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The oil content (OC) of soybean is a critical trait with important applications in the development of 
both food and industrial products. Consequently, enhancing OC has consistently remained a significant 
objective in soybean breeding programs. In this research, a four-way recombinant inbred line (FW-
RIL) population containing 144 lines developed from the cross (Kenfeng14 × Kenfeng15) × (Kenfeng19 
× Heinong48) was planted in ten environments to investigate the phenotypic data for OC in seeds. 
On the basis of the genotype data for 109,676 nonredundant single-nucleotide polymorphism (SNP) 
markers obtained in previous studies, important quantitative trait nucleotides (QTNs) controlling 
OC in soybean were identified via five multilocus genome-wide association study (GWAS) methods. 
A total of 54 significant QTNs were detected by the five methods, including 21 QTNs identified 
by multiple methods and 2 QTNs detected in two environments. By combining pathway analysis, 
transcriptome sequencing and gene annotation information, two candidate genes, Glyma.18G027100 
and Glyma.03G021800, which are likely related to oil synthesis and metabolism in soybean seeds, were 
identified, and they were then verified via haplotype analysis. Additionally, 12 of the 23 important 
QTNs were found for the first time in this study. These results not only contribute to the understanding 
of the genetic control of OC in soybean seeds but are also helpful in marker-assisted selection (MAS) for 
breeding high-oil varieties of soybean.
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 Soybean (Glycine max(L.) Merr.) is the second largest source of vegetable oil in the world, and its consumption 
has increased rapidly as the population has grown, the standard of living has increased, and diets have changed1. 
Owing to the limited availability of agricultural land, increasing the oil content (OC) of soybean seeds has long 
been a very important goal for breeders.

OC is a typical quantitative trait that is controlled by multiple genes and is affected by the environment. To 
improve the efficiency of genetic breeding, studies for mapping quantitative trait loci (QTLs) and nucleotides 
(QTNs) and mining genes associated with OC have been conducted. To date, 315 QTLs and 93 QTNs related 
to the OC of soybean have been identified in SoyBase (https://soybase.org). Furthermore, 7, 7, 23, 24, 10, 5, 14, 
and 5 OC QTLs were detected by Cao et al., Zhang et al., Li et al., Yao et al., Huang et al., Zhu et al., Liu et al. and 
Li et al., respectively2–9, and 6, 14, 15, 44, and 44 OC QTNs were detected by Li et al., Li et al., Wang et al., Li et 
al. and Zhao et al., respectively10–14. Moreover, researchers have identified several genes related to soybean oil 
anabolism, such as GmDof4, GmDof11, GmbZIP123, FAD2-1 A, GmMYB73, GmDREBL, GmNFYA, GmZF351, 
B1, GmOLEO1, GmSWEET39 and GmPDAT15–25. These studies have enhanced our understanding of soybean 
lipid metabolism and provided valuable insights for improving soybean OC.

Genome-wide association study (GWAS) has gained significant traction in recent years26–30, primarily 
because of their ability to refine QTL intervals at the gene level. Additionally, GWAS can be used for a diverse 
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range of populations, thereby overcoming the population constraints inherent in linkage analysis. Multiparent 
advanced generation intercross (MAGIC) populations have more diverse alleles than biparental intermated 
populations do, which could increase the detection power for QTLs and genes. Therefore, an increasing number 
of plant MAGIC populations have been reported13,31–38. This type of population remains amenable to analysis 
through GWAS, which offers greater precision in the identification of genomic regions and genes than linkage 
analysis does. With the expanding utilization of GWAS, a growing number of analytical methods have been 
developed. These methods can be broadly classified into two categories: single-locus GWAS and multilocus 
GWAS. Compared with single-locus GWAS, multilocus GWAS has more advantages, such as the ability to 
identify QTNs for small effects and a low false-positive rate, so it has been used extensively39–43.

In this study, a soybean four-way recombinant inbred line (FW-RIL) population with 144 individuals was 
phenotyped for OC in 10 different environments. Combined with the SNP genotype data, the significant 
QTNs for seed OC in soybean were identified via 5 types of multilocus methods. In the linkage disequilibrium 
(LD) decay region of the common QTNs, the candidate genes involved in seed OC synthesis were selected via 
transcriptome sequencing and gene annotation analysis and then verified via haplotype analysis. This research 
could improve our understanding of the genetic control of seed OC in soybean and support marker-assisted 
selection for breeding soybean with high seed OC.

Results
Phenotype variation analysis
The general descriptive statistics of the OC trait for the 4 parents and the FW-RILs population are presented in 
Table 1; Fig. 1. For the parental lines, the OCs of Kenfeng19 and Heinong48 were lower than those of Kenfeng14 
and Kenfeng15 in all 10 environments. For the FW-RILs, the “Range” (Range = OCMax - OCMin) of the 144 
FW-RILs in 10 environments ranged from 2.96 to 6.18%, and the CV range was 3.07–5.99%. In nearly all 

Fig. 1. Phenotypic variations in the OC of the FW-RIL population in 10 environments. The interquartile 
region, median, and range are represented by the box, the vertical line in the box, and the vertical lines at both 
ends, respectively.

 

Environment

Parentsa FW-RILs

P1 P2 P3 P4 Mean SD Max Min Rangeb Kurt Skew Shapiro-Wilk test (p-value) CVc

E1 21.01 21.46 18.05 18.11 20.35 0.65 21.80 18.12 3.68 0.78 −0.53 0.53 3.19

E2 21.45 21.67 17.65 17.72 20.52 0.63 22.03 19.07 2.96 −0.13 0.16 0.31 3.07

E3 21.11 22.32 18.65 18.32 20.55 0.66 22.06 18.85 3.21 0.57 −0.13 0.50 3.21

E4 21.33 21.54 18.04 16.82 20.69 0.72 22.31 18.57 3.74 1.92 −0.69 0.07 3.48

E5 21.72 21.85 19.01 18.25 20.74 0.92 22.24 19.06 3.18 0.97 −0.15 0.21 4.44

E6 21.25 22.73 17.65 18.82 20.50 0.88 22.30 18.74 3.56 1.51 0.27 0.70 4.29

E7 20.82 21.55 17.61 16.97 19.71 0.87 22.22 17.58 4.64 −0.41 0.06 0.49 4.41

E8 21.05 21.84 19.19 17.76 19.52 0.75 21.56 17.74 3.82 −0.43 0.17 0.10 3.84

E9 21.38 21.51 19.75 18.09 20.40 1.14 24.11 17.93 6.18 0.38 0.32 0.72 5.59

E10 20.57 21.26 18.94 18.03 19.74 1.03 22.40 16.71 5.69 −0.25 −0.12 0.13 5.22

Table 1. Statistical characteristics of OC in the parents and FW-RIL populations grown in ten environments. 
aKengfeng14, Kenfeng15, Kenfeng19 and Heinong48 are indicated by P1, P2, P3 and P4, respectively. bRange 
= OCMax – OCMin. cCV: coefficient of variation, and the unit is %.
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environments, the absolute values of skewness and kurtosis were less than 1. Additionally, the Shapiro-Wilk test 
results demonstrated that p-values exceeded 0.05 across all environments. These findings suggest that the OC 
of the 144 FW-RILs adhered to a normal distribution in these environments (Supplementary Figure S1).  The 
significant positive correlation of OC between different environments revealed that the stable expressed genetic 
basis among various environments (Fig. 2). The ANOVA results demonstrated significant differences among 
the genotypes, environments, and their interactions concerning the OC trait (Table 2). This suggests that the 
population is suitable for identifying QTNs associated with OC, and specific QTNs may be discerned across 
various environmental conditions. The higher broad-based heritability (0.65) was associated with a greater 
probability of identifying stable QTNs in multiple environments.

QTNs identified by multilocus GWAS methods
A total of 54 significant QTNs were identified for OC from the five multilocus GWAS methods in 10 environments 
(Supplementary Table S1). The numbers of significant SNPs detected by pLARmEB, ISIS EM-BLASSO, mrMLM, 
FASTmrMLM and FAST mrEMMA were 27, 21, 21, 21 and 10, respectively (Fig. 3A), and 22 QTNs could be 
detected by multiple methods (Table 3), with the PVE by each QTN ranging from 4.22 to 17.68%. In the 10 
environments, the numbers of significant QTNs were 6, 6, 9, 9, 2, 9, 4, 3, 3 and 5 (Fig. 3B), and two common 
QTNs (qOC-7-1, qOC-18-1) were identified across multiple environments, with the PVE by each QTN ranging 
from 5.52 to 9.20% (Table 3). These 54 significant QTNs were distributed among 19 chromosomes of soybean, of 
which Chr09 had the most significant QTNs, with 9, and no significant QTN was detected on Chr12 (Fig. 3C).

A total of 23 common QTNs (Common QTN means the QTN was detected across multiple GWAS methods 
or in multiple environments) were found in this study (Table 3; Fig. 4). 21 common QTNs were detected by 
at least two methods in a single environment (listed in black font in Table 3); their LOD values ranged from 

Source DF SS MS F P
Variance
component

Environment 9 734.68 81.63 195.50 < 0.0001***

Genotype 143 542.85 3.80 9.09 < 0.0001*** 0.09

Genotype * Environment 1156 1660.05 1.44 3.44 < 0.0001*** 0.34

Error 2618 1093.14 0.42 0.42

h2 0.65

Table 2. Joint ANOVA of the OC of FW-RILs in multiple environments and heritability. ***Indicates 
significance at the 0.001 level.

 

Fig. 2. Correlation analysis of OC in 10 environments. The number at the bottom left represents the 
corresponding correlation coefficient with the dot at the top right. * represents a significant correlation at the 
0.05 level, ** represents a significant correlation at the 0.01 level, and *** represents a significant correlation at 
the 0.001 level.
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QTN Environment Lead-SNP Chromosome
Physical
position (bp)

Attenuation
intervals (bp)

QTN 
Effect 
(%)

LOD
score -LOG10(P)

r2 
(%) a Methodb

Previous 
researchc

qOC-1–3 E7 AX-157,228,720 1 35,397,975 35,297,975 − 35,497,975 −0.34 5.18 5.99 14.62 1,2,3,4,5

qOC-1–4 E9 AX-157,398,461 1 38,536,147 38,436,147 − 38,636,147 −0.44 5.21 6.01 17.68 1,2,3,4,5

qOC-2-1 E6 AX-157,332,596 2 6,333,154 6,233,154-6,433,154 0.14 4.43 5.20 6.41 1,3,4,5

qOC-2-2 E3 AX-157,521,230 2 7,177,292 7,077,292-7,277,292 0.29 4.24 5.00 6.44 3,4 58

qOC-2–3 E3 AX-157,296,705 2 8,264,013 8,164,013 − 8,364,013 0.19 4.56 5.34 12.19 1,2,4 58

qOC-3-1 E7 AX-157,128,483 3 2,311,853 2,211,853-2,411,853 0.21 3.24 3.95 4.22 2,4 2,62

qOC-4-2 E7 AX-117,048,711 4 8,800,699 8,700,699-8,900,699 0.41 4.80 5.59 6.79 2,4

qOC-5-2 E2 AX-157,211,281 5 27,830,491 27,730,491 − 27,930,491 0.17 4.78 5.57 6.73 4,5 60

qOC-7-1 E6, E7 AX-157,110,130 7 8,326,462 8,226,462-8,426,462 0.21 5.20 6.00 5.52 5 63

qOC-7-3 E6 AX-157,587,035 7 38,274,432 38,174,432 − 38,374,432 0.19 5.32 6.13 11.57 1,2,4 71

qOC-8-1 E8 AX-116,922,190 8 935,430 835,430-1,035,430 −0.22 4.53 5.31 6.79 2,3,5

qOC-9-4 E6 AX-157,054,758 9 6,546,371 6,446,371-6,646,371 0.18 4.14 4.90 7.90 1,2,3

qOC-9-6 E6 AX-157,361,651 9 39,700,404 39,600,404 − 39,800,404 0.15 4.73 5.52 4.18 1,4 65

qOC-10-2 E3 AX-157,263,037 10 19,847,286 19,747,286 − 19,947,286 0.16 5.85 6.68 6.69 1,2,4 61

qOC-11-1 E6 AX-157,229,785 11 7,138,176 7,038,176-7,238,176 −0.13 4.36 5.13 5.35 2,4 60

qOC-14-1 E3 AX-157,557,823 14 48,498,737 48,398,737 − 48,598,737 −0.18 6.38 7.23 9.47 1,2,3,4,5 59

qOC-16-1 E1 AX-157,290,592 16 66,892 1–166,892 0.19 4.04 4.79 6.25 1,4,5

qOC-16-2 E1 AX-157,224,595 16 6,773,991 6,673,991-6,873,991 −0.32 4.87 5.66 17.11 1,2,5 62

qOC-16-4 E1 AX-157,132,706 16 37,226,749 37,126,749 − 37,326,749 −0.39 5.78 6.61 9.50 1,3,4,5

qOC-17-3 E8 AX-157,542,830 17 39,971,258 39,871,258 − 40,095,123 0.30 3.99 4.74 10.28 1,2

qOC-17-4 E6 AX-157,586,271 17 41,441,825 41,341,825 − 41,541,825 0.20 5.08 5.88 10.91 1,3,5 66

qOC-18-1 E4, E10 AX-157,333,937 18 2,064,407 1,860,377-2,164,407 −0.36 4.83 5.61 9.20 1,3,5 37

qOC-18-3 E4 AX-157,083,942 18 5,362,484 5,262,484-5,462,484 0.28 7.78 8.66 12.17 3,4,5

Table 3. Twenty-three common QTNs for seed OC in soybean across different methods or in multiple 
environments. ar2 (%), proportion of total phenotypic variation explained by each QTN;. bmrMLM, 
FASTmrMLM, FASTmrEMMA, pLARmEB and ISIS EM-BLASSO are indicated by 1 to 5, respectively;. 
cReported study in the region.

 

Fig. 3. (A) Venn diagram of the total numbers of significant QTNs detected by 5 multilocus GWAS methods. 
(B) The total number of significant QTNs detected in 10 environments across the 5 methods. (C) The total 
number of significant QTNs detected in 10 chromosomes.
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3.24 to 7.78, while the proportion of PVE by each QTN ranged from 4.22 to 17.68%. Two common QTNs were 
identified across multiple environments by single or multiple methods, and detailed information of these two 
QTNs (qOC-7-1, qOC-18-1) were shown in black bold font in Table 3; their LOD values ranged from 4.83 to 5.20, 
and the proportion of PVE by each QTN ranged from 5.52 to 9.20%. For all the 23 common QTNs, the direction 
of effect (positive or negative) of each QTN was consistent across the different methods or environments.

Transcriptome sequencing analysis and qRT-PCR validation
To identify DEGs among soybean varieties with high and low OC, transcriptome sequencing analysis was 
conducted on seeds from 25 days after flowering in KS01, KD31, KD48 and KD57. A total of 5.64 billion raw 
reads were generated from 12 samples, with individual samples ranging from 41.71 to 53.58 million reads. After 
filtering out low-quality and adapter reads, the number of clean reads in each sample ranged from 41.26 to 52.89 
million, accounting for 98.44–99.06% of the raw reads (Supplementary Table S2 and Fig. 5A). The Q30 value 
and GC content ranges were 91.17–92.85% and 45.49–46.59%, respectively, which reflected the high quality of 
the transcriptome sequencing data (Supplementary Table S2). In addition, effective reads, after ribosomal RNA 
removal, were aligned with the reference genome. The results showed that the mapping ratios of the 12 samples 
ranged from 95.75 to 96.55%. (Supplementary Table S3). Principal component analysis (PCA) revealed that the 
samples had excellent repeatability and discrimination (Fig. 5B).

In total, 4559 (KD48-vs-KD31), 7013 (KD48-vs-KS01), 3491 (KD57-vs-KD31) and 11,382 (KD57-vs-KS01) 
DEGs were identified in the comparisons between different groups. There were more upregulated DEGs than 
downregulated DEGs in both “KD48-vs-KS01” and “KD57-vs-KS01”. In “KD48-vs-KD31” and “KD57-vs-
KD31”, the number of upregulated DEGs was slightly lower than that of downregulated DEGs (Fig. 5C).

To validate the transcriptome sequencing results, we randomly selected 10 DEGs and analyzed their 
expression levels in KD31, KD57, KS01 and KD48 via qRT-PCR. The results validated the relevance of the 
transcriptome sequencing data, and the qRT-PCR results were highly consistent (Supplementary Figure S2).

Fig. 4. Distribution of significant QTNs on 14 chromosomes. No common QTN were found in the 
remaining 6 chromosomes (chromosome 06, 12, 13, 15,19 and 20). The common QTNs detected in multiple 
environments are shown in red.
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Potential candidate gene analysis
There were 441 genes in the search scopes for 23 common QTNs, of which a total of 196 genes were highly 
expressed in seeds during lipid formation. Pathway analysis of the 196 genes revealed that 132 genes were 
enriched in 163 pathways. Among these pathways, only 15 were related to the synthesis and metabolism of 
lipids, including glycolysis/gluconeogenesis, the citrate cycle (TCA cycle), fructose and mannose metabolism, 
galactose metabolism, starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, glyoxylate 
and dicarboxylate metabolism, propanoate metabolism and inositol phosphate metabolism, which belong to 
the carbohydrate metabolism pathway; oxidative phosphorylation, photosynthesis-antenna proteins, nitrogen 
metabolism and sulfur metabolism, which belong to energy metabolism; glycerolipid metabolism, which 
belongs to lipid metabolism; and the carbon metabolism pathway (Supplementary Table S4).

A total of 13 genes were associated with these 15 pathways, and 8 genes were differentially expressed 
between the high and low OC varieties of soybean compared with the DEGs of the KD48-vs-KS01, KD57-vs-
KS01, KD48-vs-KD31 and KD57-vs-KD31 groups (Table 4; Fig. 6A). The eight DEGs were Glyma.09G173200, 
Glyma.03G021800, Glyma.14G218800, Glyma.16G213200, Glyma.18G025500, Glyma.18G027100, 
Glyma.11G093200 and Glyma.18G027200.

For WGCNA based on transcriptome sequencing data, genes with similar expression patterns were clustered 
into 20 modules (Fig. 6B). An analysis of the relationship between each module and the OC phenotype revealed 
that MM.darkseagreen 4 (p = 4e-07), MM.violet (p = 2e-04), MM.darkred (p = 0.01) and MM.floralwhite (p = 0.04) 
presented extremely significant positive correlations with OC traits. The module with an extremely significant 
negative correlation with the OC trait was MM.brown 4 (p = 0.003) (Fig. 6B). A correlation analysis of the 8 
DEGs with the above 5 modules was further performed, and 7 of the DEGs (all except Glyma.16G13200) were 
significantly associated with one or more of the 5 modules. Glyma.11G093200 and Glyma.18G027100 presented 
significant or extremely significant positive correlations with 4 modules (red font in Fig. 6C), which presented 
positive correlations with the OC trait, and Glyma.18G027200 presented a significant positive correlation 
with MM.darkred and an extremely significant positive correlation with MM.floralwhite. Glyma.03G021800, 
Glyma.09G173200, Glyma.18G025500 and Glyma.14G218800 presented significant or extremely significant 
positive correlations with the MM.brown 4 module, which was negatively correlated with the OC trait (Fig. 6C). 
Therefore, the seven DEGs (all except Glyma.16G213200) were considered potential candidates for further 
haplotype analysis.

Haplotype analysis
Haplotypes were classified through a natural population that included 141 soybean accessions for which genotypic 
data were available (https://ngdc.cncb.ac.cn/soyomics). Through haplotype analysis of the above 7 DEGs, we 
found that the haplotypes of Glyma.18G027100 and Glyma.03G021800 presented significant differences in OC 
in the natural population. For Glyma.18G027100, two haplotypes were identified on the basis of SNPs at different 
positions in the exonic region: Hap1 ( T A A C A C A T) and Hap2 ( C G G T G G A C) (Fig. 7A). Hap1 presented the 
highest frequency (82%). In the population used for haplotype analysis, the mean OC of Hap1 was significantly 
greater than that of Hap2 (Fig. 7B). These results showed that Hap1 ( T A A C A C A T) of Glyma.18G027100 could 
increase the OC. Three distinct haplotypes were identified from the analysis of Glyma.03G021800: Hap1 (AGGA), 
Hap2 (AGAC) and Hap3 (CAAC) (Fig. 7C). Hap1, comprising 51% of the population, had a significantly greater 
mean OC than the remaining two haplotypes and was an excellent haplotype for enhancing the OC (Fig. 7D). 
In summary, Glyma.18G027100 and Glyma.03G021800 are considered candidate genes related to soybean OC.

Discussion
In this study, the distribution of seed OC followed a normal distribution in the FW-RIL population in all 10 
environments, which indicates that the OC was controlled via a complex genetic basis (Supplementary Figure 
S1). Although the OC had a relatively high h2, the extremely significant variance in genotype×environment 
interaction effects showed that it was difficult to identify stable QTNs in different environments. In the present 
study, only 2 QTNs (qOC-7-1 and qOC-18-1) could be stably detected in multiple environments. qOC-7-1 was 
detected simultaneously in the E6 and E7 environments, and qOC-18-1 was detected simultaneously in the E4 
and E10 environments (Table 3). According to the results of the correlation analysis, E4 and E10 did not exhibit 

Fig. 5. (A) Statistical graph of the clean read proportions. (B) PCA of the twelve samples used for 
transcriptome sequencing. (C) Number of DEGs in these four groups.
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Fig. 6. (A) Expression heatmap of the 8 DEGs in these four groups. The blue represents downregulated 
genes, and the red represents upregulated genes. The white blank represents a nonsignificant difference. The 
genes in red font were upregulated in all the groups, and the genes in blue font were downregulated in all 
the groups, indicating a significant difference in expression. (B) Correlations of the OC trait with WGCNA 
modules. The red color represents a positive correlation, and the blue color represents a negative correlation. * 
represents a significant correlation at the 0.05 level, ** represents a significant correlation at the 0.01 level, and 
*** represents a significant correlation at the 0.001 level. (C) Correlations between modules and 8 DEGs. The 
red color represents a positive correlation, and the blue color represents a negative correlation. * represents a 
significant correlation at the 0.05 level, ** represents a significant correlation at the 0.01 level, and *** represents 
a significant correlation at the 0.001 level.
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a significant correlation (Fig. 2), which indicated that the effects of the E4 and E10 environments on OC differed 
greatly. Therefore, we believe that qOC-18-1 was more stable and more reliable for searching for candidate genes.

However, to avoid the omission of important QTNs due to this environmental impact, we also treated the 
QTNs identified by multiple methods as important target QTNs. In this way, stable environment-specific QTNs 
could be obtained by further reducing false positives, thereby preventing valuable genes from being overlooked. 
Many studies have shown that QTNs identified by multiple methods are reliable and suitable for identifying 
candidate genes42,53–56. The candidate gene Glyma.03G021800 found in this study was identified in qOC-3-1, 
which was detected via two methods.

A total of 23 important QTNs were identified in this study. Among them, 12 QTNs existed in the QTL intervals 
associated with OC in soybean that have been mapped in previous studies: qOC-2-2, qOC-2–3, qOC-3-1, qOC-
5-2, qOC-7-1, qOC-7-3, qOC-9-6, qOC-10-2, qOC-11-1, qOC-14-1, qOC-16-2 and qOC-17-4 (Table 3)2,44–52. In 
addition, we predicted that one significant SNP, AX-157,333,937, is associated with protein content (PC) in a 
previous analysis37, and it was found to be related to OC in soybean seeds in this study (Table 3); thus, AX-
157,333,937, which belongs to qOC-18-1, is related to both PC and OC in soybean seeds. PC and OC are a 
pair of antagonistic traits, and AX-157,333,937 showed that the QTN effect was positive for PC (QTN effect: 
0.48%~0.96%) and negative for OC (−0.23%~−0.16%). It is predicted that AX-157,333,937 is an important QTN 
related to soybean quality traits and may play an important role in the breeding of high-quality soybean.

Through GWAS, transcriptomic analysis and haplotype analysis, the genes Glyma.18G027100 and 
Glyma.03G021800 have been identified as candidate genes related to soybean OC. Glyma.18G027100, which was 
found across qOC-18-1, is a GmPLCδ gene belonging to the PLC gene family and encodes phosphatidylinositol 
phospholipase C delta (PLCδ). Gene Ontology annotation revealed that these genes are involved in the lipid 
metabolism process (GO:0006629). Twelve PLC genes were detected in the soybean genome, and they were 
distributed across chromosomes 2, 11, 14 and 18 equally. Interestingly, all three PLC genes on each chromosome 
were located adjacent to one another, except Glyma.14G193800 (GmPLC1) on chromosome 14. A similar 
phenomenon has been observed in Arabidopsis thaliana, in which AtPLC1, AtPLC4 and AtPLC5are located in 
a 12 kb fragment on chromosome 557. The PLC gene family has been confirmed in A. thaliana mutants to 
be associated with acyl-lipid metabolism (http://aralip.plantbiology.msu.edu)58. Some studies on PLCgenes in 
soybean have also been reported, for example, studies on the induction of pathogenesis-related genes in soybean 
and the regulation of abiotic stress responses59,60. However, a PLC gene has not been reported to be involved in 
acyl-lipid metabolism in soybean. We can perform further studies on PLC genes in soybean to determine the 
relationship between PLC genes and OC in soybean.

Glyma.03G021800 encodes a NADH-ubiquinone oxidoreductase that contains a CHCH domain, which 
acts on the oxidative phosphorylation pathway and is involved in mitochondrial ATP synthesis coupled with 
electron transport (GO:0042775). The synthesis of oils requires the combination of glycerol triphosphate with 
long-chain fatty acids, which are synthesized from short chains on the endoplasmic reticulum. Short-chain fatty 
acids are synthesized in the mitochondria by ATP as the main energy source and then transported out of the 
mitochondria. Since oxidative phosphorylation is the main pathway for ATP formation in mitochondria, we 
predicted that Glyma.03G021800 is closely related to the synthesis of soybean oil.

Fig. 7. (A) Haplotype information for Glyma.18G027100 and the corresponding numbers of accessions. The 
upper part shows the gene structure diagram of Glyma.18G027100. (B) Boxplot showing the OC (percentage 
of dry weight) of the Hap1 and Hap2 haplotypes of Glyma.18G027100 among 121 accessions. (C) Haplotype 
information for Glyma.03G021800 and the corresponding numbers of accessions. The upper part shows the 
gene structure diagram for Glyma.03G021800. (D) Boxplot showing the OC (percentage of dry weight) of the 
Hap1, Hap2 and Hap3 haplotypes of Glyma.03G021800 among 141 accessions.
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In summary, A total of 23 common QTNs associated with OC were detected via five multilocus GWAS 
methods in 10 environments. Among them, 12 QTNs were found for the first time in this study. Among these 
QTNs, 2 candidate genes, Glyma.18G027100 and Glyma.03G021800, were identified. These results contribute to 
the analysis of the regulatory network of OC in soybean seeds and are valuable for MAS in breeding of high-oil 
soybean varieties.

Materials and methods
Plant materials and collection of phenotypic data
A population with 144 FW-RILs, derived from a four-way cross of the parental lines Kenfeng14 (OC 20.88%), 
Kenfeng15 (OC 21.66%), Kenfeng19 (OC 18.33%), and Heinong48 (OC 17.76%), was used in the present study. 
Details regarding FW-RIL population construction were described in a previous paper published by our research 
team37.

The 144 FW-RILs and 4 parental lines were planted in 10 environments (hereafter expressed as E1-E10) in 
different locations and years (Supplementary Table S5). All the materials in each environment were planted in a 
completely randomized block design with three replications. Three lines were set in a block, and the length and 
width of the lines were 5 m and 0.7 m, respectively. The experimental plots were managed in a manner consistent 
with local soybean production. At maturity, ten plants from the middle of each line were harvested and threshed 
separately. The OC of dry seeds (with approximately 10% moisture) of each line was determined via a near-
infrared analyzer (Infratec 1241, Foss, Denmark) at the Key Laboratory of Soybean Biology of the Chinese 
Education Ministry at Northeast Agricultural University in China. The calibration regression technique used for 
this near-infrared analyzer was the partial least square (PLS) method, which involves combining spectral data 
with laboratory data (Kjeldahl method) to calculate the seed OC, described as the percentage of seed weight. 
The phenotypic values given for each parental and FW-RIL individual used in this study were all the averages of 
three repetitions.

Analysis of phenotypic data
The analysis of phenotypic data included determination of the mean, standard deviation, range, minimum, 
maximum, skewness, kurtosis, coefficient of variation (CV) values, variance (ANOVA) and broad-sense 
heritability (h2). All the statistical analyses were implemented in SAS 9.2 (SAS Institute, Cary, USA). The 
ANOVA for multiple environments was conducted jointly via the generalized linear model (GLM) method, and 
the variance components were estimated via the mixed linear model (MLM). Then, h2 was calculated via the 
following equation:

 h2 = σ2
g/

(
σ2

g + σ2
ge/n + σ2

e/nr
)

where σ2
g , σ2

ge and σ2
e  represent the variance in genotype, genotype-by-environment interaction and error 

variance, respectively; r represents the number of replications within an environment; and n represents the 
number of environments.

Genotyping, structure and linkage disequilibrium (LD)
Genomic DNA was extracted from the juvenile leaves of parent and FW-RIL plants via the CTAB method61. The 
DNA concentration was determined via a UV752 N spectrophotometer (Shanghai Jingke Science Instrument Co. 
Ltd.), and the DNA was diluted to 100 ± 1 ng in deionized water. SNP genotyping was based on the SoySNP660 
K BeadChip method and performed at Beijing Boao Biotechnology Co., Ltd. By performing quality filtration 
with the criteria maximum missing site ratio < 10% and minor allele frequency (MAF) > 5%62, 109,676 SNPs 
were selected for GWAS analysis. The total number of SNPs on each chromosome is shown in Supplementary 
Table S6.

By analyzing population structure, the FW-RIL population was divided into two subpopulations, and a Q 
matrix was obtained and used for multilocus GWAS. The LD region decayed fastest before 200 kb and then 
tended to flatten, so the 200 kb regions flanking the targeted SNP were determined to search for potential 
candidate genes. The results have been described in a previously published paper37.

Genome-wide association study (GWAS)
Five kinds of multilocus GWAS methods, including mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and 
ISIS EM-BLASSO63–66, were used to perform GWAS of the OC in soybean seeds. Calculations were performed 
via mrMLM.GUI (version 3.0) software. The critical P value parameters for these methods at the first stage were 
set to 0.01, except for FASTmrEMMA, where the critical P value was set to 0.005; the critical LOD score was 
set to 3, and the P value was set to 0.0002 for a significant QTN at the last stage. The parameter settings were 
Likelihood="REML”, SearchRadius = 100, CriLOD = 3, SelectVariable = 143, and Bootstrap = FALSE. The kinship 
matrix was also obtained via mrMLM.GUI 3.0 software.

The significant SNPs were considered the same QTN if they met one of the following conditions: (1) the same 
SNP markers were detected; (2) the attenuation intervals of different SNP markers intersected, and the same 
QTNs detected repeatedly by multiple methods were calculated only once.

The QTNs were named as follows: q + trait name-chromosome name-QTN number, where q represents the 
QTN, the trait name is the OC, and the QTN number represents the ranking of the QTN on the corresponding 
chromosome.

The QTNs detected via multiple GWAS methods or in multiple environments were considered common 
QTNs.
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Transcriptome sequencing analysis
The soybean materials used for transcriptome sequencing were Keshan 01 (KS01), Kedou 31 (KD31), Kedou 48 
(KD48) and Kedou 57 (KD57). KS01 and KD31 were high-oil cultivars with 21.82% and 21.26% OC, respectively, 
and KD48 and KD57 were low-oil cultivars with 15.78% and 16.44% OC, respectively. These cultivars were 
provided by the Keshan Branch of Heilongjiang Academy of Sciences, Keshan, Heilongjiang, China.

Uniform seeds of the four cultivars were chosen and sown in pots (five seeds/pot, 25*18 cm pots), and after 
seed germination, the number of seedlings was reduced to 1 per pot. At 25 days after flowering (the rapid oil 
accumulation stage l), tender seeds collected from three replicate plants were frozen in liquid nitrogen and 
stored in an ultralow-temperature freezer at −80 °C until transcriptome sequencing analysis. All four samples 
were subjected to transcriptome sequencing with three biological repeats.

Transcriptome sequencing analysis was performed on an Illumina HiSeq2500/4000 system by Gene 
Denovo Biotechnology Co. (Guangzhou, China). To obtain high-quality clean reads, the sequencing data were 
processed via fastp67(version 0.18.0) for read filtering. The parameters used in this analysis were as follows: (1) 
reads containing adapters were removed; (2) reads containing more than 10% unknown nucleotides (N) were 
removed; and (3) low-quality reads containing more than 50% low-quality (Q value ≤ 20) bases were removed. 
The mapped reads of each sample were assembled via StringTie v1.3.168,69. For each transcription region, an 
FPKM (fragment per kilobase of transcript per million mapped reads) value was calculated to quantify its 
expression abundance and variations via RSEM70 software. The FPKM formula is as follows:

 
FPKM = 106C

NL/
103

Given FPKM(A) to be the expression of gene A, C to be number of fragments mapped to gene A, N to be total 
number of fragments that mapped to reference genes, and L to be number of bases on gene A. The FPKM method 
is able to eliminate the influence of different gene lengths and sequencing data amount on the calculation of gene 
expression. Therefore, the calculated gene expression can be directly used for comparing the difference of gene 
expression among samples.

Differential expression analysis was performed using DESeq271software between two different groups (and 
by edgeR72 between two samples). The genes/transcripts with a false discovery rate (FDR) of less than 0.05 and 
an absolute fold change of ≥ 2 were considered differentially expressed genes/transcripts.

Weighted gene correlation network analysis (WGCNA) was performed using Omicsmart, a real-time 
interactive online platform for data analysis (http://www.omicsmart.com). The expression similarity between 
genes was calculated, and the Pearson correlation coefficient was used to measure the correlation between gene 
pairs. The similarity matrix was converted into a weighted adjacency matrix, and a soft thresholding method 
was used to enhance strong and weaken weak correlations. The appropriate soft threshold parameter (power 
value) was selected to assign the network to the characteristics of a scale-free network. Genes were divided 
into different modules via hierarchical clustering and dynamic tree cut methods. Each module consists of a set 
of highly coexpressed genes, and the genes within the module have similar expression patterns. Module-trait 
associations were estimated via the correlation (Pearson correlation) between the module and the OC trait.

Real-time PCR verification
Total RNA extraction, cDNA synthesis and qRT-PCR analysis for each sample were performed according to 
Zhang et al.73. The internal reference gene was Acint7, and data analysis was performed via the 2−ΔΔCT method. 
The primers used for qRT-PCR are shown in Supplementary Table S7.

Search for potential candidate genes
On the basis of the rate of LD decay, the 100 kb intervals on either side of each common QTN were set as the 
range for seeking potential candidate genes. On the Phytozome website (https://phytozome.jgi.doe.gov), all the 
genes in these intervals were found out. According to the transcriptomic datasets for the seed developmental 
stages in soybean (GES42871) downloaded from the GEO (Gene Expression Omnibus) database, genes that are 
highly expressed in seeds during oil formation were subsequently chosen. All the highly expressed genes were 
subsequently combined for pathway analysis via the Kyoto Encyclopedia of Genes and Genomes (KEGG) website 
(http://www.kegg.jp)74–76, after which genes enriched in lipid anabolism-related pathways were identified. 
Finally, according to the transcriptome sequencing results, differentially expressed genes (DEGs) between the 
high-oil and low-oil cultivars were identified in lipid anabolism-related pathways. By comparing these DEGs 
with the results of WGCNA and annotation information for the genes, potential candidate genes were identified.

Haplotype analysis
The haplotype analysis of genes among 141 soybean accessions was performed using the available genotypic 
data (https://ngdc.cncb.ac.cn/soyomics). First, the markers with missing genotypes more than 20% were deleted. 
Next, imputation using markov function of NAM package in R was used to fill with missing genotypes. Finally, 
markers with minor allele frequency less than 0.05 were deleted. The haplotypes were constructed according to 
SNPs from the untranslated region (UTR) and exon regions via Haploview v4.2 software77. Differences between 
haplotypes for each gene were tested by analysis of variance (contains more than two haplotypes of genes) or 
unpaired t-test (contains two haplotypes of genes). Multiple comparisons of phenotype differences among 
various haplotypes were conducted using the LSD.test function of agricolae package in R.

Scientific Reports |        (2025) 15:16803 11| https://doi.org/10.1038/s41598-025-00869-8

www.nature.com/scientificreports/

http://www.omicsmart.com
https://phytozome.jgi.doe.gov
http://www.kegg.jp
https://ngdc.cncb.ac.cn/soyomics
http://www.nature.com/scientificreports


Data availability
Transcriptomic data that support the findings of this study have been deposited in the NCBI (BioProject ID 
PRJNA1185960, https:   //w ww.n cbi .nl m.n ih.gov/bio project/P RJNA1185960).
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