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Abstract: The inoculum effect (IE) is a well-known phenomenon with beta-lactams. At the same
time, the IE has not been extensively studied with carbapenem/carbapenemase inhibitor combi-
nations. The antibiotic-to-inhibitor concentration ratio used in susceptibility testing can influence
the in vitro activity of the combination. To explore the role of these factors, imipenem/relebactam
and doripenem/relebactam MICs were estimated against six Klebsiella pneumoniae carbapenemase
(KPC)-producing Klebsiella pneumoniae strains at standard inocula (SI) and high inocula (HI) by two
methods: with a fixed relebactam concentration and with a fixed, pharmacokinetic-based carbapenem-
to-relebactam concentration ratio. The combination MICs at HI, compared to SI, increased with most
of the tested strains. However, the IE occurred with only two K. pneumoniae strains regardless of the
MIC testing method. The relationship between the MICs at SI and the respective inoculum-induced
MIC changes was observed when the MICs were estimated at pharmacokinetic-based carbapenem-
to-relebactam concentration ratios. Thus, (1) IE was observed with both carbapenem/relebactam
combinations regardless of the MIC testing method; however, IE was not observed frequently among
tested K. pneumoniae strains. (2) At HI, carbapenem/relebactam combination MICs increased to levels
associated with carbapenem resistance. (3) Combination MICs determined at pharmacokinetic-based
carbapenem-to-inhibitor concentration ratios predict susceptibility elevations at HI in KPC-producing
K. pneumoniae.

Keywords: inoculum effect; beta-lactams; beta-lactamase inhibitors; imipenem; doripenem; relebactam;
Klebsiella pneumoniae

1. Introduction

Beta-lactam/beta-lactamase inhibitor combinations are widely used to treat infections
caused by Gram-negative bacteria that produce beta-lactamases. Imipenem/relebactam is a
recently approved combination effective against carbapenem-resistant Klebsiella pneumoniae
carbapenemase (KPC)-producing Klebsiella pneumoniae [1–3]. As was shown in numerous
in vitro studies, relebactam effectively restores the antibacterial activity of imipenem against
carbapenem-resistant bacteria [4–6]. However, it is not yet clear whether the antibacterial
activity of imipenem/relebactam is maintained at high bacterial inocula (HI, is about
107–108 CFU/mL), i.e., significantly higher than that used in standard in vitro susceptibility
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(MIC) testing experiments (SI, 5 × 105 CFU/mL), or whether an inoculum effect (IE)
occurs. The IE describes a significant decrease in antibacterial activity of antibiotics at high
bacterial inocula and is a well-known phenomenon for beta-lactams [7–9]. In Gram-negative
bacteria, the prevalent mechanism of resistance that mediates the IE is the production of
beta-lactamase enzymes. Knowledge about IE could be crucial in treating high-burden
bacterial infections as lowered antibacterial activity may be responsible for unexpected
antibiotic treatment failures. For example, treatment failure in patients with staphylococcal
bacteremia has been reported with cefazolin due to the IE [10,11]. In another in vivo study
with piperacillin/tazobactam, this combination was prone to the IE [12]. Of note, the IE
has not been extensively studied with carbapenem/carbapenemase inhibitor combinations,
particularly with imipenem/relebactam. In this respect, the combination of doripenem,
another carbapenem antibiotic, with relebactam is also of interest.

Along with IE, another factor that can influence the in vitro activity of beta-lactam/beta-
lactamase inhibitor combinations is the concentration ratio of drugs used in susceptibility
testing experiments. Antibacterial activity of imipenem/relebactam is routinely determined
by varying imipenem concentrations in the presence of a fixed relebactam concentration [13].
However, this traditional approach to MIC determinations for antibiotic/inhibitor com-
binations leads to arbitrary antibiotic-to-inhibitor concentration ratios that do not always
correspond to those achieved in humans. Our group recently proposed a pharmacokinetic-
based (PK-based) approach to determining MICs of antibiotic/inhibitor combinations [14].
The antibacterial effects of imipenem/relebactam and doripenem/relebactam combinations
in time-kill experiments were accurately predicted by MICs determined using PK-based
antibiotic-to-inhibitor concentration ratios. In addition, it was confirmed that the PK-based
approach could predict the efficacy of antibiotic/antibiotic combinations in series of pharma-
codynamic experiments using an in vitro dynamic model with Gram-positive [15–17] and
Gram-negative [18] bacteria.

To explore if the IE occurs and if the carbapenem-to-inhibitor concentration ratio
influences the in vitro activity of antibiotic/inhibitor combinations, we evaluated MICs
of imipenem and doripenem used alone or in combination with relebactam against KPC-
producing K. pneumoniae strains at standard and high-density inocula by the traditional
method at a fixed relebactam concentration and using a pharmacokinetic-based carbapenem-
to-inhibitor concentration ratio.

2. Materials and Methods
2.1. Antimicrobial Agents and Bacterial Strains

Imipenem monohydrate and doripenem hydrate powders were purchased from Acros
Organics (Fair Lawn, NJ, USA). Relebactam was purchased from Invivochem (Libertyville,
IL, USA). Six blaKPC-positive, by PCR, non-mucoid K. pneumoniae strains with different
susceptibility to imipenem and doripenem were used in the study: two clinical isolates,
K. pneumoniae 14 and 16, and four ATCC K. pneumoniae strains (KPC reference strains),
BAA-1705, BAA-1902, BAA-1904, and BAA-1905. K. pneumoniae ATCC 700,603 was used as
a negative control. Before each test, carbapenemase production was confirmed for each
bacterial strain by a modified carbapenem-inactivation method [19].

2.2. Susceptibility Testing

Susceptibility testing for antibiotics and inhibitor used alone or in combination was
performed using broth microdilution techniques with standard inocula of approximately
5 × 105 CFU/mL (SI) and at high inocula of 5 × 107 CFU/mL (HI). When used alone, MICs
at SI were determined according to standard CLSI recommendations [13]. When the MICs
(for single carbapenems and their combination with relebactam) were determined at HI,
bacterial growth was quantified by optical density at 600 nm (OD). ODs were estimated
before and after 18 h of incubation at 37 ◦C. The MIC was the dilution at which the 18 h OD
was equal to or less than that at time 0. An inoculum effect was defined as an eight-fold or
greater increase in MIC when tested with the HI relative to SI. For carbapenem/relebactam
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combinations, MIC testing was performed under two different conditions, as determined
by method 1 or method 2 regarding the ratio of imipenem or doripenem to relebactam.
Before reading, plates were incubated at 37 ◦C for 18 h. MIC values were obtained at least
in triplicate, and the modal MICs were estimated.

Method 1 (standard, MIC1): MIC testing for imipenem/relebactam used a fixed relebac-
tam concentration of 4 mg/L with doubling dilutions of imipenem according to CLSI recom-
mendations [13]. With doripenem/relebactam, the susceptibility testing recommendations
are absent, so the MIC testing procedure was the same as with imipenem/relebactam.

Method 2 (PK-based, MIC2): MIC testing for imipenem/relebactam and doripenem/releba
ctam combinations used a fixed PK-based carbapenem-to-relebactam concentration ratio of
1.5/1 by varying the carbapenem and relebactam concentrations in parallel for each subsequent
dilution. This concentration ratio is equal to the therapeutic 24 h area under the concentration–
time curve (AUC) ratio of imipenem or doripenem (for a 500 mg dose of each carbapenem
every 6 h [20,21]) to the therapeutic AUC of relebactam (for a 250 mg dose every 6 h [21]). The
PK-based ratio was equal for imipenem/relebactam and doripenem/relebactam combinations
as both carbapenems are characterized by similar pharmacokinetic profiles.

The MIC breakpoints for imipenem and imipenem/relebactam susceptibility testing
were used according to CLSI recommendations [22]. For the doripenem/relebactam combi-
nation, MICs were interpreted using CLSI breakpoints for doripenem. The carbapenem
MIC breakpoints for HI were the same as for SI. In all cases, the interpretive criteria for
susceptibility were as follows: susceptible, ≤1 mg/L; intermediate, 2 mg/L; resistant,
≥4 mg/L.

3. Results
3.1. Susceptibility Testing with Single Imipenem and Doripenem

Imipenem and doripenem MICs for carbapenemase-producing K. pneumoniae strains
varied from 4 to 64 mg/L and from 4 to 128 mg/L, respectively, when estimated at SI
(Table 1). At HI, MICs of both antibiotics were higher, and decreased susceptibility was
more pronounced with imipenem (4- to 64-fold) than with doripenem (2- to 16-fold). The
IE was observed in four of six K. pneumoniae strains exposed to imipenem and in three of
six strains exposed to doripenem.

Table 1. MICs (mg/L) of imipenem and doripenem at standard inoculum (SI) and high inoculum
(HI) density against K. pneumoniae.

K. pneumoniae Strain
Imipenem Doripenem

MICSI MICHI MICHI/MICSI MICSI MICHI MICHI/MICSI

14 16 512 32 * 16 64 4

16 64 256 4 128 128 1

BAA-1705 8 256 32 * 8 64 8 *

BAA-1902 64 256 4 64 128 2

BAA-1904 8 512 64 * 4 64 16 *

BAA-1905 8 512 64 * 8 64 8 *

* MIC changes associated with the inoculum effect (IE).

It is worth noting that 8- to 64-fold increases in carbapenem MICs at HI were ob-
served against K. pneumoniae strains that were initially more susceptible to imipenem and
doripenem (MICs at SI of 8 and 16 mg/L and of 4 and 8 mg/L, respectively). Less pro-
nounced density-related MIC elevations (4-fold with imipenem and 2-fold or no increase
with doripenem) occurred with two strains that were highly resistant to both carbapenems
(MICs at SI of 64 or 128 mg/L).
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3.2. Susceptibility Testing with Imipenem and Doripenem at Fixed Relebactam Concentration
(Method 1)

At SI, all tested K. pneumoniae strains were susceptible to both carbapenems when
relebactam was added, and respective MIC1s were 0.25 to 0.5 mg/L for imipenem and 0.06
to 1 mg/L for doripenem (Table 2).

Table 2. MICs (mg/L) of imipenem and doripenem in combination with relebactam at standard
inoculum (SI) and high inoculum (HI) density against K. pneumoniae.

K. pneumoniae Strain
Imipenem/Relebactam Doripenem/Relebactam

MIC1,SI MIC1,HI MIC1,HI/MIC1,SI MIC1,SI MIC1,HI MIC1,HI/MIC1,SI

14 0.25 1 4 0.25 1 4

16 0.5 2 4 1 2 2

BAA-1705 0.25 1 4 0.06 0.5 8 *

BAA-1902 0.5 2 4 0.5 2 4

BAA-1904 0.5 4 8 * 0.125 0.5 4

BAA-1905 0.25 2 8 * 0.06 0.5 8 *

MIC2,SI MIC2,HI MIC2,HI/MIC2,SI MIC2,SI MIC2,HI MIC2,HI/MIC2,SI

14 2 4 2 2 4 2

16 4 4 1 8 8 1

BAA-1705 1 4 4 1 4 4

BAA-1902 2 4 2 2 4 2

BAA-1904 1 8 8 * 0.5 4 8 *

BAA-1905 1 8 8 * 1 8 8 *

* MIC changes associated with the inoculum effect (IE).

At HI, the imipenem MICs against K. pneumoniae in the presence of relebactam in-
creased 4- to 8-fold (MICs of 1–4 mg/L); as a result, for two K. pneumoniae strains (BAA-1904
and BAA-1905), the IE was observed. Similar results were obtained with doripenem: MICs
increased 2- to 8-fold (MICs of 0.5–2 mg/L) and the IE was observed for K. pneumoniae
strains BAA-1705 and BAA-1905. With an increase in MIC1s at HI, which was observed for
all K. pneumoniae strains, two of six strains became imipenem-intermediate (16, BAA-1705
and BAA-1902; MIC of 2 mg/L) and one became imipenem-resistant (BAA-1904; MIC of
4 mg/L). The patterns of K. pneumoniae carbapenem susceptibility at HI in the presence of
relebactam at fixed concentration placed alongside CLSI MIC breakpoints are shown in
Figure 1a,b. With doripenem, two of six K. pneumoniae strains at HI had a MIC1 of 2 mg/L
(16 and BAA-1902); therefore, intermediate carbapenem resistance was defined.

3.3. Susceptibility Testing at PK-Based Carbapenem-to-Relebactam Concentration Ratio (Method 2)

At SI, MIC2s were higher than MIC1s for all K. pneumoniae strains: 1–4 versus 0.25–0.5 mg/L
with imipenem and 0.5–8 versus 0.06–1 mg/L with doripenem (Table 2). As seen in the Table,
when exposed to imipenem or doripenem combined with relebactam, three of six K. pneumoniae
strains had MIC2 values that were classified as carbapenem-intermediate (MIC of 2 mg/L for
14 and BAA-1902) or resistant (MIC of 4 and 8 mg/L for 16).

At HI, density-related MIC2 elevations led to even lower K. pneumoniae carbapenem
susceptibility, and all strains became imipenem- or doripenem-intermediate or resistant
(Figure 1c,d and Table 2). Similar to MIC1s, MIC2s at SI and HI reached an 8-fold difference
and the IE was detected for two K. pneumoniae strains (BAA-1904 and BAA-1905) with
both carbapenems.



Biomedicines 2022, 10, 1454 5 of 10Biomedicines 2022, 10, x FOR PEER REVIEW 5 of 11 
 

 

Figure 1. The susceptibility of K. pneumoniae to imipenem (a,c) and doripenem (b,d) in the presence 

of relebactam. The interpretive criteria for susceptibility were as follows: susceptible, ≤1 mg/L; in-

termediate, 2 mg/L; resistant, ≥4 mg/L. 

3.3. Susceptibility Testing at PK-Based Carbapenem-to-Relebactam Concentration Ratio  

(Method 2) 

At SI, MIC2s were higher than MIC1s for all K. pneumoniae strains: 1–4 versus 0.25–0.5 

mg/L with imipenem and 0.5–8 versus 0.06–1 mg/L with doripenem (Table 2). As seen in 

the Table, when exposed to imipenem or doripenem combined with relebactam, three of 

six K. pneumoniae strains had MIC2 values that were classified as carbapenem-intermediate 

(MIC of 2 mg/L for 14 and BAA-1902) or resistant (MIC of 4 and 8 mg/L for 16). 

At HI, density-related MIC2 elevations led to even lower K. pneumoniae carbapenem 

susceptibility, and all strains became imipenem- or doripenem-intermediate or resistant 

(Figure 1c,d and Table 2). Similar to MIC1s, MIC2s at SI and HI reached an 8-fold difference 

and the IE was detected for two K. pneumoniae strains (BAA-1904 and BAA-1905) with 

both carbapenems. 

4. Discussion 

In the current study, carbapenemase-producing K. pneumoniae strains were exposed 

to imipenem and doripenem at HI (5 × 107 CFU/mL) and the IE was observed against 

strains with initial carbapenem MICs of 4 to 16 mg/L. MIC elevations were 8- to 64-fold. 

Carbapenem susceptibility of K. pneumoniae strains highly resistant to imipenem and dor-

ipenem (MICs 64 and 128 mg/L at SI) also decreased at HI, but the IE was not observed. It 

is possible that the carbapenemase enzymes may be potentiated more at increased inocula 

in strains with lower MICs than in highly resistant strains. 

Assuming these patterns of carbapenem susceptibility at HI, we examined whether 

there is any relationship between the bacterial susceptibility at SI and the exhibited eleva-

tions in MIC at high inocula. Imipenem and doripenem MICs against K. pneumoniae strains 

Figure 1. The susceptibility of K. pneumoniae to imipenem (a,c) and doripenem (b,d) in the presence
of relebactam. The interpretive criteria for susceptibility were as follows: susceptible, ≤1 mg/L;
intermediate, 2 mg/L; resistant, ≥4 mg/L.

4. Discussion

In the current study, carbapenemase-producing K. pneumoniae strains were exposed
to imipenem and doripenem at HI (5 × 107 CFU/mL) and the IE was observed against
strains with initial carbapenem MICs of 4 to 16 mg/L. MIC elevations were 8- to 64-fold.
Carbapenem susceptibility of K. pneumoniae strains highly resistant to imipenem and
doripenem (MICs 64 and 128 mg/L at SI) also decreased at HI, but the IE was not observed.
It is possible that the carbapenemase enzymes may be potentiated more at increased inocula
in strains with lower MICs than in highly resistant strains.

Assuming these patterns of carbapenem susceptibility at HI, we examined whether
there is any relationship between the bacterial susceptibility at SI and the exhibited ele-
vations in MIC at high inocula. Imipenem and doripenem MICs against K. pneumoniae
strains at SI were compared with the respective inoculum-related MIC changes and were
expressed as the ratio of antibiotic MIC at HI to MIC at SI—MICHI/MICSI. As seen in
Figure 2, there was a clear relationship: the lower the imipenem and doripenem MICs at
SI, the greater the respective MIC elevations at HI. In general, imipenem alone was more
prone to the IE than doripenem, as imipenem MIC elevations associated with the IE were
always higher. Similar imipenem inoculum-related MIC increases (32-fold and higher) for
KPC-producing K. pneumoniae strains were described in several in vitro studies [23,24].
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Figure 2. The MICs of imipenem (a) and doripenem (b) against K. pneumoniae at standard inoculum
density (bars) and respective changes in the susceptibility at high inoculum density (circles). The
dashed lines indicate the lower level of MIC changes associated with the inoculum effect (IE, ≥8-fold).

Carbapenem MICs decreased significantly in the presence of relebactam both at SI
and HI. At the same time, bacterial susceptibility to antibiotic/inhibitor combinations
differed between these inocula. At HI, the 2- to 8-fold MIC elevations were detected
compared to respective combination MICs at SI. However, IE was observed for only two
K. pneumoniae strains regardless of the combination MIC testing method. In previous stud-
ies, diminished activity at high inocula was reported for piperacillin/tazobactam [25–28],
amoxicillin/clavulanate [26], ampicillin/sulbactam and ticarcillin/clavulanate [25], cef-
tazidime/avibactam [29,30], aztreonam/avibactam [30], and several cephalosporin/clavula
nate combinations [31] against Enterobacteriaceae, including K. pneumoniae. Piperacillin/tazo
bactam, ticarcillin/clavulanate, and aztreonam/avibactam combinations were prone to
the inoculum effect, while for with other antibiotic/inhibitor combinations, the IE was not
registered at all (ceftazidime/avibactam) or was observed only for a minority of tested
isolates. Our data with imipenem/relebactam and doripenem/relebactam combinations
demonstrated similar patterns.

Although in the current study the IE was observed only in some tested K. pneumoniae
strains, density-related combination MIC elevations (2- to 8-fold) were found in most of
them. Thus, at high inocula, carbapenem MICs in the presence of relebactam (especially
when estimated at the pharmacokinetic-based concentration ratio) increased to levels
associated with carbapenem resistance (according to the CLSI breakpoints [22]). Hence,
even slightly diminished activity of carbapenem/relebactam combinations at high inocula
(i.e., less than 8-fold) should be considered a risk factor for decreased treatment efficacy of
high-burden bacterial infections and possible treatment failure.

It would be interesting to know if the decrease in carbapenem susceptibility in the pres-
ence of relebactam at increased inocula related to MICs at SI, similar to that observed with sin-
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gle imipenem and doripenem, could be found. To answer this question, the combination MICs
at SI against K. pneumoniae strains determined by two methods were compared with the respec-
tive inoculum-related MIC changes (expressed as ratio of MIC1 or MIC2 at HI to MIC1 or MIC2
at SI—MIC1,HI/MIC1,SI or MIC2,HI/MIC2,SI, respectively). As seen in Figure 3a, consistency
between the carbapenem/inhibitor MIC1s at SI and the MIC1,HI/MIC1,SI ratio was not ob-
served. Similar observations were made in other in vitro studies with Gram-negative bacteria,
and several combinations of cephalosporin/clavulanate [31] and piperacillin/tazobactam [26]
(all had a fixed inhibitor concentration) were analyzed. There was no relationship between
the density-related MIC elevations and the susceptibility of K. pneumoniae or Escherichia coli to
tested beta-lactam/beta-lactamase inhibitor combinations at SI.
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Figure 3. MIC1 (a) and MIC2 (b) values of imipenem (blue bars) and doripenem (orange bars) in
the presence of relebactam against K. pneumoniae at standard inoculum density and changes in the
susceptibility at high inoculum density (circles). The dashed lines indicate the lower level of MIC
changes associated with the inoculum effect (IE, ≥8-fold).

However, a relation was found between MIC2s (at SI) and the respective MIC2,HI/MIC2,SI
ratio (Figure 3b): the higher the carbapenem/relebactam MIC2 at SI, the less likely that density-
related MIC2 changes would be observed. With K. pneumoniae strains for which MIC2s at
SI were highest (4 or 8 mg/L), no diminished activity of the combination was detected at
HI. Therefore, with imipenem/relebactam and doripenem/relebactam combinations, similar
susceptibility patterns at HI were observed as with imipenem and doripenem alone. This could
likely be explained by the inoculum-potentiated beta-lactamases in low-MIC strains that are
not blocked by the same inhibitor concentration at SI. It is possible that alternative resistance
mechanisms could contribute to resistance to imipenem and doripenem combinations with
relebactam at HI. For example, in another in vitro study with KPC-producing K. pneumoniae
that exhibited a carbapenem-susceptibility phenotype, rapid inoculum-induced high-level
imipenem resistance was mediated by the essential coordination between blaKPC and OmpK36
expression [23]. Similar resistance mechanisms with coordination of blaKPC and mutations
affecting the genes encoding porins were found in KPC-producing K. pneumoniae isolates with
decreased susceptibility to imipenem/relebactam combinations (MIC of 2 mg/L or higher).
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Moreover, the same mechanisms of K. pneumoniae resistance to combinations of imipenem
with relebactam were also described in vivo. It was reported that the K. pneumoniae clinical
isolate initially susceptible to imipenem/relebactam acquired resistance to this combination
during antimicrobial therapy of a hematology patient with a bloodstream infection [32]. The
resistance mechanism of this K. pneumoniae isolate was associated with an increased blaKPC-3
copy number and disruptions of porins (OmpK35 and OmpK36).

The relation between the MIC2 at SI and the MIC2,HI/MIC2,SI ratio indicates that the
use of a PK-based approach to carbapenem/inhibitor combination MIC determination
predicts MIC elevations at HI and the probability of the IE in carbapenemase-producing
K. pneumoniae.

In our previous study [14], the predictive potential of MIC testing at PK-based
carbapenem-to-relebactam concentration ratios regarding the antibacterial effectiveness of
imipenem/relebactam and doripenem/relebactam combinations against KPC-producing
K. pneumoniae was demonstrated. In contrast to the standard approach to MIC determina-
tion using a fixed relebactam concentration, the PK-based approach allowed a significant
correlation between the C/MIC parameter (the ratio of carbapenem concentration in the
time-kill experiments and the culture MIC) and the antibacterial effect. These data sug-
gest that MIC determinations at PK-based carbapenem-to-relebactam concentration ratios
might be better in vitro predictors of antibacterial effects than MICs determined at a fixed
concentration of relebactam, i.e., at an arbitrary antibiotic/inhibitor ratio. We believe that
the PK-based approach could be a reliable tool for susceptibility testing of carbapenemase-
producing K. pneumoniae strains at both SI and HI. Pharmacodynamic experiments with
imipenem/relebactam and doripenem/relebactam combinations at SI and HI in in vitro
dynamic models are needed to further validate the PK-based approach to determine car-
bapenem/relebactam MIC and IE determinations with different bacterial inocula.

Our study has several limitations. It did not include many K. pneumoniae strains,
and additional studies with other K. pneumoniae isolates and with other Gram-negative
bacteria are necessary to fully evaluate the IE using standard methods and the PK-based
approach. Moreover, we did not determine if the K. pneumoniae strains used in the study are
biofilm producers. Previously, it was reported that this bacterial feature could significantly
influence the antibiotic susceptibility and treatment outcome [33]. This limits the potential
clinical relevance of our findings. In addition, the subsequent studies with a wide range of
antibiotic/inhibitor combinations would enhance the generalizability of our results. We did
not investigate the resistance mechanisms exhibited by K. pneumoniae strains at increased
inocula to confirm our assumptions about prevalent mechanisms of imipenem/relebactam
and doripenem/relebactam resistance at HI.

5. Conclusions

In the current study, we evaluated the IE with carbapenem/carbapenemase inhibitor
combinations. Previously, the IE was shown to appear with beta-lactams and beta-lactam/beta-
lactamase combinations. According to our findings, the IE was observed with both car-
bapenem/relebactam combinations regardless of the MIC testing method; however, IE was
not prevalent among the tested KPC-producing K. pneumoniae strains. It seems promising that
relebactam can decrease inoculum-related susceptibility reductions and minimize the impact
of the IE. At the same time, although imipenem/relebactam and doripenem/relebactam com-
binations were less prone to the IE compared to single antibiotics, at the HI, carbapenem MICs
in the presence of relebactam increased to levels associated with carbapenem resistance (espe-
cially with the PK-based concentration ratio). In the current study, we also reported that the use
of a PK-based approach to carbapenem/inhibitor combination MIC determinations allows the
prediction of MIC elevations at HI and the probability of the IE in carbapenemase-producing
K. pneumoniae strains. Accordingly, it can be hypothesized that using the PK-based approach
could allow a more realistic assessment of carbapenem susceptibility in KPC-producing
K. pneumoniae strains and might be a helpful option to evaluate treatment failures due to IE
with carbapenem/carbapenemase inhibitor combinations.
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