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Abstract

Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries,
researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be
known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is
that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is
isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff
velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the
effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of
the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height
as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about
one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity
relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the
small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological
and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time
expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be
counteracted by morphological and physiological adaptations.
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Introduction

Jumping is important for survival of many animals because it

helps them to catch preys or escape from predators [1]. Jump

height (h), defined as vertical displacement of the centre of mass

(CM) in the airborne phase, has been found to vary substantially

among differently sized primate species. For example, h is about

0.33 m in a 100 g grey mouse lemur (Microcebus murinus) [2], up to

about 2 m in a 300 g bushbaby (Galago senegalensis) [3], up to 0.7 m

in a 34 kg bonobo (Pan paniscus) [4] and typically about 0.4 m in a

75 kg human [5]. From the perspective of functional morphology,

it is interesting to compare jumping performance among species.

Galago senegalensis seems to be hors catégorie, because it outperforms

other mammals in both absolute and relative terms, but how does

Microcebus murinus perform compared to humans? For centuries,

the consensus in the literature has been that comparisons should

be made in terms of absolute jump height, so Microcebus is not a

good jumper compared to humans. However, in relation to body

size Microcebus does a much more impressive job than humans. Is

absolute jump height a fair measure to compare jumping

performance of differently sized primate species?

In the literature, various propositions can be found on how body

size affects jump height. The first proposition is that body size does

not affect jump height at all. Perhaps most current scientists will

not adhere to this proposition, but it has played a dominant role in

history and hence is a good starting point here. The proposition

has come to be known as Borelli’s law, because Borelli, in his book

De Motu Animalium published in 1680 [6], was the first to suggest

that takeoff speed should be the same regardless of animal size [7].

A few years later, in 1687, Newton formulated the laws of classical

mechanics in Philosophiae Naturalis Principia Mathematica [8], and

many authors have used these laws to reason why isometrically

scaled animals should have the same jump height (e.g., [9–11], for

specific formulations see [7]). The reasoning is as follows. To jump

to a given h, an animal must achieve a certain vertical takeoff

velocity of CM (vto), which corresponds to kinetic energy (Ekin,to)

equal to 1
2
m2

to, where m is body mass. Neglecting air resistance,

Ekin,to is transformed during the airborne phase into potential

energy m, where g is the acceleration due to gravity, so:

h~
v2to
2g

: ð1Þ

For the remainder of this paper, it is helpful to write this as:

h~
ÊEkin,to

g
, ð2Þ

where ÊEkin,to is Ekin,to expressed per kg body mass. If we assume

that there is no difference among animals in the amount of work

produced per kg of muscle, and no difference in the amount of
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muscle mass relative to body mass, then each animal should

produce the same amount of work per kg body mass (ŴW ), leading

to the same ÊEkin,to and hence to the same h (equation 2). According

to this proposition, it is fair to compare jumping performance of

differently sized primate species in terms of absolute jump height.

Recently, Scholz et al. [7] showed that if differently sized

animals produced the same ŴW , small animals should actually be

expected to jump higher than big animals. During the push-off,

CM gains potential energy equal to m � � �, where s is the vertical

displacement of CM from initial height to takeoff height. If big

animal B is isometrically downscaled to small animal S by a factor

L, s will scale by L too. Hence, if animal S and animal B produce

the same ŴW , animal S will need a smaller fraction of ŴW to raise

CM to the takeoff height, has a greater fraction of ŴW available for

ÊEkin,to, and hence achieves greater h (equation 2). Accordingly,

under the assumption that all animals produce the same ŴW ,

comparing jumping performance in terms of h is unfair to big

animals. This proposal will be referred to as the revised version of

Borelli’s law. Note that the definition of jump height is crucial

here. If jump height were defined as the vertical displacement of

CM relative to the lowest height of CM during the jump, which is

proportional to the total change in effective energy per kg body

mass (ÊEeff , the sum of potential energy and kinetic energy due to

the vertical velocity of CM), then Borelli’s law would still hold. In

that case, however, simply standing up from a crouched position

would qualify as a jump, which seems unacceptable.

Although the argumentation presented above is mechanically

straightforward, there is reason to question that small animals

should be able to jump higher than big animals. Motion of CM is

the result of rotations of body segments. If the motion pattern were

invariant (IMP), i.e. if differently sized animals produced the same

segment rotational kinematics over time, vto would simply be

proportional to L, and h to L2 (equation 1). It is known that when

small animals jump, they produce higher accelerations than large

animals [12], and they could in principle achieve higher
vto
L
and h

L2

than large animals. However, these higher accelerations in

themselves require explanation, and they may not be sufficient

to cause small animals to jump higher than big animals in absolute

terms.

The revised version of Borelli’s law holds under the assumption

that all animals produce the same ŴW during the push-off. Bennet-

Clark [12] reasoned that under a different assumption, namely

that all animals produce the same peak power per kg muscle mass,

animal S will achieve smaller h than animal B. Bennet-Clark’s

argument was as follows. Producing the same ŴW during the push-

off requires animal S to produce a higher peak power per kg body

mass during the jump than animal B. After all, animal S has

shorter limbs and smaller s for acceleration of CM (a) than animal

B. Assuming that a is constant during the push-off, vto~a, where T

is push-off duration, and s~ a2

2
, from which it that can be derived

that a~
v2to
2s
. If a is constant, peak power occurs at takeoff and

equals Ppeak~m:vto~
m3

to

2s
(note that Ppeak as defined by Bennet-

Clark is actually the peak rate of change of kinetic energy due to

vertical velocity of CM). Combining this with equation 1 yields

h~
1

2g

2s:Ppeak

m

� �2=3

~
1

2g
(2s)2=3:P̂P

2=3
peak, ð3Þ

where P̂Ppeak is Ppeak per kg body mass. According to Bennet-Clark

[12] it is reasonable to assume that Ppeak is proportional to muscle

mass, which in isometric scaling is proportional to m. Since s is

proportional to L, h is proportional to L2=3 under this assumption.

Bennet-Clark’s reasoning is another way of saying that if P̂Ppeak is

the limiting factor, ÊEkin,to is proportional to L2=3, so that animal S

should be expected to jump less high than animal B. Therefore, a

comparison in terms of h is unfair to animal S.

Comparing jumping performance in terms of h may also be

unfair to small animals for reasons related to muscle physiology,

and this is the topic of the present paper. Firstly, to achieve a given

vto, animal S needs higher segment angular velocities than animal

B. After all, the velocity of CM is determined by the angular

velocities of body segments, and if the segments are shorter the

angular velocities need to be higher for the same absolute velocity

of CM. This will require animal S to traverse the range of joint

motion at higher angular velocities and, because muscle moment

arms and muscle fibre lengths scale by L, contractile elements (CE)

will shorten at higher relative velocities (~vvCE , i.e. CE velocity

expressed in optimum CE-lengths per second). At higher ~vvCE , CE

will produce less relative force (~FFCE , i.e. CE force as fraction of

maximum isometric force) and less ŴW because muscle force drops

monotonically with shortening velocity according to the force-

velocity relationship [13]. Secondly, it takes time to develop active

state. Active state, which has been defined as the amount of Ca++

bound to troponin [14], affects the number of cross-bridges

attached and hence ~FFCE . If animal S traverses the range of motion

at higher angular velocities and hence in less time than animal B, a

relatively larger part of the range of CE-shortening will be

travelled at submaximal active state and submaximal ~FFCE in

animal S, and this will also detract from ŴW produced during the

push-off [15,16].

The propositions on how body size affects jump height

presented above are all based on simplifying assumptions, for

example that ŴW over the push-off is independent of size [10], or

that Ppeak during the jump is proportional to body mass and hence

independent of size [12]. Moreover, although it will be clear from

the reasoning presented above that both the force-velocity

relationship and the rise time of active state present a disadvantage

for small animals, the magnitude of the effects is difficult to predict.

It would be helpful, therefore, to study the effects of isometric

scaling using a biologically realistic musculoskeletal model.

Alexander [17] studied jumps of humans, bushbabies and locusts

with a realistic musculoskeletal model that included series elastic

structures and muscle forces depending on length and velocity.

However, he made three separate models, each with species-

specific morphological and physiological parameters, and from his

simulation results it is impossible to tease apart the possible effects

of pure isometric scaling from the effects of inter-species

differences in morphology and physiology.

The purpose of the present study was to quantify the effects of

pure isometric scaling on ŴW , h and other mechanical and

physiological variables relevant for jumping, using a biologically

realistic model of the human musculoskeletal system.

Methods

Musculoskeletal Model
Vertical squat jumps were simulated using a musculoskeletal

model capable of successfully reproducing human vertical jumps

[18,19] (Fig. 1). It comprised four body segments, actuated by six

major muscle tendon complexes (MTCs) of the human lower

extremity. Each MTC was represented by a Hill type unit,

comprising contractile element CE, series elastic element SEE and

parallel elastic element PEE. Forces of SEE and PEE quadratically

Effects of Isometric Scaling on Vertical Jumping
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increased with SEE elongation only, while force of CE (FCE )

depended on length of CE (lCE ), velocity of CE (vCE ) and active

state [20]. Active state, in turn, dynamically depended on muscle

stimulation over time (STIM(t)).

Simulation of Jumps
Squat jumps were simulated from the initial posture shown in

Fig. 2, which is considerably crouched for humans [19]. Initial

STIM levels were set such that the model was in equilibrium.

During the jump, STIM of each MTC was only allowed to

increase linearly towards its maximum at a reference rate of 5/s

[19], and this increase started at a STIM onset time. The

combination of STIM onset times that maximised the height

achieved by CM was found using a genetic algorithm [21] for each

value of L. In order to quantify the effect of active state dynamics,

we also optimized STIM onset times for a model in which STIM

increased instantaneously to its maximum at STIM-onset time and

the rate constant of excitation dynamics had been boosted by a

factor of 100.

It might occur to the reader that humans and most animals tend

to make countermovement jumps and not squat jumps. Making a

countermovement has the advantage that active state and force

can be built up during the downward motion of CM rather than

during the push-off [15]. However, this advantage becomes

negligible when active state increases rapidly [15], and it can safely

be said that the outcome of the present study would have been the

same if countermovement jumps had been simulated.

Scaling of the Model
The author was interested in animals ranging in size from

humans to Microcebus, with mass being used as the variable for

scaling. The human musculoskeletal model, with a mass of 82 kg,

served as reference model (L=1).Microcebus has a mass of only 90–

100 g [2], which is about one-thousandth of the reference mass.

Therefore, L was chosen to run from 1 to 0.1 (i.e. 0.0011/3), in 30

steps. All body segment lengths, distances of segmental mass

centres to segment ends, and muscle moment arms, were scaled by

L, all masses by L3, and all moments of inertia for rotation about

the segmental mass centre, with kg:m2 as unit, by L5. Lengths of

CE, SEE and PEE were scaled by L and their forces, which

depend on physiological cross-sectional areas, by L2. Note that for

all scales, the maximum shortening velocity was 12.7 optimum CE

lengths per second. Because muscle fibre length scaled by L, the

maximum shortening velocity of muscle fibres in absolute terms,

i.e. in m/s, also scaled by L. The specific tension of the muscles in

the model was taken to be 0.25 MPa and the theoretical maximal

power output 367 W per kg of muscle tissue [22], which gave the

model a theoretical maximal CE power output of 60 W per kg of

body mass independent of scale.

Results

Figure 2 presents for L=1 and L=0.l models stick diagrams

including ground reaction force vectors, and values for vto and h,

and Fig. 3 shows time histories of relevant variables for L=1 and

L=0.1. The first observation is that the duration of the push-off in

the L=0.l model is only about 25% of that in the L=1 model. The

second observation is that the acceleration of CM increases with

miniaturization, but that takeoff velocity and hence jump height

nevertheless decrease. The third observation is that, although the

theoretical maximum power output of the muscles per kg body

mass was independent of scale, the mean and peak values of P̂Peff

(the rate of change of ÊEeff ) drop at small values of L.

Fig. 4 (A–C) shows how kinematic variables changed over the

investigated range of L. Dash-dotted lines in Fig. 4A–C represent

outcomes as they would be if the Motion Pattern were Invariant

(IMP), i.e. if a model with L,1 had the same segment angles,

angular velocities and angular accelerations over time as the L=1

model. Under IMP, a and vto would be proportional to L, and h to

L2 (equation 1). In isometrically downscaled models, however,

peak a, vto and h exceeded the values corresponding to IMP. Thus,

in relation to body size, i.e. in terms of
vto
L

and h
L2, isometrically

downscaled models performed better than the reference model.

However, with downscaling the duration of the push-off phase

became less, and in absolute terms lower vto and h were reached.

The model jumped 40 cm when human-sized, only 10 cm when

miniaturized to the size of a 300 g bushbaby, and only 6 cm when

miniaturized to the size of Microcebus. Thus, with isometric scaling,

small animals jump less high than big animals, in contrast to

Borelli’s law and its revised version.

Scaling h by L2=3 as proposed by Bennet-Clark ([12], dashed

curve in Fig. 4C) overestimated h of the L=0.1 model by only

2.7 cm, but overall the relationship between h and L could not be

fitted well with L2=3, nor with any other power of L. Bennet-

Clark’s estimation builds on a constant peak power per kg body

mass (equation 3), but the actual peak P̂Peff reached during the

jump decreased from 49 W/kg at L=1 to about 25 W/kg at

L=0.1, even though the theoretical maximum power output of the

muscles per kg body mass was kept constant across scales. The

reader might point out that Peff is not equal to the power output of

contractile elements (PCE ) summed over all MTCs. On the one

Figure 1. Musculoskeletal model used for simulations. Note that
because of space limitations in the figure, the moment arms of the
muscle-tendon complexes at the joints (gray spacers at the joints) have
not been drawn to scale; the actual moment arm values are presented
elsewhere [18].
doi:10.1371/journal.pone.0071209.g001
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hand, PCE of an MTC may differ from the power output of the

MTC as a whole (PMTC ) because of the presence of series elastic

elements; for example, when muscle force drops during the final

part of the push-off these elements recoil, causing MTC shortening

velocities to be higher than muscle fibre shortening velocities, and

hence causing PMTC to be higher than PCE [23,24]; this is known

as ‘catapult action’. On the other hand the total PMTC of the

model will differ from Peff because of power flow to non-effective

terms, such as segment rotational power [25]. Despite these

caveats, however, the peak of PCE summed over all MTCs,

expressed per kg body mass, showed the same behaviour as peak

P̂Peff , dropping from 48 W/kg at L=1 to 24 W/kg at L=0.1

(results not shown). As mentioned above, the ‘catapult action’

causes peak PMTC to be higher than peak PCE [23,24]. This action

is very important for performance in jumping [25], but it

disqualifies peak power output as measure for the performance

of muscle tissue. In the literature, comparisons among different

animals are therefore also made in terms of mean power output

over the push-off phase. During the push-off phase, the model

produced a mean P̂Peff of 19 W/kg when human-sized, 13 W/kg

when miniaturized to the size of a 300 g bushbaby, and 9 W/kg

when miniaturized to the size of Microcebus. For mean PCE per kg

body mass, summed over all MTCs, these values were 21, 14 and

10 W/kg, respectively.

According to equation 2 the drop in h with reduction of L

(Fig. 4C) corresponds to a drop in ÊEkin,to. Figure 4F shows that the

latter was due to a drop in work per kg body mass of muscle-

tendon complexes (ŴWMTC ). In the simulated squat jumps, ŴWMTC

produced during the push-off phase depended for more than 99%

on contractile element work per kg body mass (ŴWCE ), where ŴWCE

of a given MTC is proportional to the integral of ~FFCE to

normalised CE-length (~llCE ). ~FFCE at given ~llCE depends on ~vvCE and

active state. To analyze differences in ŴWCE of a given MTC it is

therefore helpful to plot ~FFCE , ~vvCE and active state as function of
~llCE [25]. This has been done in Fig. 5 for glutei and vasti, which at

L=1 contributed 35% and 30% to total ŴWMTC , respectively. At

L=0.1, ŴWCE of glutei was reduced compared to L=1 for two

main reasons, as can be explained with the help of the left panels

of Fig. 5A–C (note that ŴWCE is proportional to the surface under

the curve in Fig. 5C). First, in L=0.1, ~FFCE was reduced because of

the force-velocity relationship: ~vvCE was higher at each~llCE (Fig. 5B).

Second, in L=0.1, ~FFCE was reduced because active state was

lower at each~llCE (Fig. 5A); in the model the increase in active state

was fixed over time, but the range of ~llCE was traversed in less time.

Note that the lower active state was also part of the reason why

power output of CE reached a smaller peak value at L=0.1

(Fig. 5D). It can also be seen in Fig. 5 that at L=0.1, CE shortened

over a smaller range, because at takeoff joints were less extended

than in the reference model (Fig. 2). However, takeoff occurs

because the muscle forces become insufficient [26], so the reduced

range of motion in L=0.1 is a consequence of the higher ~vvCE and

lower active state in L=0.1. The explanation for the reduced

ŴWMTC of vasti at L=0.1 is essentially the same as that for the

reduced ŴWMTC of glutei, but the effect of the force-velocity

Figure 2. Stick diagrams for maximum height jumps of models with isometric scale factors of 1 (L=1) and 0.1 (L=0.1). Arrows
pointing upward represent the ground reaction force vector and originate in the centre of pressure; arrows pointing downward represent the force of
gravity and originate in the centre of mass (CM, open circles). Numbers below sticks indicate time in ms relative to takeoff. The leftmost stick
diagrams represent the initial equilibrium posture, the other stick diagrams are spaced by one-tenth of the duration of the push-off. vto: vertical
takeoff velocity of CM, h: jump height.
doi:10.1371/journal.pone.0071209.g002
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Figure 3. Kinematic, energetic and work variables as function
of time for models with isometric scale factors of 1 (L=1) and
0.1 (L=0.1). a is vertical acceleration of centre of mass (CM), v vertical

velocity of CM, and s vertical displacement of CM. DÊEeff is increase in

effective energy during push-off relative to the start of the jump, P̂Peff

rate of change of DÊEeff , and ŴWMTC work of muscle-tendon complexes,
all expressed per kg body mass as indicated by caret over variables.
Time (t) is expressed relative to takeoff (t= 0).
doi:10.1371/journal.pone.0071209.g003

Figure 4. Kinematic, energetic and work variables as function
of isometric scale factor L. apeak is peak vertical acceleration of
centre of mass (CM), vto vertical velocity of CM at takeoff, and h (jump
height) is vertical displacement of centre of mass (CM) in the airborne

phase. ÊEkin,to is kinetic energy due to vto, DÊEpot,to increase in potential

energy during push-off, DÊEeff increase in effective energy during push-

off (sum of DÊEpot,to and ÊEkin,to), P̂Peff ,peak peak rate of change of DÊEeff

during the push-off, and ŴWMTC work of muscle-tendon complexes, all
expressed per kg body mass as indicated by caret over variables. IMP:

Effects of Isometric Scaling on Vertical Jumping
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relationship was even more devastating (Fig. 5, right panels); ~vvCE
increased almost immediately after the start of shortening to values

at which only small ~FFCE was produced.

What is the relative importance of these two complications of

isometric scaling? When muscle active state was allowed to

increase almost instantaneously to its maximum and STIM(t) was

re-optimised, h increased by only 0.2 cm at L=1 and by only

2.5 cm at L=0.1, suggesting that muscle dynamics constitute a

much bigger complication than activation dynamics.

Discussion

The purpose of the present study was to quantify the effects of

pure isometric scaling on ŴW , h and other mechanical and

physiological variables relevant for jumping, using a biologically

realistic model of the human musculoskeletal system. In the

simulated jumps presented in this paper, angular and linear

accelerations increased when a human model was isometrically

downscaled. The increased angular accelerations led to higher

angular velocities and, in relation to body size, downscaled models

performed better than the reference model. However, in absolute

terms vto and hence h dropped because ŴW became less, rather

than remaining constant as had been assumed by proponents of

Borelli’s law (e.g., [9–11]). Bennet-Clark [12] had already

predicted that h would decrease with size under the assumption

that Ppeak was proportional to body mass. However, the

relationship between h and body size borne out by the present

simulations was different from the one that Bennett-Clark had

Invariant Motion Pattern, i.e. values as they would be if segment angles
over time were the same as in reference model (L= 1). BC: dependence
of h on L predicted by Bennet-Clark [12] (equation 3).
doi:10.1371/journal.pone.0071209.g004

Figure 5. Explanation for reduced work output per kg of glutei (left panels) and vasti (right panels) with isometric downscaling.
Force, velocity and active state of contractile elements (CE) of glutei and vasti have been plotted as function of normalised CE-length (~llCE ) for models
with isometric scale factor L equal to 1 (reference model) and 0.1. ~vvCE is CE shortening velocity expressed in optimum CE-lengths (lCE,opt) per second,
~FFCE is CE force as fraction of maximum isometric force, and ~PPCE is CE power output as fraction of its maximum according to the force-velocity
relationship. Arrows indicate the direction of time. When L = 0.1, CE work per kg (proportional to surface under curves in A and D) is less because ~vvCE
is higher and active state is lower than when L=1.
doi:10.1371/journal.pone.0071209.g005

Effects of Isometric Scaling on Vertical Jumping
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proposed [12]. Although in the model the theoretical maximum

power output of the muscles per kg body mass was kept constant

across scales, the mean and peak values of P̂Peff (the rate of change

of ÊEeff ) dropped substantially at small values of L (Fig. 3, Fig. 4D).

Below, I will first explain these findings and then elaborate on their

relevance for the study of functional morphology and evolution of

jumping animals.

We have seen that with reduction of L, segment angular

accelerations and linear accelerations increased (Figs. 3–4). The

increased angular accelerations led to higher angular velocities

and, in relation to body size, i.e. in terms of
vto
L

and h
L2, the

downscaled model performed better than the reference model; in

other words, it performed better than under IMP, (Fig. 4A–C,

dash-dotted lines). Why did segment angular accelerations increase

with miniaturization? Translation of CM occurs because muscle

moments rotate body segments against gravitational moments.

Maximal muscle moments at the joints are proportional to L3

because they are the product of muscle force proportional to L2

and moment arms proportional to L. They act against moments

due to gravity proportional to L4 (the product of mass

proportional to L3 and moment arms relative to joints propor-

tional to L) and cause angular accelerations of segments with

moments of inertia proportional to L5. This explains why angular

accelerations, and the ensuing angular velocities, increase as size

decreases. Clearly, as was already pointed out elsewhere in general

terms [27,28], an isometrically downscaled animal is relatively

strong and moves relatively fast. However, as revealed by the

simulations in this study, these positive effects are counteracted by

negative effects: compared to the muscles of the reference model,

the muscles of an isometrically downscaled model have less time to

build up active state and, more importantly, are hampered more in

their force production by the force-velocity relationship, leading to

a decrease in ŴWMTC , in ŴW , in ÊEkin,to and hence in h in absolute

terms. In conclusion, a small animal that is an isometrically

downscaled version of a big animal achieves lower h, and this is

largely due to muscle dynamics. The simulations reveal the sheer

magnitude of the effect of isometric scaling on h: the model

jumped 40 cm when human-sized, and only 6 cm when minia-

turized to the size of Microcebus. This puts the 33 cm jump height

of Microcebus [2] in a different perspective: Microcebus is not

performing poorly compared to humans, as Borelli and his

followers would have concluded, but instead jumps to more than

five times the height expected on the basis of isometrically

downscaling a human body. The same is true for other small

mammals such as rats, which also seem to be able to achieve jump

heights of 50 cm or more [29].

In a general sense, the results of the present study merely

reiterate what had already been claimed by Bennet-Clark ([12]).

However, Bennet-Clark’s predictions (equation 3, Fig. 4C) were

purely based on the argumentation that a smaller animal has a

smaller distance over which to accelerate CM and hence a smaller

push-off time; they took into account neither the positive effect of

isometric downscaling on relative strength explained above, nor

the negative effects of the force-velocity relationship on actual peak

power output (Fig. 4D, Fig. 5D) and work (Fig. 4E) during the

jump. The present study quantified the effects of pure isometric

scaling on jumping performance using forward dynamic simula-

tions with a realistic musculoskeletal model. Here, it was not

necessary to adopt Bennet-Clark’s assumption that the shapes of

time-histories of force, velocity and hence power are consistent

across scales, which they are not (Fig. 3). Even for current scientists

who did not adhere to Borelli’s law in the first place and

considered its role in the present paper as that of a straw man, the

sheer magnitude of the effect of pure isometric scaling on h and

other relevant variables, as borne out by the simulations (Fig. 4),

may still come as a surprise.

The simulation model used in this study is realistic in that it

takes into account the fundamental properties of the components

of the musculoskeletal system and in terms of parameter values

represents a human musculoskeletal system. However, after

miniaturization it obviously does not represent the musculoskeletal

system of small primates. There are many morphological and

physiological differences that may help small primates to jump

higher than a downscaled human model. Let us address a few of

these differences and their functional implications, armed with the

insights gained from the simulations. First of all, small jumping

primates may have relatively muscular legs; for example, the

muscle mass contained in both legs together is about 25% of total

body mass in Galago senegalensis [3] and only about 17% in humans

[30]. It will be obvious that this benefits ŴW , ÊEkin,to and hence h.

Second, small primates have relatively long leg segments,

including an elongated metatarsal segment ([17]), which benefits

the transfer from joint angular velocities to vertical velocity of CM.

Third, small primates have relatively short muscle moment arms

[28], which benefits the transfer from ~vvCE to angular velocities.

Having relatively long muscle fibres would tend to reduce ~vvCE
itself, but the author has not come across any comparisons of

relative muscle fibre length among differently sized primates in the

literature. Fourth, an important role has been claimed for

compliant structures in series with muscle fibres in the vasti of

Galago senegalensis [3]. It is possible that the ‘catapult action’ of these

structures contributes more to jumping performance in small

jumping primates than in humans. However, this action depends

on precisely how moment arms vary with joint angles [31], and

therefore its quantification requires simulations with detailed

species-specific musculoskeletal models that, unfortunately, are

currently not available. Fifth, small animals have equally long

myosin filaments as large animals (1.60 mm, [32]) but shorter

actin-filaments (e.g., 1.04 mm in rats, 1.16 mm in Rhesus monkeys,

1.27 mm in humans, [32]). Thus, in a small animal, a unit of

muscle fibre length will have more sarcomeres in series and, at a

given rate of sliding of actin relative to myosin, higher velocity and

power output than in humans, all else remaining equal. Sixth,

small jumping animals tend to have higher percentages of fast

twitch fibres in important leg extensors such as vastus lateralis

(more than 95% inMicrocebus, [33], and 100% in bushbabies, [34])

than humans (less than 60%, [35]), which obviously benefits the

power output per kg muscle tissue. Seventh, the maximal

shortening velocity of muscle fibres and the rate of force

development are higher in small animals than in large animals

(e.g., [36–39]) because of differences in intrinsic contractile

properties and myofibrillar protein composition [36,39]. The

latter variations are referred to in the literature as ‘effects of

scaling’ (e.g., [36,37]), but this is confusing because isometric

scaling does not affect these variables directly. Rather, isometric

scaling directly affects potential performance, as clearly demon-

strated in the current study, and morphological and physiological

adaptations may occur that partly or completely counteract the

variations caused by isometric scaling, thereby determining actual

performance. For example, small animals may jump high despite

the performance-limiting effects of being small revealed in this

study, by virtue of adaptations causing their muscles to be very

fast, and/or large animals may jump high by virtue of the

performance-enhancing effects of being large revealed in this

study, and therefore can afford adaptations causing their muscles

to be slower and metabolically cheaper. We are still a long way

from understanding the effects of morphological and physiological
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differences among different animals on locomotor performance,

but the results of the current study indicate that they compensate

for major effects of isometric scaling (Fig. 5A). Clearly, the effects

of isometric scaling on jumping performance, as revealed here by

simulations with a model that includes key aspects of muscle

dynamics, should be taken into account in the study of functional

morphology and evolution of jumping animals.
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