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Diagnosing primary mitochondrial diseases is challenging in clinical practice. Although, de-
fective oxidative phosphorylation (OXPHOS) is the common final pathway, it is unknown
why different mtDNA or nuclear mutations result in largely heterogeneous and often tis-
sue -specific clinical presentations. Mitochondrial tRNA (mt-tRNA) mutations are frequent
causes of mitochondrial diseases both in children and adults. However numerous nu-
clear mutations involved in mitochondrial protein synthesis affecting ubiquitously expressed
genes have been reported in association with very tissue specific clinical manifestations
suggesting that there are so far unknown factors determining the tissue specificity in mi-
tochondrial translation. Most of these gene defects result in histological abnormalities and
multiple respiratory chain defects in the affected organs. The clinical phenotypes are usu-
ally early-onset, severe, and often fatal, implying the importance of mitochondrial transla-
tion from birth. However, some rare, reversible infantile mitochondrial diseases are caused
by very specific defects of mitochondrial translation. An unbiased genetic approach (whole
exome sequencing, RNA sequencing) combined with proteomics and functional studies re-
vealed novel factors involved in mitochondrial translation which contribute to the clinical
manifestation and recovery in these rare reversible mitochondrial conditions.

Introduction
All eukaryotic cells contain both genomic and mtDNA and two separate protein synthesis machineries
[1]. Mitochondria are essential eukaryotic organelles with the main function to produce the majority
of cellular energy by oxidative phosphorylation (OXPHOS). While the majority of OXPHOS compo-
nents (complexes I–IV), the ATP synthase (complex V), and various factors required for mtDNA main-
tenance (replication, transcription, copy number control) are encoded within the nucleus, 13 polypep-
tides, two ribosomal RNAs (mt-rRNAs), and 22 transfer RNAs (mt-tRNAs) are encoded within the
mtDNA [1]. The expression of these molecules is fundamental for cellular functioning and is closely
co-ordinated with nuclear gene expression. Mutations in some nuclear genes can cause secondary in-
stability of the mitochondrial genome in the form of depletion (decreased number of mtDNA molecules
in the cell), multiple deletions or accumulation of point mutations, which in turn leads to mitochon-
drial diseases inherited in a Mendelian fashion [2]. Expression of the mitochondrial genome is initi-
ated by transcription of the mtDNA from bidirectional heavy and light strand promoters to produce
two polycistronic transcripts [3]. Instead of initiating at individual gene-specific promoters, transcrip-
tion of mammalian mtDNA initiates from single promoters for H- and L-strand transcription, and pro-
gresses around almost the entire length of the genome [4]. Following endonucleolytic processing in-
dividual mitochondrial mRNA (mt-mRNA), mitochondrial rNA (mt-rRNA), and mitochondrial tRNA
(mt-tRNA) transcripts undergo post-transcriptional modifications [5,6]. The transcription machinery of
the mtDNA is regulated by several transcription factors TFAM, TEFM and TFB2M and mitochondrial
RNA polymerase POLRMT [7]. The 13 mtDNA encoded components of the OXPHOS machinery using
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Figure 1. Summary of the genes and disease mechanisms implicated in mitochondrial translation deficiencies with asso-

ciated clinical phenotypes

the mitochondrial translation mechanism are synthesized within the mitochondria, with the participation of the
mitoribosome [8,9]. The assembled mitoribosome translates the mt-mRNAs and synthesizes proteins that are rapidly
inserted into the inner mitochondrial membrane and integrated into their relevant complexes to form the OXPHOS
system [10].

Approximately one-third of mitochondrial disorders have a presumed nuclear genetic defect of mitochondrial tran-
scription and translation [11]. The identification of the molecular basis of this group has been particularly challenging
and the recent availability of massively parallel sequencing have revealed several new disease genes, and unraveled
new pathogenic mechanisms. Here, we present an overview of these tissue specific diseases (Figure 1).

Defects of mitochondrial transcription
There are several genes involved in the initiation (POLRMT, TFAM, TFB2B) and elongation (TEFM, MTERF1) in
transcription of mtDNA, however only mutations in TFAM have been shown to cause human diseases to date (Table
1) [12].

TFAM
The TFAM gene encodes a mitochondrial transcription factor essential for initiating mtDNA transcription, replica-
tion, and nucleoid packaging [25]. Pathogenic mutations in TFAM are linked to an autosomal recessive disorder with
infantile-onset progressive fatal liver failure. Infants were born with intrauterine growth restriction and developed
hepatopathy with elevated transaminases, conjugated hyperbilirubinemia, and hypoglycemia. Liver failure and death
occurred in early infancy [12]. The mtDNA copy number has been shown to be decreased in patient liver, muscle,
and fibroblasts. Liver biopsy shows cirrhosis, micro- and macrovesicular steatosis and cholestasis and abnormal mito-
chondrial morphology on electron microscopy. Biochemical enzymology in muscle showed increased citrate synthase
activity and borderline reduced RC enzyme activities [12]. Based on these findings, it is likely, that mutations in other
genes involved in mitochondrial transcription also result in low mtDNA copy numbers and a combined defect of the
enzymes of the respiratory chain.
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Table 1 Defects of mitochondrial transcription, pre-RNA, mRNA processing and stabilization

Gene Protein Clinical presentation Age of onset
Mode of
inheritance OMIM References

TFAM Transcription factor A Mitochondrial DNA depletion
syndrome 15

Infancy AR 617156 Stiles et al. (2016) [12]

TRMT10C tRNA methyltransferase 10 Combined OXPHOS deficiency 30 Infancy AR 616974 Metodiev et al. (2016) [13]

HSD17B10
(MRPP2)

NAD(P)(H)-dependent
short-chain
dehydrogenase/reductases

Global developmental delay,
epilepsy, and cardiac involvement

Early childhood AR 300256 Oerum et al. (2017) [14],
Falk et al. (2016) [15]

ELAC2 RNase Z Hypertrophic cardiomyopathy,
hypotonia, lactic acidosis, delayed
psychomotor development

Early childhood AR 605367 Haack et al. (2013) [16],
Shinwari et al. (2017) [17],
Akawi et al. (2016) [18]

FASTKD2 fas activated serine-threonine
kinase domain 2 protein

Later onset, milder MELAS
(mitochondrial
encephalomyopathy, lactic
acidosis and stroke-like
episode)-like syndrome with
seizures, stroke-like episodes and
optic atrophy. Mitochondrial
encephalomyopathy with
developmental delay, hemiplegia,
convulsions, asymmetrical brain
atrophy

Childhood AR 612322 Ghezzi et al. (2008) [19],
Yoo et al. 2017 [20]

MTPAP Mitochondrial poly-A
polymerase

Progressive spastic ataxia with
optic atrophy

Juvenile or early
childhood

AR 613672 Crosby et al. (2010) [21]

LRPPRC Leucine-rich PPR-motif
containing protein

Leigh syndrome French–Canadian
variant (LSFC)

Infantile AR 220111 Mootha et al. (2003) [22],
Olahova et al. (2015) [23],
Han et al. (2017) [24]

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive.

It has been implicated that TFAM-mediated alterations may be an important mechanism in neurodegeneration in
Alzheimer, Huntington, Parkinson, and other neurodegenerative diseases [13]. Because altered TFAM and mtDNA
levels have been detected in multiple models of neurodegeneration, we suggest that the regulation of TFAM may be
a key mechanism in disease pathomechanism or progression [13].

Maturation of the primary transcript: pre-RNA processing
Transcription of the mitochondrial genome generates large polycistronic transcripts punctuated by the 22 mt-tRNAs
that are conventionally cleaved by the RNase P-complex and the RNase Z activity of ELAC2 at 5′ and 3′ ends, respec-
tively (Table 1) [5,6].

TRMT10C/MRPP1
Mutations in TRMT10C (encoding the mitochondrial RNase P protein 1 (MRPP1)) were reported in infants present-
ing at birth with lactic acidosis, hypotonia, feeding difficulties, and deafness [13]. Both individuals died at 5 months
after respiratory failure. MRPP1, along with MRPP2 and MRPP3, form the mitochondrial ribonuclease P (mt-RNase
P) complex that cleaves the 5′ ends of mt-tRNAs from polycistronic precursor transcripts. Analyses of fibroblasts
from affected individuals harboring TRMT10C missense variants revealed decreased protein levels of MRPP1 and
an increase in mt-RNA precursors indicative of impaired mt-RNA processing and defective mitochondrial protein
synthesis [13].

HSD17B10/MRPP2
MRPP2 (also known as HSD10/SDR5C1) belongs to the short-chain dehydrogenase/reductases (SDR) family and is
involved in the catabolism of isoleucine and steroid metabolism [14]. MRPP2 also interacts in a complex with MRPP1
(TRMT10C) and MRPP3 (also known as PRORP), proteins involved in 5′-end processing of mitochondrial precursor
tRNA [5].

A Caucasian boy with intractable epilepsy and global developmental delay carried a novel p.(Lys212Glu) muta-
tion in the X-linked gene, HSD17B10 encoding for mitochondrial SDR5C1 [15]. Mutations in HSD17B10 lead to
a metabolic disorder of fatty and amino acid metabolism, and affect an essential subunit of human mitochondrial
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RNase P, the enzyme responsible for 5′-processing and methylation of purine-9 of mt-tRNAs. The pathogenicity of
the mutation is due to a general mitochondrial dysfunction caused by reduction in maturation of mt-tRNAs [15].

Two additional patients were reported with variable severity of developmental delay, epilepsy, and cardiac involve-
ment. As a hallmark of the disease, urinary organic acid analysis showed elevated levels of 2-methyl-3-hydroxybutyric
acid and tiglylglycine, and abnormalities were also detected in the acyl-carnitine spectrum in some cases [14].

ELAC2 (RNase Z)
Mt-tRNAs are cleaved by the RNase Z activity of ELAC2 at their 3′ ends [17]. Mutations in ELAC2 have been originally
identified in five individuals with infantile hypertrophic cardiomyopathy and complex I deficiency and accumula-
tion of mt-tRNA precursors in skeletal muscle and fibroblasts of the affected individuals, associated with impaired
mitochondrial translation [17]. The association of severe, infantile cardiomyopathy and ELAC2 mutations was sup-
ported by 16 additional cases, suggesting that it is a relatively frequent cause of severe infantile-onset hypertrophic or
dilated cardiomyopathy. The p.(Phe154Leu) variant has a severe effect with poor prognosis [18]. Affected children
in a consanguineous Pakistani family with a homozygous splice-site mutation in ELAC2 presented with intellectual
disability and minimal cardiac involvement [19].

Maturation of the primary transcript: mRNA processing and
stability
FASTKD2
Mitochondrial encephalomyopathy with developmental delay, hemiplegia, convulsions, asymmetrical brain atro-
phy, and low cytochrome c oxidase (COX) activity in skeletal muscle were reported in patients with mutations in
FASTKD2, encoding the fas activated serine-threonine kinase domain 2 protein [20]. FASTKD2 has a role in the
assembly of the large ribosomal subunit and is required for 16S rRNA stability [26,27]. The tagged recombinant
FASTKD2 protein co-localized with mitochondrial markers, and membrane potential-dependent mitochondrial im-
port was demonstrated in isolated mitochondria in vitro. Later onset, milder mitochondrial encephalomyopathy,
lactic acidosis and stroke-like episode (MELAS)-like syndrome with seizures, stroke-like episodes, and optic atrophy
has been described in a Korean family with compound heterozygous mutations in FASTKD2 [28]. FASTKD2 has
been also implicated as a target for modulating neurodegeneration and memory loss in ageing and dementia [29].
Furthermore, FASTKD2 has been also shown to mediate apoptosis in breast and prostate cancers [21].

MTPAP
In human mitochondria, polyadenylation of mRNA, undertaken by the nuclear-encoded mitochondrial poly(A)
RNA polymerase, is essential for maintaining mitochondrial gene expression. An autosomal-recessive mutation has
been identified in the MTPAP gene causing spastic ataxia with optic atrophy in the Old Order Amish population.
Mt-mRNAs from affected individuals were shown to have severely truncated poly(A) tails [21]. Both mutated and
wild-type MTPAP localized to the mitochondrial RNA-processing granules but the mutant protein generated only
short oligo(A) extensions on RNA substrates, causing dysregulation of post-transcriptional expression leading to the
reduction in respiratory chain complexes [30].

LRPPRC
LRPPRC is a mt-mRNA chaperone that relaxes secondary structures [31] enabling polyadenylation and co-ordinated
translation of mitochondrially encoded proteins [32,33]. In addition, LRPPRC has been documented in various tu-
mors, contributing to the apoptosis resistance of human cancer cells [34] and it has been identified as an inhibitor of
autophagy and mitophagy via interaction with the mitophagy initiator Parkin [35].

A homozygous founder mutation in the LRPPRC gene (c.1061C>T, p.(Ala354Val)) was identified as one of the first
nuclear mitochondrial disease genes [22], associated with the French-Canadian variant of Leigh Syndrome (LSFC)
and COX deficiency. LSFC is characterized by Leigh syndrome (a subacute neurodegeneration of the brainstem and
basal ganglia), developmental delay, hypotonia, mild facial dysmorphism, and high mortality due to episodes of severe
acidosis and coma that typically arise in the first year of life [22]. Subsequently, LSFC has also been described outside
Quebec in ten patients from seven unrelated families of Caucasian, Pakistani, Indian, Turkish, and Iraqi origin [23]
and in a Chinese boy with a milder phenotype [24]. The phenotype of these patients resembles LSFC, but in addition,
neonatal cardiomyopathy or congenital malformations of the heart and the brain were reported. Decreased levels of
mutant LRPPRC protein and impaired Complex IV enzyme activity were associated with abnormal COX assembly
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Table 2 Defects of mt-tRNA modification

Gene Protein Clinical presentation Age of onset
Mode of
inheritance OMIM References

TRMU tRNA
5-methylamino-methyl-2-
thiouridy-late
methyl-transferase

Reversible infantile liver failure Infantile AR 613070 Zeharia et al. (2009) [37]
Schara et al. (2011) [38]
Uusimaa et al. (2011) [39]
Gaignard et al. (2013) [40]

MTO1 Mitochondrial translation
optimization 1 homolog

Hypertrophic cardiomyopathy
and lactic acidosis

Infantile AR 614702 Ghezzi et al. (2012) [41],
Baruffini et al. (2013) [42]
O’Byrne et al. (2018) [43]

GTPBP3 GTP-binding protein 3 Hypertrophic or dilated
cardiomyopathy, encephalopathy
(hypotonia, developmental delay,
seizures, visual impairment),
lactate↑

Early childhood AR 608536 Kopajtich et al. (2014) [44]

NSUN3 5-methylcytosine (m(5)C)
methyltransferase

Developmental delay,
microcephaly, failure to thrive,
lactic acidosis, muscular
weakness, external
ophthalmoplegia, and nystagmus

Neonatal AR 617491 van Haute et al. (2016) [45]

TRMT5 tRNA methyltransferase 5 Exercise intolerance, lactic
acidosis, growth retardation,
developmental delay, complex
hereditary spastic paraparesis

Childhood
neonatal

AR 611023 Powell et al. (2015) [46]
Tarnopolsky et al. (2017) [47]

TRIT1 tRNA isopentenyl-transferase Encephalopathy and myoclonic
epilepsy, brain abnormalities

Childhood AR Yarham et al. (2014) [48]
Kernohan et al. (2017) [49]

TRNT1 tRNA nucleotidyltransferase Retinitis pigmentosa, erythrocitic
microcytosis; sideroblastic
anemia with B-cell
immunodeficiency, periodic
fevers, and developmental delay

Neonatal,
juvenile

AR 612907 Chakraborty et al. (2014) [50]
DeLuca et al. (2016) [51]

PUS1 Pseudouridine synthase Myopathy, lactic acidosis, and
sideroblastic anemia (MLASA1)

Early childhood
to adult age

AR 608109 Bykhovskaya et al. (2004) [52]
Fernandez-Vizarra et al. (2007) [53]
Metodiev et al. (2015) [54]

MTFMT Methionyl-tRNA
formyltransferase

Leigh encephalopathy, white
matter lesions, microcephaly,
mental retardation, ataxia, and
muscular hypotonia

Childhood AR 611766 Tucker et al. (2011) [55]
Neeve et al. (2013) [56]
Haack et al. (2014) [57]

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive.

and reduced steady-state levels of numerous OXPHOS subunits in patients’ fibroblasts and skeletal muscle. In some
patients complex I was also reduced, suggesting the role of LRPPRC in tissue-specific post-transcriptional regulation
of mt-mRNAs [23].

Diseases caused by abnormal tRNA modifications
Mt-tRNA modifications play a crucial role in regulating cellular energy delivery in response to local needs, and dys-
functional modifications may participate in the pathomechanism of mt-tRNA-related disorders (Table 2) [36].

Wobble base modifications (TRMU, MTO1, GTPBP3, NSUN3)
TRMU
Reversible infantile liver failure is caused by autosomal recessive mutations in the tRNA
5-methylaminomethyl-2-thiouridylate methyltransferase [37-40] and the majority of these patients show com-
plete spontaneous recovery if they survive the first year of life [58]. TRMU is an enzyme responsible for the
thiouridylation of mt-tRNAGlu, mt-tRNAGln, and mt-tRNALys, which requires cysteine. Cysteine is an essential
amino acid in the first months of life, because of the physiologically low activity of the cystathionine γ-lyase (cys-
tathionase) enzyme in infants [59]. The age-dependent, partially reversible clinical presentation of TRMU mutations
resembles reversible infantile respiratory chain deficiency due to them. 14674T>C/G mutation in mt-tRNAGlu. Low
dietary cysteine may be a common trigger of the clinical presentation of both diseases [60]. Mutations in TRMU
have been also suggested to aggravate the deafness phenotype of the mitochondrial m.1555A>G 12S rRNA mutation
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[61], however the variants reported here were rather variants of unknown significance and had no involvement in
liver disease.

MTO1
MTO1 (mt-tRNA Translation Optimization 1), an evolutionarily conserved gene encodes the enzyme that catalyzes
the 5-taurinomethylation of the wobble uridine base in mt-tRNAGln, tRNAGlu, and tRNALys. This post-transcriptional
modification increases the accuracy and efficiency of mtDNA translation [61].

The first patients carrying recessive mutations in the MTO1 gene were identified in 2012 [41]. The clinical pre-
sentation was severe infantile hypertrophic cardiomyopathy. Two patients died within the first days of life, while the
third unrelated subject showed marked improvement of the cardiomyopathy in childhood, and at the age of 19 years
he suffered a stable hypertrophic cardiomyopathy with normal ejection fraction and moderate bilateral optic atrophy.
Five additional patients were presented with hypertrophic cardiomyopathy and lactic acidosis in association with en-
cephalopathy and psychomotor delay [42]. All patients complained of first symptoms soon after birth and two of them
died in their first days of life. More recently, in a large cohort of 35 cases of MTO1 deficiency [61], none of the pa-
tients had bi-allelic null variants suggesting that the complete loss of MTO1 is not viable. The most common features
at presentation are lactic acidosis and hypertrophic cardiomyopathy with global developmental delay/intellectual dis-
ability (97%), feeding difficulties (49%), hypotonia (63%) failure to thrive (34%), seizures (34%), optic atrophy (52%),
and ataxia (21%) and low activity of respiratory chain enzymes I, III, and IV. A subjective clinical improvement was
observed in some patients on ketogenic diet and therapy with dichloroacetate [43].

GTPBP3
Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, due to the abnormal formation
of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of mt-tRNAs [44]. Eleven individuals from
nine families were reported with recessive mutations in GTPBP3, encoding the mitochondrial GTP-binding protein
3 [44]. All patients presented with lactic acidosis and nine developed hypertrophic cardiomyopathy, but in contrast
with individuals with mutations in MTO1 (involved in the same modification), most individuals with GTPBP3 mu-
tations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling
Leigh syndrome [44]. Affected individuals from eight out of nine families presented with combined respiratory chain
complex deficiencies in skeletal muscle.

NSUN3
The recently characterized 5-methylcytosine (m(5)C) methyltransferase, NSun3 links m(5)C RNA modifications
with energy metabolism [45]. Loss of function mutations in NSUN3 a previously uncharacterized m(5)C methyl-
transferase, have been identified in a patient who developed combined developmental delay, microcephaly, failure
to thrive, recurrent lactic acidosis, muscular weakness, external ophthalmoplegia, and nystagmus at 3 months of age
with combined OXPHOS deficiency in skeletal muscle [45].

Position 37 modifications (TRMT5, TRIT1)
TRMT5
Autosomal recessive mutations in the TRMT5 gene (encoding tRNA methyltransferase 5) were reported in two pa-
tients with strikingly different clinical presentation [46]. While both affected individuals presented with lactic acidosis
and evidence of multiple mitochondrial respiratory chain complex deficiencies in skeletal muscle, one presented with
failure to thrive and hypertrophic cardiomyopathy in childhood, and the other was an adult with a life-long his-
tory of exercise intolerance. Recently, TRMT5 mutations were also linked to complex hereditary spastic paraparesis
[47]. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of
mt-tRNA, predominantly in skeletal muscle.

TRIT1
The first pathogenic mutation in TRIT1 (encoding the tRNA isopentenyltransferase, responsible for i6A37 modi-
fication of some cytosolic and mt-tRNAs) has been identified in two siblings with encephalopathy and myoclonic
epilepsy and severe combined mitochondrial respiratory chain defects [48]. It has been show that a previously re-
ported pathogenic m.7480A>G mt-tRNASer(UCN) mutation also acts by causing a loss of i6A37 modification, demon-
strating that mt-tRNASerUCN is the substrate for TRIT1 [48]. Four individuals from three unrelated families ‘matched’
by GeneMatcher and MatchMakerExchange confirmed the role of TRIT1 in human disease [49]. The patients had
microcephaly, developmental delay, epilepsy, and decreased levels of selected mitochondrial proteins [49].
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CCA adding: TRNT1
TRNT1 (CCA-adding transfer RNA nucleotidyl transferase) enzyme deficiency is a complex metabolic disease caused
by defective post-transcriptional modification of mitochondrial and cytosolic tRNAs [62]. Mutations in TRNT1 cause
congenital sideroblastic anemia, immunodeficiency, fevers, and developmental delay (SIFD) [50]. Further mutations
in TRNT1 have been reported in patients with a combination of abnormal blood cells (sideroblastic anemia, B lym-
phocyte or combined B and T immunodeficiency), metabolic crisis, and multisystem mitochondrial disease (retinitis
pigmentosa, hepatosplenomegaly, exocrine pancreatic insufficiency, and renal tubulopathy [62,63-65]. Other clinical
features include sensorineural deafness, cerebellar atrophy, brittle hair, partial villous atrophy, and nephrocalcinosis.
TRNT1 mutations cause a spectrum of symptoms ranging from a childhood-onset complex disease with manifesta-
tions in most organs to an adult-onset isolated retinitis pigmentosa presentation. Acute management of these patients
includes transfusion for anemia, fluid and electrolyte replacement, immunoglobulin therapy, and potentially bone
marrow transplantation. A defect of 3′-CCA addition to mt-tRNAs (tRNA(Cys), tRNA(LeuUUR) and tRNA(His))
demonstrates a novel pathomechanism [62].

Pseudouridylation: PUS1
Pseudouridylate synthase 1 (PUS1) is an enzyme located in both nucleus and mitochondria, which converts uridine
into pseudouridine in several cytosolic and mt-tRNA positions and increases the efficiency of protein synthesis in
both compartments [66,52]. Myopathy, lactic acidosis, sideroblastic anemia (MLASA) syndrome is a rare autosomal
recessive disease caused by recessive mutations in PUS1 encoding the pseudouridine synthase 1 enzyme [52-54,66].
A similar phenotype has been observed in mutations in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase
[67]. Patients in consanguineous families of Persian, Jewish, and Italian origins presented with mental retardation,
dysmorphic features, lactic acidosis, myopathy, sideroblastic anemia, and low activity of complexes 1 and 4 of the
respiratory chain in muscles [53,54,68]. Some patients were reported with a mild phenotype of sideroblastic anemia
and muscle weakness in adult age [54,69]. A double localization of PUS1 has been demonstrated, the isoform localized
to the nucleus is predicted to be shorter (isoform 2) than the mitochondrial isoform, which contains an N-terminal
mitochondrial targetting sequence. The structural differences in nuclear compared with mitochondrial isoforms of
PUS1 may be implicated in the variability of the clinical presentations in MLASA [53].

Formylation of the mitochondrial methionine tRNA (Met-tRNAMet)
The first mutations in the MTFMT gene in patients with Leigh syndrome and combined respiratory chain deficiency
were reported by Tucker et al. [55]. In the past 5 years, several patients have been reported with MTFMT mutations
and the clinical presentation is variable (Leigh encephalopathy, white matter lesions, microcephaly, mental retarda-
tion, ataxia, and muscular hypotonia) but often milder and later onset than other genetic forms of Leigh syndrome
[56,57,70]. The mutations are usually loss-of-function mutations resulting in a severe decrease in MTFMT protein
and reduced steady-state levels of complex I and IV subunits. The c.626C>T mutation has been detected in >80% of
patients with MTFMT deficiency, and represents a relatively frequent cause of Leigh syndrome.

Diseases of tRNA aminoacylation: mt-tRNA synthetases
Defects in nuclear genes encoding mitochondrial aminoacyl-tRNA synthetases (mt-ARSs) are increasingly linked
to a variety of pediatric and adult onset tissue specific disorders [71]. Several recent reviews [72-75] presented de-
tailed information, therefore here, we only provide a short summary of the most common phenotypes of mt-tRNA
synthetase-related diseases (Table 3).

Mutations in each of the 19 human mt-ARS genes have been reported in human disease [74]. Glycyl-(GARS)
and lysyl tRNA (KARS) synthetase genes encode both cytosolic and mitochondrial ARS enzymes, suggesting links
between protein syntheses in these two distinct cellular compartments. Other cytosolic ARSs are encoded by a set of
genes distinct from those encoding mt-ARSs [138]. All mt-ARSs genes are located in the nucleus, synthesized in the
cytosol, imported into the mitochondria by an N-terminal pre-sequence (mitochondrial targetting sequence, MTS),
which is cleaved upon entry into the mitochondria [139].

Despite being ubiquitously expressed, mutations in these genes show an unexpected variety of phenotypes, includ-
ing many neurological disorders affecting the white matter (DARS2, EARS2, MARS2, AARS2) or causing epileptic
encephalopathy (CARS2, FARS2, PARS2, TARS2, VARS2), pontocerebellar hypoplasia (RARS2), or intellectual dis-
ability (RARS2, WARS2). While other characteristic phenotypes are sensori-neuronal hearing loss and ovarian fail-
ure (Perrault syndrome: HARS2, LARS2), mitochondrial myopathy, MLASA: YARS2, hyperuricemia, pulmonary
hypertension, renal failure, alkalosis (HUPRA: SARS2), cardiomyopathy (AARS2), or sensori-neural hearing loss
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Table 3 Mutations in aminoacyl-tRNA synthetases

Gene Protein Clinical presentation Age of onset
Mode of

inheritance OMIM References

DARS2 Aspartyl-tRNA sythetase 2 - Leukoencephalopathy with
brainstem and spinal cord
involvement (LBSL)
- Paroxysmal exercise-induced
gait ataxia

Childhood or
adulthood

AR 610956 Scheper et al. (2007) [76]
Isohanni et al. (2010) [77]
Miyake et al. (2011) [78]
van Berge et al. (2014) [79]
Shimojima et al. (2017) [80]
Pinto et al. (2014) [81]
Synofzik et al. (2011) [82]

RARS2 Arginyl-tRNA
synthetase 2

Pontocerebellar hypoplasia type
6 (PCHD-6)

Neonatal or
early childhood

AR 611523 Edvardson et al. (2007) [83]
Rankin et al. (2010) [84]
Cassandrini et al. (2013) [85]
Li et al. (2015) [86]
Lühl et al. (2016) [87]

EARS2 Glutamyl-tRNA synthetase 2 Leukoencephalopathy with
thalamus and brainstem
involvement and high lactate
(LTBL); multiple congenital
anomalies and multisystem
dysfunction dysgenesis of
corpus callosum

Congenital or
infantile

AR 612799 Steenweg et al. (2012) [88]
Talim et al. (2013) [89]
Kevelam et al. (2016) [90]
Güngör et al. (2016) [91]
Şahin et al. (2016) [92]

MARS2 Methionyl-tRNA synthetase 2 Autosomal recessive spastic
ataxia with leukoencephalopathy

Juvenile or
adulthood

AR 609728 Bayat et al. (2012) [93]
Webb et al. (2015) [94]

FARS2 Phenylalanyl-tRNA synthetase
2

Alpers syndrome,
encephalopathy, epilepsy, lactic
acidosis, spastic paraplegia

Neonatal or
infantile

AR 611592 Elo et al. (2012) [95]
Shamseldin et al. (2012) [96]
Yang et al. (2016) [97]

AARS2 Alanyl-tRNA synthetase 2 - Hypertrophic cardiomyopathy
- Ovario-leukodystrophy
- Leukoencephalopathy with
axonal spheroids and pigmented
glia (ALSP)

Infantile to
adulthood

AR 614096 Götz et al. (2011) [98]
Taylor et al. (2014) [99]
Dallabona et al. (2014) [100]
Lynch et al. (2016) [101]
Szpisjak et al. (2017) [102]

YARS2 Tyrosyl-tRNA synthetase MLASA2, gastrointestinal
difficulties, cardiomyopathy

Infantile AR 613561 Riley et al. (2010) [67]
Sasarman et al. (2012) [103]
Shahni et al. (2013) [104]
Riley et al. (2013) [105]
Nakajima et al. (2014) [106]

SARS Seryl-tRNA synthetase 2 - HUPRA syndrome
(hyperuricemia, pulmonary
hypertension, renal failure in
infancy, and alkalosis)
- Progressive spastic paresis

Infantile AR 613845 Belostotsky et al. (2011) [107]
Linnankivi et al. (2016) [108]

HARS2 Histidyl-tRNA synthetase 2 Perrault syndrome (sensorineural
deafness, ovarian dysgenesis)

Juvenile or
adulthood

AR 600783 Pierce et al. (2011) [109]

LARS2 Leucyl-tRNA synthetase Perrault syndrome (sensorineural
deafness, ovarian dysgenesis)
hydrops, lactic acidosis, and
sideroblastic anemia

Juvenile
neonatal

AR 604544 Pierce et al. (2013) [110]
Soldà et al. (2016) [111]
Demain et al. (2017) [112]
Riley et al. (2016) [113]

TARS2 Threonyl-tRNA synthetas Mitochondrial
encephalomyopathy
Axial hypotonia and limb
hypertonia, psychomotor delay,
and high levels of blood lactate

Infantile AR 612805 Diodato et al. (2014) [114]

NARS2 Asparginyl-tRNA synthetase Non-syndromic deafness, Leigh
syndrome, Alpers syndrome,
infantile onset neurodegenerative
disorder

Infantile AR 612803 Sofou et al. (2015) [115]
Vanlander et al. (2015) [116]
Simon et al. (2015) [117]
Mizuguchi et al. (2017) [118]

CARS2 Cysteinyl-tRNA synthetas Combined oxidative
phosphorylation deficiency-27
(COXPD27); severe epileptic
encephalopathy and complex
movement disorders

Juvenile AR 612800 Coughlin et al. (2015) [119]

IARS2 Ileucyl-tRNA synthetase - Skeletal dysplasia, infantile
cataract, congenital neurotrophic
keratitis, orbital myopathy, Leigh
syndrome
- CAGSSS syndrome

Adulthood or
infantile

AR 616007
612801

Schwartzentruber et al. (2014) [120]
Moosa et al. (2017) [121]

Continued over
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Table 3 Mutations in aminoacyl-tRNA synthetases (Continued)

Gene Protein Clinical presentation Age of onset
Mode of

inheritance OMIM References

VARS2 Valyl-tRNa synthetase Mitochondrial
encephalomyopathy:
psychomotor delay, epilepsy,
mental retardation, growth
hormone deficiency,
hypogonadism

Juvenile AR 612802 Diodato et al. (2014) [114]
Baertling et al. (2017) [122]
Alsemari et al. (2017) [123]

WARS2 Tryptophanyl-tRNA
synthetase

- Autosomal recessive intellectual
disability
- Mitochondrial encephalopathy
- Infantile-onset Parkinsonism

Infantile or
juvenile

AR 604733 Musante et al. (2017) [124]
Wortmann et al. (2017) [125]
Theisen et al. (2017) [126]
Burke et al. (2017) [127]

PARS2 Prolyl-tRNA synthetase Non-syndromic hearing loss,
Leigh syndrome, intellectual
disability with epilepsy and
severe myopathy, seizure

Infantile AR 612036 Sofou et al. (2015) [128]
Mizuguchi et al. (2017) [118]

GARS Glycil-tRNA synthetase - Charcot-Marie-Tooth disease,
type 2D
- Neuropathy, distal hereditary
motor, type VA
- Multisystem developmental
delay, growth retardation
- Lactic acidosis,
cardiomyopathy, exercise
intolerance

Adulthood,
early childhood

AD
AR

601472
600794

Antonellis et al. (2003) [129]
Oprescu et al. (2017) [130]
Nafisinia et al. (2017) [131]
McMillan et al. (2014) [132]

KARS Lysyl-tRNA synthetases - Charcot-Marie-Tooth disease,
recessive intermediate, B
- Deafness, autosomal recessive
89
- Visual impairment and
progressive microcephaly
- Hypertrophic cardiomyopathy
and combined mitochondrial
respiratory chain defect

Adult,
infantile,
childhood

AR 613641
613916

Kohda et al. (2016) [133]
Verrigini et al. (2017) [134]
McMillan et al. (2015) [135]
Santos-Cortez et al. (2013) [136]
McLaughlin et al. (2010) [137]

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive; AD, autosomal dominant.

(MARS2, NARS2). Besides the fact that new mutations are continuously discovered, neither the cause of the selec-
tive vulnerability, nor the exact molecular mechanisms leading to the diseases, are well understood. Degeneration of
the central nervous system is speculated with early impairment of mitochondrial energy production that is crucial for
myelination and maintenance of compact myelin [140]. Mutations in DARS2 and EARS2 result in very characteristic
MRI phenotypes of leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL)
[76] and leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) [141]. LBSL caused
by mutations in DARS2 is clinically characterized by slowly progressive pyramidal, cerebellar and dorsal column im-
pairment, variably associated with delayed intellectual and/or motor development, cognitive impairment, epilepsy
and peripheral neuropathy. The severity is ranging from early-onset severe disease, which can be fatal within the first
years of life, to adult-onset forms [79,80]. The majority of patients carry a splice site mutation in intron 2, upstream
of exon 3 [79]. Subgroups of patients with similar mutations (the common variants c.228-21 -20delTTinsC together
with c.455G>T and c.492+2T>C) and a mild disease progression were identified. MRI abnormalities were correlated
with the severity of the phenotype in mildly affected patients [81].

LTBL due to EARS2 mutations is characterized by a biphasic clinical course [141,89,90]. Approximately one-third
of patients suffered from hypotonia soon after birth, followed by spastic tetraparesis, dystonia, visual impairment,
and seizures. The majority (two-third) of patients had normal or mildly delayed early development, disease-onset in
the second half of the first year of life with clinical regression, spasticity, loss of milestones, sometimes seizures and
irritability, and an improvement in symptoms and MRI abnormalities from the second year of life.

A founder mutation, p.(Arg590Trp) in AARS2, encoding the mt alanyl tRNA synthetase may predominantly af-
fect the heart (infantile cardiomyopathy) [98,99], while other AARS2 mutations are characterized by childhood- to
adulthood-onset ataxia, spasticity, and dementia with frontal lobe dysfunction with leukoencephalopathy, cerebellar
atrophy, and involvement of the corpus callosum on MRI [100]. Notably, all female patients also had ovarian failure.
None of these cases suffered from a cardiomyopathy. Cardiomyopathy-associated mutations severely compromise
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Table 4 Mutations in mitochondrial ribosomal proteins and ribosome assembly proteins

Gene Protein Clinical presentation Age of onset
Mode of

inheritance OMIM References

MRPL Mitochondrial ribosomal
protein L3

Hypertrophic cardiomyopathy and
psychomotor retardation

Infantile AR 614582 Galmiche et al. (2011) [146]

MRPS16 Mitochondrial ribosomal
protein S16

Corpus callosum agenesia,
hypothonia, and fatal neonatal
lactic acidosis

Neonatal AR 610498 Miller et al. (2004) [147]

MRPS22 Mitochondrial ribosomal
protein S22

Cornelia de Lange-like syndrome
Edema, cardiomyopathy and
tubulopathy

Neonatal AR 611719 Saada et al. (2007) [148]
Smits et al. (2011) [149]

MRPL44 Mitochondrial ribosomal
protein L44

Hypertrophic cardiomyopathy Neonatal AR 611849 Carroll et al. (2013) [150]
Distelmaier et al. (2015) [151]

MRPL12 Mitochondrial ribosomal
protein L12

Growth retardation and
neurological deterioration

Neonatal AR 602375 Serre et al. (2013) [152]

MRPS34 Mitoribosomal ribosomal
protein S34

Leigh syndrome and combined
OXPHOS defects

Neonatal AR 611994 Richman et al. (2015) [153]
Lake et al. (2017) [154]

ERAL1 mt-rRNA chaperone Perrault syndrome Childhood or
adult

AR 607435 Newman et al. (2014) [143]

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive.

aminoacylation, whereas partial activity is retained by the mutation combinations found in the leukodystrophy pa-
tients [142]. Similar molecular mechanisms may underlie the tissue specific manifestations of the other mt tRNA
synthetases.

A few patients presented severe infantile multisystem disease predominantly affecting the heart and brain asso-
ciated with combined OXPHOS enzyme deficiency have been reported recently with autosomal recessive muta-
tions in the QRSL1 gene [143,144]. No mitochondrial glutaminyl-tRNA synthetase (GlnRS) has been known and
Gln-tRNAGln synthesis occurs via an indirect pathway involving QRSL1 (GatA). In this pathway, mt tRNAGln is
first misaminoacylated by mt glutamyl-tRNA synthetase (GluRS) to form Glu-tRNAGln, which is then followed by
transamidation to Gln-tRNAGln. This transamidation is processed by the hGatCAB heterotrimer. It has been shown
that mutations in QRSL1 (GatA), a component of hGatCAB were associated with severe transamidation activity de-
fects [143].

Perrault syndrome: LARS2, HARS2 (HSD17B4, CLLP, ERAL1)
Perrault syndrome is characterized by sensorineural hearing loss (SNHL) in males and females, and ovarian dysfunc-
tion in females. The SNHL is bilateral and ranges in severity from moderate with early-childhood onset to profound
with congenital onset. Ovarian dysfunction ranges from gonadal dysgenesis (absent or streak gonads) manifesting
as primary amenorrhea to primary ovarian insufficiency (POI) defined as cessation of menses before the age of 40.
Fertility in affected males is reported as normal. Neurological features described in some affected women include
developmental delay or intellectual disability, cerebellar ataxia, and motor and sensory peripheral neuropathy [145].
The diagnosis is confirmed by the presence of biallelic pathogenic variants in the genes HARS2, HSD17B4, LARS2,
ERAL1, or CLPP. The fact that these seemingly different molecular mechanisms of mitochondrial translation can
result in very similar, characteristic phenotypes raise the possibility of some common mechanisms.

Mitoribosomal structure and assembly: MRPL3, MRPS16,
MRPS22, MRPL44, MRPL12, MRPS34, ERAL1
Autosomal recessive mutations in nuclear encoded mitochondrial ribosomal proteins are rare and cause severe,
infantile onset disease with growth retardation, neurological phenotypes (MRPL3, MRPS16, MRPS22, MRPL12,
MRPS34) and cardiac involvement (MRPL3, MRPL44) (Table 4) [10]. Autosomal recessive mutations in the riboso-
mal assembly factor ERAL1 have been associated with Perrault syndrome [145].
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Table 5 Mitochondrial translation initiation, elongation, termination, and release factors and translational activators

Gene Protein Clinical presentation Age of onset
Mode of

inheritance OMIM References

GFM1 Elongation factor G 1,
mitochondrial (EFG1mt)

Encephalopathy with or without
liver involvement

Neonatal AR 609060 Coenen et al. (2004) [158]
Valente et al. (2007) [159]
Smits et al. (2011) [160]

TUFM Elongation factor Tu,
mitochondrial (EF-TUmt)

Lactic acidosis,
leukoencephalopathy, and
polymicrogyria

Neonatal AR 610678 Valente et al. (2007) [159]
Kohda et al. (2016) [161]

TSFM Elongation factor Ts,
mitochondrial (EF-Tsmt)

Encephalomyopathy, hypertrophic
cardiomyopathy

Neonatal or
childhood

AR 610505 Smeitink et al. (2006) [162]
Smits et al. (2011) [160]
Shamseldin et al. (2012) [163]
Ahola et al. (2014) [164]

RMND1 Regulator of microtubule
dynamics 1

Deafness, myopathy, renal
involvement, cardiomyopathy and
a severe biochemical defect
Combined oxidative
phosphorylation deficiency -11

neonatal AR 614917
614922

Janer et al. (2012) [144]
Garcia-Diaz et al. (2012) [145]
Taylor et al. (2014) [99]
Janer et al. (2015) [165]
Gupta et al. (2016) [166]
Ravn et al. (2016) [159]
Vinu et al. (2018) [167]

C12orf65 Chromosome 12 ORF 65 Leigh syndrome, optic atrophy,
ophthalmoplegia
Spastic paraplegia with optic
atrophy and axonal neuropathy
(SPG55)

Infantile AR 613559 Antonicka et al. (2010) [156]
Pyle et al. (2014) [168]
Shimazaki et al. (2012) [157]
Spiegel et al. (2014) [169]

TACO1 Translational activator of
COX1

Leigh syndrome Juvenile AR 612958 Weraarpachai et al. (2009) [170]
Makrythanasis et al.(2014) [171]

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive.

Translation initiation and elongation factors: GFM1, TUFM,
TSFM, RMND1
The diseases caused by mutations in these factors are severe neonatal or infantile onset rare diseases affecting the
brain (GFM1, TUFM, TSFM, RMND1), liver (GFM1), heart (TSFM), and other organs (RMND1) (Table 5) [11].
There are no diseases linked to mutations in translation termination factors to date. The most frequent gene defect
in this group is caused by mutations in RMND1 leading to a severe defect of mitochondrial translation in all tissues.
The RMND1 gene encodes an integral inner membrane mitochondrial protein that assembles into a large 240-kDa
complex to support translation of the 13 polypeptides encoded on mtDNA [155,156]. Clinical and genetic features
of 32 RMND1 patients from 21 pedigrees are hypotonia and developmental delay (75%), sensori-neural hearing loss
(72%), nephropathy (53%), failure to thrive (53%), seizures (44%), microcephaly (41%), and spasticity (19%) [157].
The disease usually starts early, before 2 years of life, but patients with renal involvement show a later onset, better
prognosis, and longer survival [157]. Four patients were successfully treated with kidney transplantation with a good
clinical response.

Release factors: C12orf65
The C12orf65 gene encodes a protein that is critical for the release of newly synthesized proteins from mitochon-
drial ribosomes and its deficiency was reported in patients with Leigh syndrome and optic atrophy [172], in autoso-
mal recessive hereditary spastic paraplegia 55 (SPG55) [168] or Charcot-Marie-Tooth disease type 6 [169], or Behr’s
syndrome (optic atrophy, spastic paraparesis, motor neuropathy, ataxia, ophthalmoparesis) [170]. The spectrum of
C12orf65-related phenotypes includes the triad of early-onset optic atrophy, axonal neuropathy, and spastic para-
paresis as key clinical features [170,173].

Translational activators: TACO1
As mammalian mt-mRNAs do not have significant 5′ UTRs, alternate mechanisms exist to promote their transla-
tion. A defect in the translational activator of the mtDNA-encoded COX I subunit has been identified in a pedi-
gree segregating late-onset Leigh syndrome and cytochrome c oxidase (COX) deficiency [174]. A single homozygous
one-base-pair insertion has been identified in one large consanguineous Turkish family with teenage onset Leigh
syndrome, cognitive decline, dystonia, and optic atrophy in TACO1 for translational activator of COX I [174,175].
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No other mutations have been reported to date worldwide to confirm the phenotype. However, our group has de-
tected the previously described TACO1 mutation in an additional consanguineous Turkish family (unpublished).
The clinical phenotype in patients has been supported by the Taco1 mutant mice, which develop a late-onset visual
impairment, motor dysfunction, and cardiac hypertrophy [176].

Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mito-
chondria and causes respiratory-chain deficiency.

Other mechanisms affecting mitochondrial translation
Abnormal import of RNA into the mitochondria: PNPT1
PNPT1 encodes the mitochondrial polynucleotide phosphorylase (PNPase), which is predominantly localized in the
mitochondrial intermembrane space and is a 3′–5′ exoribonuclease which acts together with SUV3 to form the RNA
degradosome within the mitochondrial matrix [177]. Two siblings with severe encephalomyopathy, choreoathetotic
movements, and combined respiratory-chain defects carried a homozygous PNPT1 missense mutation (c.1160A>G),
which disrupts the trimerization of the protein. A defect of mitochondrial translation has been detected in the pa-
tient’s fibroblasts. Recently additional patients have been reported with recessive PNPT1 mutations and the clinical
presentation of early onset of severe axonal neuropathy, optic atrophy, intellectual disability, auditory neuropathy, and
chronic respiratory and gut disturbances [178], and severe Leigh syndrome [179]. Specific RNA processing interme-
diates derived from mitochondrial transcripts of the ND6 subunit of Complex I, as well as small mRNA fragments,
accumulated in the subject’s myoblasts indicates that PNPase activity is essential for the correct maturation of the
ND6 transcript [179].

Modification of rRNAs: MRM2
A homozygous missense mutation (c.567G>A; p.Gly189Arg) has been identified in a 7-year-old Italian boy with the
clinical presentation of childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes with mul-
tiple OXPHOS deficiency in skeletal muscle. MRM2 encodes an enzyme responsible for 2′-O-methyl modification
at position U1369 in the human mitochondrial 16S rRNA. Although a confirmation of the clinical phenotype in a
second independent patient is still lacking, it is possible that mutations in MRM2 cause a MELAS-like phenotype,
and suggests the genetic screening of MRM2 in patients with a m.3243 A > G negative MELAS-like disease [180].

Summary
• Here we have illustrated the large variety of clinical presentations caused by defects of mitochon-

drial translation. More detailed understanding of the molecular mechanisms involved in mitochondrial
translation may reveal some insights on the tissue specific phenotypes. Processing and modifica-
tions of mt-tRNAs may provide novel approaches to develop treatment to defects of mitochondrial
translation.

• It has been recently shown that supplementation with cysteine (L-cysteine and N-acetyl-cysteine)
improves mitochondrial translation in patients with reversible mitochondrial disease (TRMU,
mt-tRNAGlu) and with m.3243A>G and m.8344A>G frequent mt-tRNA mutations [181], as absence
of post-transcriptional modifications at the wobble positions of mt-tRNAs for LeuUUR and Lys has
been related to MELAS and myoclonic epilepsy with ragged-red fiber (MERRF), respectively.

• As another novel approach, leucyl tRNA synthetase is able to partially rescue defects caused by
mutations in non-cognate mt-tRNAs and furthermore, a C-terminal peptide alone can enter mito-
chondria and interact with the same spectrum of mt-tRNAs as the entire synthetase in intact cells
[182,183]. These data support the possibility that a small peptide may correct the biochemical defect
associated with many mt-tRNA mutations, inferring a novel therapy for these disorders.
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