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Wavelength-multiplexed hook nanoantennas
for machine learning enabled mid-infrared
spectroscopy
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Infrared (IR) plasmonic nanoantennas (PNAs) are powerful tools to identify molecules by the

IR fingerprint absorption from plasmon-molecules interaction. However, the sensitivity and

bandwidth of PNAs are limited by the small overlap between molecules and sensing hotspots

and the sharp plasmonic resonance peaks. In addition to intuitive methods like enhancement

of electric field of PNAs and enrichment of molecules on PNAs surfaces, we propose a loss

engineering method to optimize damping rate by reducing radiative loss using hook

nanoantennas (HNAs). Furthermore, with the spectral multiplexing of the HNAs from gra-

dient dimension, the wavelength-multiplexed HNAs (WMHNAs) serve as ultrasensitive

vibrational probes in a continuous ultra-broadband region (wavelengths from 6 μm to 9 μm).

Leveraging the multi-dimensional features captured by WMHNA, we develop a machine

learning method to extract complementary physical and chemical information from mole-

cules. The proof-of-concept demonstration of molecular recognition from mixed alcohols

(methanol, ethanol, and isopropanol) shows 100% identification accuracy from the micro-

fluidic integrated WMHNAs. Our work brings another degree of freedom to optimize PNAs

towards small-volume, real-time, label-free molecular recognition from various species in low

concentrations for chemical and biological diagnostics.
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Molecular identification of gases1–5, liquids6–8, and
biomolecules9–11 is a fundamental requirement for
various applications such as environmental monitoring,

healthcare, clinical diagnosis, and biological screening. Mid-
infrared (MIR) fingerprint absorption, reflecting the generic
information of molecule structures in chemical bonds and func-
tional groups, provides natural optical probes for molecular
identification. Harnessing vibrational fingerprint, IR spectroscopy
offers a solution for non-invasive, non-destructive, label-free, and
real-time recognition and monitoring of molecules, especially in
the mixture. Furthermore, with the development of nanofabri-
cation technology, artificially structured nanoantenna is demon-
strated to enhance the IR fingerprint absorption by tailored
plasmonic resonance12,13. This amplification effect caused by the
strong plasmon-molecule coupling between plasmonic resonance
and molecular vibration was well-explained by temporal coupled-
mode theory (TCMT)14,15.

To characterize the PNAs, sensitivity and bandwidth become
two critical figure-of-merits (FOMs) that reflect the performance
of PNA sensors16. However, the sensitivity and bandwidth of
PNAs are limited by the small overlap between molecules and
sensing hotspots and the sharp plasmonic resonance peaks. Since
the plasmon-phonon coupling is induced by a localized electric
field near the PNA surface, the straightforward approach is to
concentrate the molecule to the active area, which is the hot spot
of the electromagnetic field. The molecular enrichment strategies,
including functionalized chemical bonding17,18, chemical
reaction19,20, physical adsorption21–23, optical trapping24 as well
as passive trapping by undercut structure25–28 bring in the
additional working requirements (e.g., chemical stimuli, tem-
perature, pressure, pump power, etc.) for specific molecules,
impeding the system for global molecular recognition. The other
method to improve the sensitivity is to increase the intensity of
the electric field by squeezing the gap between adjacent PNA into
the nanometer scale29–31. However, the narrow gap ruins the
sensing performance by a decrement in the active area and
increases fabrication cost. Therefore, other approaches like hybrid
2D materials32–34, device undercut26,28, and homo/heterogeneous
bonding35–38 are developed to bypass the fabrication limitation
and to achieve a large area of electromagnetic hot spots for
sensing.

In addition to sensitivity, the detection range is another critical
FOM of PNA sensors, reflecting the number of fingerprint
absorption peaks that can be captured. Thanks to the sharp
resonance peaks of PNA, the enhancement becomes the max-
imum only when molecule fingerprint absorption peaks match
with the PNA resonance, which is a very narrow bandwidth.
Therefore, to detect more absorption peaks in the MIR region,
multi-resonant PNA sensors are proposed to collect broadband
spectrum data to recognize lipids and proteins from separate
absorption wavelengths39. Nevertheless, the individual resonances
of PNA by a different order of resonance modes also fail to cover
the whole spectrum of IR fingerprint wavelength region from
5.5 μm to 10 μm because of the gaps between two resonance
peaks40,41. Therefore, to collect continuous spectral fingerprint
absorption, pixelated all-dielectric nanoantenna array and tunable
antenna by incident angle were proposed for ultra-broadband
spectroscopic analysis for molecular barcode imaging and fin-
gerprint absorption retrieving42,43.

Thanks to the excellent field confinement at resonance wave-
length, plasmonic nanoantennas (PNAs) also serve as an ultra-
sensitive refractometry sensor to capture the refractive index of
analytes by wavelength shifts (e.g., color change in visible light),
which carries the information of physical properties of
molecules44,45. Unfortunately, in the IR fingerprint region, the
PNA signal of absorption changes and wavelength shifts always

comes together, hindering the usage of complementary infor-
mation about the analyte’s physical and chemical properties for
molecule identification. Artificial intelligence (AI) is a powerful
tool for extracting the feature of data from different domains to
achieve enhanced pattern recognition from IR spectra46,47. With
the aid of machine learning (ML), decoupling the IR fingerprint
absorption and refractive index change induced by molecules has
been reported to monitor protein dynamics of secondary struc-
ture α-helix and β-sheet48 and recognition of physiological bio-
marker of glucose and fructose49. However, the molecular
recognition capabilities are limited to two specific molecules due
to the narrow bandwidth at an operating wavelength of around
6 μm. Leveraging the multi-resonant PNAs, the deep learning
method is proposed to augment the dynamics monitoring
between four major classes of biomolecule (lipids, proteins,
nucleic acids, and carbohydrates) from the absorption spectra in
three working wavelengths of 3.4 μm, 6.5 μm, and 9 μm50.
However, since the same classes of molecules always have a strong
overlap in fingerprint absorption due to the similar chemical
structure, it is challenging to distinguish the same classes of
molecules in small concentrations by monitoring single absorp-
tion peak of each molecules. Therefore, new nanoantenna
structures need to be developed for continuous broadband
detection to capture multiple absorption peaks in fingerprint
regions and new methods need to be conducted to distinguish the
chemically similar molecules from the partially overlapped
absorption spectra.

We propose a molecular identification platform by wavelength-
multiplexed hook nanoantenna array (WMHNA) to enhance the
sensitivity and detection bandwidth of PNA-based spectroscopy.
In addition to field enhancement and molecule enrichment, we
propose a loss engineering method to design HNAs by investi-
gating another key parameter of damping rate, which influences
the sensitivity of plasmon-molecules coupling. By tailoring the
radiative to absorptive loss ratio, the sensitivity of molecular
vibration detected by HNAs can be improved dramatically under
the optimal condition supported by temporal coupled-mode
theory (TCMT). Leveraging the gradient change of HNA
dimensions, the WMHNA performs ultra-broadband working
wavelengths ranging from 6 μm to 9 μm, matching with the MIR
fingerprint region. Based on WMHNA, we propose a machine
learning method to recognize molecules from WMHNA signals
by decoupling the complementary physical (refractive index) and
chemical (fingerprint absorption of the chemical bond) infor-
mation. With the aid of principal component analysis (PCA)
together with supporting vector machine (SVM), the proof-of-
concept demonstration of molecular recognition from mixed
alcohols (methanol, ethanol, and isopropanol) shows 100%
identification accuracy. With the excellent sensing performance
governed by loss engineering and wavelength multiplexing, the
WMHNA platform paves the way to ultrasensitive on-chip
molecular identification from various species and low con-
centrations for state-of-the-art chemical and biomolecular
analysis.

Results
Working mechanisms of WMHNA microfluidic sensing plat-
form. The concept of the WMHNA microfluidic sensing platform
is shown in Fig. 1. As shown in Fig. 1a, the WMHNA chip made
by gold nanoantenna on an IR glass substrate-calcium difluoride
(CaF2) is bonded to a microfluidic chamber made by Poly-
dimethylsiloxane (PDMS). The nanoantennas, which are physi-
cally in contact with fluidic analytes, perform as vibrational
probes by light-matter interaction for molecular sensing. To
excite the plasmonic resonance, the MIR light from an IR
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microscope with desired polarization states and incident angle
shines on the backside of CaF2 glass and transmits to nanoan-
tennas. The reflected light is routed to an IR photodetector to
capture the far-field spectral response from gold nanoantenna.
The resonance wavelength of gold nanoantenna can be engi-
neered by controlling the antenna length at the optical axis. When
the resonance wavelength of the antenna is matched with mole-
cular vibration, the enhanced absorption spectrum can be
observed in a far-field response. To achieve a broadband
enhancement, the WMHNA is designed by combining 16
nanoantenna structures with a gradient resonance wavelength
thanks to the graded length. The far-field reflection spectrum is
shown in Fig. 1b, covering a broad bandwidth from 6 to 9 μm in
the IR fingerprint region. The broadband resonance peak of
WMHNA is well-matched with the fingerprint absorption of

alcoholic liquids of methanol, ethanol, and IPA as shown in
Fig. 1c. The fingerprint absorption spectra of alcoholic liquids are
tested in a customized liquid cell with a gold mirror. In addition
to the bandwidth, the hook nanoantenna also performs an
enhanced sensitivity thanks to reducing radiative loss by folded
structures. The detailed analysis and characterization will be
conducted in the next section.

The light-matter interaction between nanoantennas and
molecules can be distinguished with three significant effects –
the refractometric effect (RE), spectroscopic effect (SE), and
antenna loading effect (ALE). These effects happen simulta-
neously when molecules come into the ultra-confined electro-
magnetic field near the antenna surface in subwavelength scales.
To demonstrate the individual response caused by three effects,
we use finite-difference time-domain (FDTD) methods to

Fig. 1 Working mechanisms of liquid molecular identification by wavelength-multiplexed hook nanoantenna array (WMHNA). a Schematic drawing of
WMHNA on CaF2 platform with PDMS microfluidic chamber. Inset SEM image of one unit cell of WMHNA. b The far-field spectra of WMHNA with and
without water measured in the reflection mode of the FTIR microscope. c The reference IR absorption spectra of alcoholic liquid (methanol, ethanol, and
isopropanol) in the IR fingerprint region match with the broadband response of WMHNA. d Illustration of multi-dimensional information in WMHNA
system. (i) Refractometric effect (RE): wavelength shift caused by the refractive index of analytes; (ii) Spectroscopic effect (SE): intensity drop due to the
absorption of analytes; (iii) Antenna loading effect (ALE): the peak difference brought by the wavelength mismatch between analytes vibration and antenna
resonance. e Machine learning process to extract multi-dimensional sensing information for recognition of 1% alcohols and their mixtures in water.
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simulate the antenna response and manipulate the optical
properties (refractive index, n and absorption coefficient, k) of
analytes by Lorentz model, which has been used in our previous
works19,51 (See supplementary Note S1 for details). Figure 1d
shows the influence of antenna spectrum by RE, SE, and ALE
individually. As shown in Fig. 1d-i, the refractometric effect,
caused by the refractive index of analytes, brings a redshift of
resonance wavelength as n increases. Larger n of analytes brings a
longer resonance wavelength of nanoantennas due to the
increment of effective optical length, proportional to the
refractive index of surrounding environments and the physical
length of nanoantennas. Figure 1d-ii shows the spectroscopic
effect thanks to the plasmon-phonon coupling between antenna
resonances and molecular vibrations. The resonance spectrum of
nanoantenna is tailored by molecular absorption to form a dip
into a reflection curve. The stronger molecular absorption, the
more significant intensity drops in the reflection spectrum.
According to Beer-Lambert’s law, absorption strength is char-
acterized by absorptance, which is proportional to the concentra-
tion of molecules and optical path length. For our microfluidic
sensing system, the optical path length is fixed and determined by
the nearfield confinement of nanoantenna, which is at an order of
hundreds to thousands of nanometer scales. Therefore, the
concentration of analytes can be read out from the intensity drops
from the reflection spectrum. The antenna loading effect is caused
by the wavelength mismatch between antenna resonance and
molecular vibration, as shown in Fig. 1d-iii. For two molecules
with the same absorption strength, small intensity drops can be
read out when the wavelength mismatch increase, indicating a
larger refractive index. The detailed analysis and characterizations
of ALE are included in the following section. In real sensing
applications, the n and k of analytes always vary simultaneously
when changing the concentration of any molecules, resulting in a
complex change of spectrum with the combination of RE, SE, and
ALE. Therefore, we define these complex changes as multi-
dimensional sensing signals.

We propose a machine learning algorithm using principal
component analysis and support vector machine to extract the
individual features from the multi-dimensional sensing signals.
As shown in Fig. 1e, a group of spectra data from WMHNA with
different analytes is selected as inputs of the machine learning
algorithm. With the feature extraction by PCA, the sensing signal
with different degree-of-freedom are identified as different
principal components (PCs), indicating the influence from RE,
SE, and ALE. The relationship between PCs and sensing features
from each effect is further discussed in the later section. Then the
SVM algorithm is used to classify the data in the PC domain. The
identification results of three major types of alcohols mixed in
water with 1% concentration are shown in Fig. 1e. Each point in
the PC domain refers to one spectrum data from WMHNA, and
the color area indicates an obvious decision boundary of each
type of target.

Design principles of hook nanoantenna. The resonant
nanoantenna interacts with the molecular vibration at a matched
wavelength with the plasmon-phonon coupling, enhancing the
fingerprint absorption. In the coupling system, the radiative and
absorptive loss play essential roles for the far-field spectrum,
which is the sensing signal in our platform. Hook nanoantenna
(HNA) provides an approach to manipulate the radiative loss by
folding the gold nanorod structures, bringing in another degree of
freedom to optimize the sensor performance.

To understand the design principles, we use the TCMT
model52 to analyze the plasmon-molecules coupling system.
Based on TCMT, we can get equations for coupling system51 and

derive the transmission and reflection spectral dispersion as
(detailed equation derivation is shown in Note S1)
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where ω0 and ωm represent the angular frequency of resonance
for HNA and molecular vibration, respectively. γa and γr denote
the radiative and absorptive losses of HNA, while γm is the
absorptive loss of molecules. μ is the coupling strength between
HNA and molecular vibration. From Eqs. 1, 2, the enhanced
vibration signal can be observed as a Fano-like line shape, a
noticeable dip in HNA resonance when two resonance modes are
well-matched (ω0 = ωm). The enhancement of the sensing signal
is observed in the change of transmission or reflection intensity
compared with intrinsic molecule absorption. Furthermore, the
sensitivity of plasmonic sensors is defined as the intensity change
of resonance spectrum of transmission (ΔT) or reflection (ΔR)
and is expressed as (detailed equation derivation is shown in
Note S1)

4T ω ¼ ω0
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γaγm

f

ð1þ f Þ3 ð3Þ

4R ω ¼ ω0

� � ¼ R ω ¼ ω0

� �� Rjμ¼ 0 ω ¼ ω0

� � ¼ � 2μ2

γaγm

f 2

ð1þ f Þ3 ð4Þ

where μ and f denote coupling efficiency between HNA and
molecular vibration as well as the ratio (γr / γa) between radiative
(γa) and absorptive (γr) damping rate of the HNA, respectively.
From Eqs. 3 and 4, we can find that μ and f are two degrees of
freedom to optimize the sensing performance, highlighted in
Fig. 2a. The coupling efficiency is related to the nearfield intensity
and the overlapping of molecules to the antenna nearfield.
Figure 2b summarizes three approaches to optimize nanoantenna
sensing by increasing μ. Hotspots release is proposed to increase
accessible sensing areas for analytes, which are usually blocked by
the substrate, to further enhance the coupling efficiency25–28.
Thanks to the ultra-confined electric field of PNAs, the coupling
region only covers hundreds of nanometers near the antenna
surface. Therefore, the molecule enrichment method is utilized to
accumulate localized molecules in the effective sensing area17–24.
Another approach to enhance the nearfield coupling is to increase
the electric field intensity by squeezing the adjacent nanoantenna
into the nanogap29–31. In this case, the narrower the nanogap is,
the stronger the PNAs enhancement behave. However, all of these
three methods introduce extra processes or materials to make the
plasmonic sensors, which increase the fabrication cost or limit the
working condition.

In addition to the near-filed coupling, engineering the antenna
loss is another degree of freedom to manipulate the sensing
signals, as illustrated in Fig. 2a. Figure 2c shows the influence of
antenna loss on the sensitivity in transmission and reflection
modes. The maximum sensitivity occurs when f reaches 0.5 and 2
for transmission and reflection modes, respectively. The γa is
related to the ohmic loss of plasmonic material (e.g., Au in this
work) and is almost the same among different antenna structures.
Therefore, the philosophy to use hook shape in nanoantenna
design is to engineer γr to tune the radiation from electron
oscillation by inducing inverse current from dipole resonance.
The method to control radiation capability from the ratio of
inverse current is merely adjusting the geometric difference (ΔL)
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between the long arm and short arm of HNA, as illustrated in
Fig. 2c. With the design of hook nanoantenna, the radiative loss
can be continuously tuned by controlling the folding degree of
HNA, which is denoted as ΔL. By decreasing the ΔL, the radiative
loss decreases due to the increased length of overlapping inverse
current in the short arm of HNA, as shown in Fig. 2c. With the
precise design of HNA, the optimal sensitivity of transmission
and reflection modes can be achieved by different ΔL.

The FDTD simulation results of HNA with the change of ΔL
are shown in Fig. 2d-f showing the optical properties of dipolar
resonance. The connection of two arms of HNA only affects the
resonance wavelength and is defined as a fixed value (400 nm) to
fit our fabrication resolution. With the decrease of ΔL, both T
(Fig. 2d-i) and R (Fig. 2d-ii) intensities drop, which means the
antenna becomes less radiative (darker). However, the absorption
signal reaches a peak value when ΔL equals 0.6 μm, which means
the critical coupled point (γa = γr) of the HNA resonator. The
nearfield distributions at resonance wavelength are shown in
Fig. 2e. The electric field enhancement with no fold (ΔL= L=
1.6 μm), half fold (ΔL= 0.5 L= 1.6 μm), and full fold (ΔL= 0)
are plotted in Fig. 2e-i-iii. The detailed nearfield profile of electric
field polarity and magnetic field distraction are shown in
Supplementary Note S2. To compare the field enhancement of

each hook antenna device, the maximum field enhancement is
extracted in Fig. 2f. The results show that the enhancement of the
electric field intensity of all HNA devices is at the order of 105,
and the maximum enhancement of the electric field intensity
reaches 832891 times. There is a slight increment of the intensity
(~2 times) from half to full fold of HNAs due to the superposition
of the electric field near the two poles of the HNAs. However,
compared to the dramatic change of radiative loss, the loss ratio
(f) is a more dominant affecting parameter in different HNAs.

Sensing characterization of hook nanoantennas. We fabricate
the gold HNA devices on CaF2 substrate by a lift-off process with
the poly(methyl methacrylate) (PMMA) resist patterned by
electron-beam lithography. The detailed fabrication process is
described in Methods. The optical microscope (OM), SEM, and
atomic force microscope (AFM) images of fabricated HNA
devices are shown in Supplementary Note S3. The Fourier-
transform infrared (FTIR) spectroscopic microscope is used to
measure the far-field response of the nanoantenna array. The
detailed experimental setup is described in Methods. To char-
acterize the sensing performance of each hook antenna device,
10 nm PMMA thin film is coated on top of HNA sensors.

Fig. 2 Design principle of hook nanoantenna. a The derived intensity changes in transmission and reflection mode with the perfect match of molecular
absorption and antenna resonance by TCMT. b The summary of methods affecting the coupling strength between molecules and antenna by previous
works. c The proposed hook antenna for sensing optimization by tuning the radiative loss and the effect of loss ratio to intensity change in transmission and
reflection mode. d The simulated far-field spectra in transmission (i), reflection (ii), and absorption(iii) of hook antenna by changing the ΔL, indicating the
tuning of radiative loss. e The electric field enhancement distribution of hook nanoantenna devices at resonance wavelength with different ΔL of 1.6 μm (i),
0.8 μm (ii) and 0 μm (iii). (f) The extracted maximum electric field enhancement of hook nanoantenna devices with different ΔL.
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We fabricated a group of 6 HNA devices with different ΔL to
show the effect of radiative loss on the sensitivity of HNA sensors.
A substantial intensity change caused by the carbonyl stretching
is observed at ~5.8 μm in transmission (Fig. 3a) and reflection
(Fig. 3b) mode. To obtain the radiative and absorptive loss of
HNA devices, we fit the transmission and reflection spectra
without PMMA cladding using Equation S9, 10. As shown in
Fig. 3c, the radiative loss decreases as ΔL decreases, but the
absorptive loss is almost unchanged, resulting in a small f with
short ΔL. The extracted difference signals are plotted in Fig. 3d, e
by normalizing to the baseline curves, which are obtained from
the asymmetric least-squares smoothing (AsLSS) algorithm53 to
the sensing spectra of HNA with different ΔL. The sensing signal
can then be characterized by the intensity change of transmission
and reflection spectra extracted in Fig. 3f. From this figure, we
observe that the highest sensitivity of transmission mode (ΔT)
comes when ΔL equals 0.65 μm, while 1.25 μm for reflection
mode (ΔR). As ΔL decreases, μ remains almost unchanged
because of the similar intensity of near field (Fig. 2f), but f
decreases due to the reduced γr caused by the short electrical
length of the antenna and the similar γa caused by the same
antenna length. The extracted loss ratio of the two optimized
devices is 0.644 (ΔL = 0.65 μm) and 1.834 (ΔL = 1.25 μm), which
agrees with the theoretical prediction of optimal condition, which
is f equals 0.5 for transmission mode, and f equals 2 for reflection
mode.

Wavelength multiplexed hook nanoantenna array. To illustrate
the purpose of wavelength-multiplexed designs, we need to figure
out the antenna loading effect first. As mentioned in Eq. 1, the
resonance wavelength of nanoantenna and molecules play sig-
nificant roles in the spectral line shape. When the two resonance
wavelengths are well-matched, the resonance spectrum performs
a Fano-like dip. In contrast, an asymmetric change of spectrum
happens when the two resonance wavelengths are mismatched.
We fabricate a group of HNA devices with different resonance
wavelengths by changing the L of HNA to characterize the ALE

on 10 nm PMMA thin film. In Fig. 4a, b, the highest sensitivity is
achieved when the resonance wavelengths of HNA and molecules
are well-matched (Fig. 4c). A two times improvement of sensi-
tivity is observed by the HNA with 2.22 μm length compared with
the HNA with 2.4 μm length. After optimization, the arm length
ratio is fixed at 1:3 to achieve the highest sensitivity at reflection
mode. Therefore, to simultaneously achieve the best sensitivity
and broad bandwidth, the wavelength-multiplexed structures are
designed to have the wavelength-scalable response by gradually
increasing the total length with the fixed folding degree of HNA.

The spectrum of the 16-element WMHNA is shown in Fig. 4d,
showing the wavelength-multiplexed response from ~5 μm to
~7.8 μm by changing the L. To compare the sensing performance
of WMHNA, we spin coat two types of molecules (silk protein
and PMMA) separately on WMHNA. Figure 4b shows the
sensing results of silk and PMMA on HNA supercell with the
broadband response from ~5.5 μm to ~8.5 μm. Multiple finger-
print absorption peaks, labeled in Fig. 4f, are captured by the
broadband device. The redshift of the HNA supercell spectrum is
caused by the effect induced by the refractive index of analytes
indicating the RE of WMHNA. We further compared the sensing
performance with selected HNA elements (P1, P8, and P16) from
WMHNA, showing that WMHNA better enhances multiple
absorption peaks from broad wavelength ranges, while HNA only
reaches the best enhancement at narrow wavelength ranges near
resonance wavelengths. Both WMHNA and HNA perform the
significant enhancement (3 orders of magnitude) of absorption
spectrum with the direct measurement of thin-film without
nanoantenna. However, WMHNA performs less influence
from ALE in the broadband wavelength range, showing good
performance for sensing broadband fingerprint absorption.

Liquid dynamics monitoring with broadband fingerprint
absorption. To demonstrate the capability of liquid dynamics
monitoring with broadband fingerprint absorption, we integrate
WMHNA into a microfluidic system (Fig. 5a), which is compa-
tible with biomolecular systems for molecular detection in the

Fig. 3 Experiment characterization of hook nanoantennas sensing performance. a, b The testing transmission (a) and reflection (b) spectra of hook
nanoantenna devices with different ΔL for PMMA thin film sensing. The carbonyl stretching vibration in 5.76 μm or 1736 cm−1 is used to characterize the
sensitivity of hook nanoantennas. The colors of the line refer to the different ΔL in e, f. c The extracted absorptive and radiative loss of hook nanoantennas
by fitting the experimental spectra with TCMT. d, e The baselined corrected spectra difference in transmission(d) and reflection(e). f The calculated
sensitivity of hook nanoantenna devices with different ΔL. The sphere symbols refer to reflection mode and square symbols represent transmission mode.
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Fig. 4 Experiment characterization of WMHNA to decrease loading effect with broadband absorption enhancement. a The testing reflection spectra of
hook nanoantenna with PMMA thin film at different L. b The baseline-corrected reflection spectra from (a). c The normalized sensitivity of hook
nanoantenna devices with different L indicates the loading effect. Sensitivity becomes maximum when the two wavelengths of molecular vibration and
antenna resonance are matched. d the reflection spectra of WHHNA and hook nanoantenna devices (P1, P8, and P16) to form the supercell. e The sensing
characterization of WMHNA by two types of thin films of PMMA and silk. f Baseline-corrected sensing signal of WMHNA compared with device P1, P8,
and P16 by two analytes of PMMA and silk.

Fig. 5 Demonstration of broadband liquid dynamics monitoring of acetone and water using WMHNA integrated with microfluidics. a The schematic
drawing of WMHNA chip integrated with PDMS microfluidic chamber. b The dynamic monitoring of broadband spectra of WMHNA with acetone injection
to water. c The extracted absorbance spectra at different time. d The comparison of spectra of WMHNA with and without water. e The integrated
absorbance at each absorption peak indicates the dynamic change of analytes.
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aqueous environment. The microfluidic channel is formed by a
3D-printed mold and is fixed on a microscope slide. The IR light
transmits through the CaF2 substrate to the nanoantenna and
reflects the photodetector. The response of WMHNA for water
with the enhancement of stretching absorption at 2.95 μm and
scissoring absorption at 6.0 μm is shown in Fig. 5d. The stretching
mode is in the non-resonant regime of WMHNA, showing an
enhancement factor of 4.17 thanks to the localized electric field.
In the resonant regime, an improvement of 34.36 times of
reflection change is observed for the scissoring mode.

Furthermore, the absorption of water in IR has a minimal
influence on the nanoantenna spectrum apart from the molecular
vibration regime, allowing the liquid recognition with water-
based solvent, which is so absorptive in traditional IR spectro-
scopy that the intensity of light becomes very weak to identify
molecules. The secret is that the ultra-confined electromagnetic
field near the antenna surface shortens the effective optical path
length to subwavelength scales. Therefore, a slight change of
intensity of light is observed according to Beer-Lambert’s law.

We also perform the dynamic monitoring of acetone in water
to mimic the real-time dynamic monitoring of metabolic in
biological samples. As shown in Fig. 5b, the real-time spectrum
indicates the analyte change at the WMHNA surface as time goes
by. Each curve indicates the real-time spectrum of a mixed
solvent of acetone and water, reflecting in-situ concentration
information of acetone and water and dynamic change versus
time. Multiple fingerprint absorption peaks are captured to have
rich information of chemical bond changes. (Fig. 5b) To further
characterize the dynamic change using fingerprint absorption, we
calculate the absorbance of each spectrum using logarithms from
the reflection difference from the baseline signal. The baseline-
corrected absorbance spectrum at a different time is shown in
Fig. 5c in broad wavelengths range from 2.5 to 3.5 μm for O-H
bond of water at 2.95 μm and 5.5 to 9 μm for various fingerprint
peaks including H-O-H bond for H2O at 6.0 μm, C=O, C-H, C-
C-C bond for acetone at 5.7 μm, 7.0 and 7.3 μm, 8.3 μm,
respectively. By integrating the absorbance spectrum, the
dynamic behavior of water and acetone can be monitored by
changing different chemical bonds (Fig. 5e). The reduction of
O-H and H-O-H bond absorption at 2.95 μm and 6.0 μm
represents the decrease of water concentration, while the
increasing of C=O, C-H, C-C-C bond absorptance at 5.7 μm,
7.0 and 7.3 μm, 8.3 μm indicate the introduction of acetone
molecules into the microfluidic system. Thanks to the enhance-
ment of vibration absorption and the reduction of optical path
length, our WMHNA platform is suitable for liquid sample
analysis using water as a common solvent, paving the way to
protentional application in biological sample screening.

Molecular identification by machine learning. To demonstrate
the molecular identification properties of WMHNA, we select
three types of chemically similar alcoholic liquid-methanol,
ethanol, and isopropanol. Both of the molecules have the same
functional group of hydroxy and methyl bond, resulting in similar
absorption spectra in 6 μm to 9 μm wavelengths. Therefore, it is
not easy to distinguish them in a mixture with a narrowband
HNA. We designed a series of experiments to characterize the
recognition capability of WMHNA using 1% methanol, ethanol,
and IPA in water and mixture sets of each two in the same
volume. With the injection of liquid from microfluidics, the
response of WMHNA is plotted in Fig. 6a. The apparent dips of
the reflection spectrum at 6.0 μm are induced by water scissoring
absorption. The fingerprint absorption of small molecule alcohols
is captured from 6.5 μm to 9 μm and is extracted from the

WMHNA spectrum in Fig. 6b. Due to the low concentration of
analytes, the change of reflection at absorption is small and
cannot be detected without HNA. To process the small signal, we
applied a second derivative to extract the characteristic of each
spectrum from the HNA supercell (Fig. 6c), which is widely used
in traditional IR spectroscopy analysis. However, it is still difficult
to distinguish clearly with the classic data processing methods
from the enhanced spectrum of HNA by solely analyzing the
fingerprint absorption. Therefore, we propose an ML method
using PCA to process the HNA data for extraction of multi-
dimensional information from WMHNA, which is absorption
peaks induced by vibration of the chemical bond, the wavelength
shift of HNA resonance induced by the refractive index of
molecules, and the intensity change of water absorption induced
by ALE of wavelength detuning.

The results of PCA processed spectra are shown in Fig. 6e by
dimension reduction to three principal components (PC) axes.
The multi-dimensional sensing signal is extracted from the
spectrum in the PC domain. The first PC represents the
wavelength shift of HNA resonance by RE and the second PC
represents the modulation of water absorption peak by ALE. The
third PC represents the fingerprint absorption of three molecules
by SE. The order of PC represents the degree of difference
between each spectrum. In the 3D PC space shown in Fig. 6f, each
point represents the spectrum data from WMHNA, and each
cluster represents one type of molecule combination.

Furthermore, we use machine learning algorithms for this
molecular identification problem. Support vector machine (SVM)
is a supervised machine learning model that uses classification
algorithms, which is suitable for our application due to its
conciseness and low computational cost. During the training of
classifiers, an SVM model takes points in multi-dimensional
space and outputs the hyperplanes that best separate the point
clusters. The SVM classifies it when given test data by comparing
its location in multi-dimensional space with the hyperplanes.
Because SVM is a classification algorithm for two-group
classification problems, we transform it into a set of binary
classification problems to distinguish 6 different gases. The whole
dataset from WMHNA is 50 spectra for each molecule, and we
divide it as a training dataset (40) and a testing dataset (10).
Firstly, we use the first two PCs to train the classifiers and
evaluate the results. The SVM kernel for this model is Radial Basis
Function (RBF) kernel. Finally, the accuracy of this classifier for
both the training set and test set is 100%. It can be seen that the
classifier trained with two PCs works well, with the different gases
correctly identified and the clusters being well contained in the
appropriate regions.

With the help of ML, the IR spectrum of HNA with different
molecules can be reduced to three principal components, which
indicate the three key features of loading effect, wavelength shifts,
and enhanced fingerprint absorption. With the full utilization of
multiple dimension information, the recognition becomes more
efficient by monitoring the complementary physical (refractive
index) and chemical properties (absorption fingerprints) of
molecules, bringing in another degree of freedom into IR
spectroscopy analysis by refractometry and plasmonic properties.
Compared with previous literature that demonstrates the
identification of two molecules mixture by monitoring two
absorption peaks49, our work demonstrated simultaneously
monitoring of 15 absorption peaks and used to identify three
molecules mixture. Furthermore, with the aid of dimension
reduction by PCA, the multi-dimensional information from HNA
is easily decoupled and analyzed, paving the way to achieve global
molecular identification and real-time monitoring by training
with deep neural networks (DNN).
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Discussion
In PNA-based surface-enhanced IR absorption spectroscopy
(SEIRAS), the great challenge is the limited bandwidth of
nanoantenna resonances compared with the ultra-broadband
vibrational absorption fingerprints. Previous works show many
solutions using multiple resonances of nanoantenna structures to
capture the plasmonic enhanced molecular fingerprints in
separate wavelength ranges for sensing different molecule
species22,39,41,50,54–56. We propose hook nanoantenna supercell
with wavelength multiplexing by the gradient change of antenna
length of 16 elements to extract molecular absorption peaks in IR
fingerprint regions from 6 to 9 μm wavelengths. The sensing
performance of WMHNA is characterized by thin-film coating
(PMMA and silk) and microfluidic dynamics (acetone and water)

as a proof-of-concept. On one hand, with the reverse current
induced in HNA, the sensitivity of HNA is improved by engi-
neering the radiative loss to achieve the optimized loss ratio. On
the other hand, compared with the single nanoantenna designs
with low quality factors, the wavelength of molecular absorption
is matched with the specific hook antenna elements in WMHNA,
maximizing the sensitivity caused by antenna loading effects.

Furthermore, based on the massive spectral data collected by
the WMHNA-SEIRAS platform, we develop machine-learning-
enabled spectroscopy to extract the multi-dimensional features
from refractometric effect, spectroscopic effect, and antenna
loading effect. Thanks to the high sensitivity and broad band-
width, molecular identification can be achieved from the com-
plementary physical (refractive index) and chemical (absorption

Fig. 6 Demonstration of molecular identification of low concentration alcohols with multi-dimensional sensing signal from WMHNA by machine
learning. a The broadband spectra of WMHNA under different analytes. All alcohol solvents are diluted to 1% in DI water. b The extracted absorption
spectra of different alcohol solvents from WMHNA. c The corresponding second-order derivative of absorption spectra in (b). d The reflection spectra of
sensing data with different analytes states. e The machine learning processed spectra of WMHNA after dimension reduction by principal component
analysis. the first principal component (PC 1) represents the antenna loading effect of water absorption peaks at 6.0 μm. The second principal component
(PC 2) represents the wavelength shift of WMHNA due to the refractive index of the analyte. The third principal component (PC 3) represents the
fingerprint absorption of molecules. f The weight of scores of each spectrum in three-dimensional space after PCA for WMHNA. Each cluster indicates one
type of molecule and its mixtures. g The confusion map for machine learning outcome indicates the 100% accuracy of molecular identification.
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fingerprint) properties of molecules. With the mixture of
diluted alcoholic solutions, the microfluidic-integrated WMHNA
captures 15 absorption peaks of methanol, ethanol, isopropanol,
and water in 6 to 9 μm wavelengths. Additionally, with the aid of
a machine learning algorithm (PCA and SVM), the multi-
dimensional information can be classified effectively, resulting in
100% accuracy from random 4:1 data spiting for training and
recognition sets. Using the design principle of wavelength mul-
tiplexing, the WMHNA can be designed to cover all IR finger-
print ranges by engineering the antenna length for specific
molecular monitoring like proteins48, sugars49, lipids17, nucleic
acids57, and volatile organic compounds (VOCs)58. Our work
brings deep insights into machine-learning-enabled IR spectro-
scopy technologies for small-volume, real-time, ultra-sensitive,
in-vitro molecular dynamic analysis in the aqueous environment,
paving the way to the state-of-art applications of drug
screening59, clinical diagnosis60, healthcare61, and environmental
monitoring62.

Methods
TCMT modeling. The temporal coupled-mode theory (TCMT) is used to model
the coupling behavior between PNA and molecular vibration. We treat the plas-
monic resonant (denoted as P) as a bright mode that is coupled to the incident
light, while we treat the molecular vibration (denoted as M) as a dark mode, in
which coupling efficiency is much lower than PNA and can be ignored in their
coupling system. The detailed derivation of equations is shown in supporting
information. The MATLAB codes are generated to fit the simulation and experi-
ment spectra with derived equations.

FDTD simulation. The finite-difference time-domain (FDTD) method (Lumerical
FDTD) is performed to simulate the far-field spectrum and the nearfield dis-
tribution of plasmonic hook nanoantennas. The light source is selected as a plane
wave to simulate the incidence of light from free space. The incidence angle and
polarization state are adjusted to the desired orientation to excite the dipolar mode
plasmonic resonance of HNA. The refractive index of CaF2 is set at 1.38 at
wavelengths ranging from 2 μm to 10 μm. The periodic boundary at the x and
y-axis (Fig. 2a) is selected to simulate the effect of the periodic antenna array, and
the PML boundary is chosen at the z-axis to transport light into free space. The
minimum mesh size is set to be 20 nm at X and Y direction and 10 nm at Z
direction, which is 10 times smaller than the smallest dimension of nanoantennas.
There is also a trade-off between simulation accuracy and simulation time. When
we further decrease the mesh size, the simulation time increases dramatically, while
the results remain almost the same.

Nanoantenna fabrication. For the fabrication of HNA, electron-beam litho-
graphy (EBL, Jeol 6500FS) and the lift-off process are used to pattern the nan-
ometer scale gold structure. Before EBL, the CaF2 chip was firstly rinsed by
Acetone and IPA solutions for 1 min with sonication. After that, the chip is
treated under oxygen plasma for the uniform formation of PMMA 495 K A5
photoresist, which is spin-coated at 4000 rpm for 1 min. Since the conductivity
of the CaF2 chip is low, an additional E-spacer layer is spin-coated at 2000 rpm
for 1 min to avoid charge accumulation during EBL. After EBL, the development
with 30 s using PMMA developer (MIBK: IPA=1:3) is used to remove PMMA
resist under exposure following by the cleaning with IPA for 30 s. Then electron
beam evaporation (AJA International Inc.) is proceeded to deposit 80 nm
thick gold on top of CaF2 substrate and PMMA photoresist. To lift off the
nanoantenna pattern, the chip is placed in acetone for one day and rinsed
by IPA.

FTIR measurement. A Fourier-transformed IR (FTIR) microscope (Agilent Cary
660) with an FTIR spectrometer (Agilent Cary 620) and liquid-nitrogen-cooled
HgCdTe (mercury cadmium telluride, MCT) detector is used to characterize the
spectral response of hook nanoantenna. The background signal is collected from
the CaF2 chip using 16-32 scans at 8 cm−1 resolution to compensate for the MIR
gas absorption (mainly water vapor and CO2) from the ambient. Then the sample
scan is performed using 16-32 scans at 8 cm−1 resolution to capture the spectral
response of nanoantenna. The scanning area is adjusted to 200*200 μm2 to fit the
nanoantenna area. For liquid sensing, a microfluidic chamber made by PDMS is
bonded to a CaF2 chip to allow the contact of the liquid analyte with HNA, and the
spectrum is captured simultaneously.

Machine learning by PCA and SVM. The principal component analysis is used in
exploratory data analysis and for making predictive models. It is commonly used
for dimensionality reduction by projecting each data point onto only the first few

principal components to obtain lower-dimensional data while preserving as much
of the data’s variation as possible. To facilitate visualization of the feature space,
PCA was performed in MATLAB_R2020a. In this case, a covariance matrix was
computed using a factorization of singular value decomposition (SVD) for the
normalized set of features from which the eigenvectors and eigenvalues were
extracted. Each principal component was constructed as a linear combination of
the initial features. The first three principal components were then used to display
3D scatter plots of the features.

A support vector machine constructs a hyper-plane or set of hyper-planes in a
high or infinite-dimensional space, which can be used for classification, regression,
or other tasks. Intuitively, a good separation is achieved by the hyper-plane that has
the largest distance to the nearest training data points of any class, since in general
the larger the margin the lower the generalization error of the classifier. The
proposed SVM classifiers were developed on Python 3.6 using the sci-kit-learn
package. When training an SVM with the Radial Basis Function (RBF) kernel, we
need to consider the two parameters C and gamma. The gamma parameter defines
how far the influence of a single training example reaches. The larger gamma is, the
closer other examples must be affected. The C parameter trades off the correct
classification of training examples against the maximization of the decision
function’s margin. A low C makes the decision surface smooth, while a high C aims
at classifying all training examples correctly. gamma defines how much influence a
single training example has. Here we set the C parameter as 1.0 and the gamma
parameter as 0.1.

Data availability
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