-
sent case, future studies including histological examination and gene
expression analysis such as through RT-PCR analysis of brain samples
from both acute- and chronic-phase animals may provide further evi-
dence for vaccine-induced effects in the brain and how they might relate
to cytokines at the levels observed.
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