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Abstract

As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death,
understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a
significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along
with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can
reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death.
The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that
miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every
signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression,
miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the
tumor microenvironment, and can ultimately affect a tumor’s response to radiotherapy. Furthermore, much
interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In
this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated
functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs
as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.
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Introduction
Prostate cancer (PCa) is the second most common
cancer and the fifth leading cause of cancer death in
men worldwide, with an estimated 1.3 million new
cases and 359,000 deaths per year [1]. Currently,
treatment options for localized disease are active sur-
veillance, prostatectomy, or radiotherapy, with or
without hormone therapy [2, 3]. Despite curative radi-
ation regimens, radioresistance and clinical relapse is

reported in numerous cancer types [4–7], including
PCa [8]. Understanding the molecular events that
cause radioresistance in PCa can lead to the develop-
ment of improved therapies.
Ionizing radiation (IR) induces biological effects in

both tumor cells and the surrounding tumor microenvir-
onment (TME) (Fig. . 1). On a cellular level, IR produces
DNA damage, both directly from ionization and indir-
ectly by generation of Reactive Oxygen Species (ROS)
[9]. DNA damage triggers the DNA Damage Response
(DDR) to repair damaged DNA, or induces cell cycle ar-
rest and cell death if repair is not possible [10, 11]. As
cell cycle checkpoints are frequently dysregulated in can-
cer, radiotherapy exploits this vulnerability to produce
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greater unrepaired DNA damage and subsequent cell
death within tumor cells. The biological impact of IR is
greatly affected by hypoxia within the target site, which
influences the amount of DNA damage caused by IR-
induced ROS. Hypoxia is a pathological state where the
tissue has low levels of oxygen reaching the cells. Under
hypoxic conditions, hypoxia-inducible factor 1α (HIF-
1α) is stabilized and allows for the transcription of genes
involves in tumor survival and progression. Chronic hyp-
oxia has also been demonstrated to impair DNA repair
through downregulation of the repair machinery result-
ing in genomic instability which may select for a more
aggressive cancer phenotype [12]. To partly counter the
negative impact of a hypoxic TME on IR, a fractionated
radiotherapy course is typically employed (i.e., treat-
ments delivered daily over several weeks). This

fractionated treatment eliminates the well oxygenated
tumor cells, which then allows for hypoxic cells to reox-
ygenate and become radiosensitive [13–15]. After all,
oxygen is the best radiosensitizer due to its role in gen-
erating ROS. IR also affects the TME [16], notably by
modifying the vasculature large doses of radiation may
promote endothelial cell apoptosis [17], and vascular
collapse, whereas smaller doses of fractionated IR can
promote vascular maturation and improved perfusion
[18]. Tumor response to IR can be modulated by other
cells through two phenomenon: the bystander effect,
where non-irradiated cells are negatively impacted by
adjacent irradiated cells; and the abscopal effect where
the immune system becomes primed to eradicate tumor
cells at sites distant from the irradiated site [19]. Indeed,
IR can lead to immunogenic cell death, as immune cells

Fig. 1 Radiation effects on tumor cells and the tumor microenvironment. Damage induced by ionizing radiation lead to numerous cell
effects in the cell and within the tumor microenvironment (TME). Irradiation causes DNA damage which triggers DNA damage response
to repair the damaged DNA, induce cell cycle arrest or cell death. Reactive oxygen species (ROS), produced following irradiation, are also
implicated in radiation responses. In the TME, tumor endothelial cells sensitive to irradiation undergo apoptosis resulting in vascular
destruction and hypoxia. Hypoxia stimulates DNA repair through the androgen receptor (AR) leading to less faithful DNA repair and
accumulation of mutations. Radiation also promotes bystander and abscopal effects. One of these changes is an increase of tumor cell
antigen availability which activates dendritic cells (DC) and T cells to eradicate tumor cells. DHT, dihydrotestosterone; HIF-1α,
hypoxia-inducible factor-1α
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utilize antigens generated from damaged tumor cells to
activate dendritic cells (DCs) and CD8+ cytotoxic T cells
to kill tumor cells [20]. Interestingly, hypoxia promotes
transcription of the androgen receptor (AR) expression
[21], which is a key moderator of PCa proliferation and
survival [22].
Due to this central role of AR in proliferation, survival,

and treatment response [23, 24], Androgen Deprivation
Therapy (ADT) is commonly used in synergy with RT
[25] as a therapy for PCa due to its vital role in PCa pro-
gression. Despite the initial response to ADT, most pa-
tients develop resistance and progress to a more
aggressive form of PCa, referred as Castration-Resistant
Prostate Cancer (CRPC). Interestingly, CRPC cells upreg-
ulate the expression of AR (notably AR spliced variants
leading to constitutively active AR) and overtime acquire
radioresistance. AR signaling enhances DNA DSB repair
through the non-homologous end-joining (NHEJ) path-
way [26], and induces the over-expression of ataxia-
telangiectasia mutated (ATM) in CRPC cells [27]. In
CRPC cells, including the radioresistant ones, activated
CDC42 kinase 1 (Ack1) is over-expressed. Ack1 is a kinase
implicated in the phosphorylation of pTyr267-AR, which is
critical to androgen-independent AR transactivation and
tumor promoting. During this process, pTyr267-AR is re-
cruited to the ATM enhancer to up-regulate ATM, which
could lead to radioresistance. It has also been shown that
IR can induce expression of AR in a dose-dependent man-
ner, through modulating nuclear translocation and in-
creasing transcriptional activity [28], which may promote
radioresistance.
Research into the molecular mechanisms governing

radioresistance continues to shed new light onto this
important clinical problem. A class of non-coding
RNAs (ncRNAs) termed microRNAs (miRNAs) are
believed to play a key role in the regulation of radi-
ation response, and their expression has been linked
to radioresistance in many cancers [29–33]. Thus, fur-
ther investigation into the radio-modulating role of
miRNAs in PCa is important. Indeed, altered miRNA
expression occurs rapidly after IR [34, 35] and leads
to rapid changes in protein levels of the targeted
mRNAs. miRNAs are ncRNAs of approximately 19 to
22 nucleotides in length that negatively regulate gene
expression at the post-transcriptional level [36]. Asso-
ciation of a miRNA with the protein Argonaute
(AGO) forms an RNA-induced silencing complex
(RISC), which then binds the mRNA target primarily
on the 3’untranslated region (3’UTR) [37], and de-
creases gene expression via translational repression,
mRNA cleavage, or destabilization of the target
mRNA [38]. miRNAs have been shown to modulate
virtually all cellular processes including cell cycle con-
trol, proliferation, and differentiation [39], and can

consequently impact the response to radiotherapy
through influencing these pathways. Nevertheless, the
number of studies on the regulatory mechanisms of
miRNA in PCa radioresistance is quite limited, and
our understanding of the functional role exerted by
these miRNAs is only beginning to be elucidated.
Furthermore, there is a significant clinical need to
find non-invasive biomarkers to improve the manage-
ment of PCa, and circulating miRNAs may serve to
fulfill this need.
In this review, we will first provide an up-to-date sum-

mary of the literature on miRNAs that are influenced by
radiotherapy in PCa. We will then examine the role of
miRNAs in cellular response to radiation, and discuss
the utility of using circulating miRNAs as non-invasive
biomarkers.

miRNAs in response to radiotherapy
It is known that miRNA expression can be modulated by
IR. This can occur in PCa cells as well as surrounding cells
exposed to radiation treatment [31]. Numerous studies,
using Next Generation Sequencing (NGS) or microarray
technology, have investigated miRNA expression in cells
before and following exposure to IR (Table 1). We ob-
served large differences between studies, including the ra-
diation dose, the technology and methodology used, and
perhaps most notably the miRNA expression patterns in
cells before IR. Due to these variations, the same miRNA
is often identified in the literature as being both up- and
down-regulated after irradiation, depending on the study.
For example, miR-141 has been shown to be up-regulated
in LNCaP cells [49] and down-regulated in 22RV1-
radioresistant (RR) cells [50]. Interestingly, circulating
miR-141 is sometimes up-regulated in PCa patients before
treatment when compared with healthy controls [56–58].
A high expression level of miR-141 in human PCa surgical
specimens (n=535) is associated with reduced biochemical
or clinical failure-free survival [59]. In human PCa cell
lines where miR-141 is under-expressed, Liu et al. have re-
cently identified its target by whole-genome RNA sequen-
cing (RNA-seq) such as multiple pro-metastasis genes like
CD44, Rho GTPase and enhancer of zeste 2 polycomb re-
pressive complex 2 subunit (EZH2) [60]. These results
highlight the contradiction action of miR-141 in PCa and
suggest that one miRNA could act as oncomiR or sup-
pressor of tumor in PCa.
Additional prominent IR-responsive miRNAs are

members of the let-7 family, whose expression is fre-
quently found to be altered by IR, however, this is not
surprising since the mature members of this family are
the most abundant among all miRNAs in the cell [40,
41, 43]. The let-7 family is most commonly described as
a tumor suppressor family as they inhibit the expression
of multiple oncogenes such as KRAS [61] and Myc [62].
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Interestingly, PCa miRome could also be modulated by
AR. Indeed, the AR by binding to androgen response el-
ements (AREs) can directly regulate miRNA expression
[63]. miR-21, known to induce radioresistance [64] and
to play a role in CRPC [65], is a miRNA regulated by the
AR [66].
Definitively concluding a miRNA is up- or down-

regulated by IR is difficult since findings are heavily
influenced by the variations in methodology between
research groups. As technology such as NGS becomes
more accessible, larger datasets will hopefully help to
decipher complex changes of miRNA expression fol-
lowing radiation and identify potential patterns which

can be utilized clinically to evaluate radiation
response.

miRNAs in DNA repair mechanisms induced by
radiotherapy
IR induces DNA damage including double-strand breaks
(DSBs), the most deleterious to cell survival. A major
mechanism of radioresistance in cancer cells is altered
expression of DDR components and DNA repair path-
way such as NHEJ or homologous recombination (HR).
Numerous studies have shown that miRNA expression
changes in response to DNA damage in order to regu-
late DDR and DNA repair pathways [29, 33, 67].

Table 1 miRNAs dysregulated by irradiation in prostate cancer cells
miRNA after irradiation Functional role

Expression miRNAs Cell lines Doses Methods References

Increased let-7e, miR-18b miR-92a-1, miR-92a-2,
miR-320a, miR-365-1, miR-365-2

PC-3-RR cells 2 Gy x 45, fractionnated NGS [40] -

miR-95 Radioresistance [40]

miR-9, miR-22, miR-25, miR-550a,
miR-548h

PC-3 cells 10 Gy NGS [41] -

miR-30a Radiosensitization [42]

let-7 family, miR-34a, miR-146a PC-3 and LNCaP cells 0.5 Gy x10, 1 Gy x10,
fractionned

microarray [43] -

miR-16 LNCaP cells 0.5 or 4 Gy microarray [44] Radiosenzitization [45]

miR-34c, miR-372, miR-520c, miR-520f LNCaP cells 6 Gy microarray [46] -

miR-449 Radiosensitization [47, 48]

miR-9-1, miR-22, miR-24, miR-29b,
miR-141, miR-191, miR-200c

LNCaP cells 6 Gy microarray [49] -

miR-30a Radiosensitization [42]

51 miRNAs increased notably
miR-29a, miR-130a, miR-4521

22RV1-RR compared to 22RV1 cells 60 Gy, (2 Gy
fractioned doses)

microarray [50] -

miR-221, miR-222 Radioresistance [51]

miR-34c, miR-154*, miR-379,
miR-383, miR-488

C4-2 cells 6 Gy microarray [46] -

Decreased let-7c, let-7d, let-7e , miR-15a,
miR-30d, miR-92a, miR-125a,
miR-197, miR-221, miR-320b,
miR-342, miR-361, miR-374a,
miR-501, miR-671

PC-3 cells 10 Gy NGS [41]

miR-17 Radiosensitization [52]

miR-17-92 cluster PC-3, LNCaP and DU145 cells 5 and 10 Gy, single
dose and 0.5 Gy x 10,
1 Gy x 10 fractionned
dose

microarray [43] -

miR-100 LNCaP cells 6 Gy microarray [46] Radiosensitization [53]

miR-107, miR-122a, miR-133b,
miR-187, miR-196a, miR-487

-

miR-145 Radiosensitization [54]

miR-521 Radiosensitization [55]

miR-106b LNCaP cells 6 Gy microarray [49] Radioresistance [55]

miR-199a -

miR-133b, miR-135b, miR-143,
miR-196a, miR-218, miR-521

C4-2 cells 6 Gy microarray [46] -

46 miRNAs decreased notably
miR-141, miR-3607, miR-4284

22RV1-RR compared to 22RV1 cells 60 Gy (2 Gy fractioned
doses)

microarray [50] -

RR radioresistant, NGS Next-Generation Sequencing

Labbé et al. Molecular Cancer           (2020) 19:63 Page 4 of 18



To identify the impact of miRNAs on DNA repair
and radioresistance, Hatano et al. transfected 810 dif-
ferent miRNA mimics separately into LNCaP-MLuc
cells and then irradiated the miR-transfected cells
with 4 Gy dose [55]. Eleven days after radiation treat-
ment, MLuc activity was measured to determine cell
viability. Among the miRNAs studied, 75 were catego-
rized as radioprotective, in particular the miR-106b
family, while 324 miRNAs were identified as radiosen-
sitizing, notably miR-521. Further investigations on
the candidate miRNAs highlighted in this screen need
to be performed to verify and characterize their influ-
ence on DDR and DNA repair. For example, the role
of miR-521 in radiosensitivity of PCa cells (C4-2 and
LNCaP) was previously described by Josson et al., as
it was down-regulated after radiation treatment, and
further experiments identified a DNA repair protein,
cockayne syndrome protein A (CSA), as a potential
target of miR-521 [46]. Several other miRNAs have
been shown to impair DNA repair through targeting
repair response proteins. miR-890 and miR-744-3p
directly target the DNA repair proteins mitotic arrest

deficient 2 like 2 (MAD2L2) and RAD23 homolog B
(RAD23B) respectively, in addition to indirectly redu-
cing additional DDR proteins such as Ku80, xero-
derma pigmentosum complementation group C
(XPC), XRCC4-like factor (XLF) and cell leukemia 1
(MCL1) [55] (Fig. 2). In vivo, miR-890 mimic slows
down the growth of PCa xenografts following IR
treatment when compared with miRNA control and
leads to a radiosensitive phenotype [55]. More re-
cently, El Bezawy et al. showed that the over-
expression of miR-205 in DU145 and PC-3 cell lines
induced an increased sensitivity to radiation by
impairing the ability of these cell lines to repair post-
IR DNA damage, and identified Protein Kinase C ep-
silon (PKCε) as a direct target of this miRNA [68].
PKCε is known to trigger nuclear Epidermal Growth
Factor Receptor (EGFR) accumulation, leading to the
activation of DNA-dependent protein kinase (DNA-
PK) [69].
Regarding miRNAs altering homologous recombin-

ation, Mueller et al. showed that miR-99a and miR-100
are down-regulated in radioresistant PCa cells and up-

Fig. 2 Modulation of DNA Damage by miRNAs in response to irradiation in prostate cancer. Radiation induces DNA damage. In order to repair
DNA damage, the cell initiates DNA damage response (DDR) pathways. miRNAs, whose expression are modulated by irradiation, are key players
in increasing or inhibiting DDR in PCa radiation response by targeting the mediators, transducers or effectors of DDR. ATM, ataxia-telangiectasia
mutated; ATR, ataxia telangiectasia and Rad-3-related protein; DSB, double-strand breaks; AR, androgen receptor; NHEJ, Non-Homologous End
Joining; HR, Homologous Recombination; NER, Nucleotide Excision Repair. Inhibition line indicates direct targeting and dashed-inhibition line
indicates indirect targeting
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regulated following IR-induced DNA damage. The over-
expression of these two miRNAs reduced the efficiency
of DSB repair and increased in vitro radiosensitivity by
targeting SNF2H (SWI/SNF-related matrix-associated
actin-dependent regulator of chromatin subfamily A
member 5, or SMARCA5), a chromatin-remodeling fac-
tor which recruits Breast cancer susceptibility gene 1
(BRCA1) to sites of DSBs [53]. Another tumor suppres-
sor miRNA targeting DDR is miR-875-3p, which induces
radiation sensitivity in PCa cells by inhibiting HR by
regulating checkpoint kinase 1 (CHK1) expression and
through down-regulation of Zinc Finger E-box-binding
homeobox 1 (ZEB1), a protein implicated in epithelial to
mesenchymal transition (EMT) [70] (Fig. 2).
It is also interesting to note, that the AR interacts with,

affects, and is affected by DDR proteins, resulting in in-
creased, but less faithful, repair of DNA damage and
therefore formation of mutations [26, 71]. miR-145 dir-
ectly targets AR [72] and was shown to be down-
regulated after IR in LNCaP cells [46], while miR-488
and miR-34a have also been found to target the AR
mRNA [43, 46, 73–75], suggesting they could play a role
in radiation sensitivity through regulating AR-DDR feed-
back loops (Fig. 2).

miRNAs in cell cycle progression after radiation
Following IR-induced DNA damage, cell cycle progres-
sion is arrested at G1 and G2 checkpoints to allow time
for the cell to repair this damage. Typically once DNA is
repaired, the cell will re-enter the cell cycle, however, if
it is unable to repair the damage it will undergo cell
death (discussed in more detail in the following section)
[76]. Cell cycle progression past checkpoints depends on
cyclins, cyclin dependent kinases (CDKs), inhibitors, and
also on transcription factors such as the E2F family, and
each of these components can be regulated by miRNAs.
It has been suggested that one of the cyclins, cyclin D,

is regulated after IR by several miRNAs, which are all
overexpressed in response to IR. Cyclin D is involved in
Retinoblastoma (Rb) protein phosphorylation to pro-
mote cell cycle progression [44]. Wang et al. demon-
strated that miR-16-5p induces cell cycle arrest at G0/
G1 phase by targeting cyclin D1 in irradiated PCa cells
[44], which was later confirmed by Takeshita et al. in
mouse bone tissues [77] (Fig. 3). Cyclin D1 is also indir-
ectly suppressed by cell cycle-related and expression-
elevated protein in tumor (CREPT) which is targeted by
miR-501 [41, 78]. The IR-induced down-regulation of
miR-501 might further prevent cell cycle progression,
and thereby radiosensitize PCa cells to radiotherapy.
Two others miRNAs, let-7a and miR-154, are known to
target cyclin D, isoform 2 [43, 46, 79–81]. As such, these
miRNAs may act as radiosensitizers in PCa cells and
might induce cell cycle arrest via cyclin D.

In PCa, the G2/M checkpoint can also be dysregulated
directly by miRNAs following IR, for example miR-95
overexpression may enhance transit through the G2/M
phase by targeting Sphingosine-1- phosphate phosphat-
ase 1 (SGPP1 ) [40], which contributes to radioresis-
tance. In contrast, miR-449a has been shown to induce
cell cycle arrest at G2/M phase and enhance radiosensi-
tivity in vitro and in vivo [47] (Fig. 3). Using an antago-
mir (anti-miR-449a), miR-499a expression was
suppressed and increased cell proliferation was observed
[48]. Conversely, after over-expressing miR-449a in PC-3
and DU145 cells using a plasmid construct, cell cycle ar-
rest was observed [47]. Collectively, these results support
the hypothesis that miR-499a is involved in cell cycle ar-
rest, which impacts radiosensitivity. Further investiga-
tions identified Cell division cycle 25A (Cdc25A), a
protein implicated in cyclin B activation and a mediator
of c-Myc function, as a direct target of miR-449a. c-Myc,
which controls Cdc25A expression, is also observed as a
target of miR-449a. Surprisingly, in the first publication
by Mao et al., miR-449a is decreased in PCa DU145 and
PC-3 cell lines after IR [47], but in a following publica-
tion, they reported that miR-499a is up-regulated in the
LNCaP cell line following IR [48]. Thus, miRNA expres-
sion effects may be cell-line dependent, with down-
regulation of miR-449a in androgen-dependent prostate
cells inducing radioresistance via alterations in cell cycle
arrest.
CDK inhibitors can also be targeted by miRNAs, and

this interaction is known to be modulated by radiation
[82]. Several studies have demonstrated the role of miR-
106b on p21 regulation after IR [49, 55] (Fig. 3). Li et al.
have investigated the expression of miRNAs in LNCaP
cells 24 hours after 6 Gy IR, and showed that the expres-
sion of several miRNAs was altered. This included miR-
106b, which appeared to be down-regulated up to 48
hours following IR. miR-106b is known to target p21,
which results in suppression of cell cycle block and pro-
motion of proliferation [49]. miR-106b could therefore
be a therapeutic target for the population of radiation-
resistant PCa patients who fail to exhibit miR-106b de-
crease following radiotherapy. Another CDK inhibitor,
p27, is targeted by miR-221/222 and miR-24 [83, 84]
(Fig. 3). Following irradiation of PCa cells, miR-24 was
found to be up-regulated [49], whereas miR-221 and
miR-222 were decreased in radiosensitive PC-3 cells.
These results were confirmed in PCa tissue using the
TCGA dataset [41]. Conversely, miR-221 and miR-222
were found to be increased in radioresistant 22RV1-RR
cells [50]. Thus, these miRNAs could play a role in pro-
moting a radioresistant phenotype via negatively regulat-
ing CDK inhibitors, and their inhibition may impair the
growth of PCa [51]. This axis could show promise for
therapeutic interventions.
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Finally, radiation response can also be regulated by
miRNAs whose targets indirectly affect the cell cycle. In
a recent publication, the phenotype of miR-498 was ex-
amined in DU145 and LNCaP cells after varying doses
of ionizing radiation (1 to 8 Gy) [85]. miR-498 is impli-
cated in proliferation progression of PCa cells and radio-
resistance by targeting Phosphatase and TENsin
homolog (PTEN) (Fig. 3). PTEN is an important cell
cycle regulator that suppresses the protein kinase B
(AKT) signaling pathway, resulting in inhibition of cell
cycle progression. Moreover, down-regulation of miR-
498 was shown to reduce PCa cell survival after IR. miR-
498 is dysregulated across various cancers, and it is also
reportedly up-regulated in PCa cells [86]. Thus, it is

suggested miR-498 over-expression could lead to PCa
radioresistance through inhibition of PTEN.

miRNAs and cell death
IR-induced DNA damage causes cell death via multiple
mechanisms including mitotic catastrophe, apoptosis,
senescence and autophagy [87]. The mode of cell death
following IR is determined by a wide variety of factors
such as cell type, p53 status, radiation dose or fraction,
and tumor oxygenation. In PCa, mitotic catastrophe is
considered the dominant mode of cell death and the
major determinant of clonogenic cell survival following
IR [88]. Mitotic catastrophe is a delayed form of cell
death arising from unrepaired DNA damage as a result

Fig. 3 Regulation of cell cycle progression by miRNAs in prostate cancer radiation response. Following DNA damage induced by irradiation, cell
cycle arrest is initiated in order to allow DNA damage repair. Cell cycle progression depends on cyclin dependent kinases (CDKs), cyclins,
inhibitors and also transcription factors family E2F, themselves regulated by miRNAs, whose expression could be modulated by irradiation. S, S-
phase; M, Mitosis; G1 and G2 indicate transition phases of the cell cycle; G0 indicates quiescent cells; PTEN, Phosphatase and TENsin homolog;
CDC25A, Cell division cycle 25 A; Rb, Retinoblastoma protein; AKT, protein kinase B; P, phosphorylation; SGGP1, sphingosine-1-phosphate
phosphatase 1
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of dysregulated G2/M cell cycle checkpoint arrest and
premature progression into mitosis. Aberrant chromo-
some separation from centrosome hyper-amplification
results in formation of giant polyploid cells, which may
go through several rounds of cell division before ultim-
ately undergoing delayed apoptosis. Cell cycle arrest,
DNA DSB repair, and cell death are tightly intercon-
nected, and miRNAs may directly or indirectly influence
one or all of the above to alter cancer radiosensitivity.
As miRNAs affecting cell cycle arrest and DNA repair
have been discussed in previous sections, this portion
will focus on radiomodulating miRNAs with direct ex-
perimental analysis on cell death. One such example is
miR-145, which sensitizes both LNCaP and PC-3 PCa
cells to IR and predicts patient response to neoadjuvant
radiotherapy [54]. Gong et al. subsequently determined
that decreased clonogenic survival with high miR-145
was not due to changes in apoptosis but rather increased
number of cells undergoing mitotic catastrophe as a re-
sult of significantly reduced DSB repair. In this sense, Ye
et al. showed that miR-145 targeted the DNA damage
repair associated Helicase-lie transcription factor (HLTF)
[89], implicated in radioresistance in cervical cancer
[90]. Another target of miR-145, also implicated in ra-
diosensitivity, was SENP1 [91]. SENP1 belongs to the
small ubiquitin-like modifier (SUMO)-specific protease
family, which deconjugates modified proteins to main-
tain the level of SUMOylated and un-SUMOylated sub-
strates. In PCa, SENP1 modulates several oncogenic
pathways, including AR, c-Jun and Cyclin D1 [92]. Thus,
as described in PC-3 cell lines, miR-145 induced cell
cycle arrest through the downregulation of SENP1 [91].
miR-32 is a PCa oncomiR which when overexpressed

increases radioresistance of PC-3 and DU145 cells, as
evaluated using MTT assay, and reduces the percentage
of apoptotic cells while inducing autophagy following
2Gy IR [93]. The authors demonstrated miR-32 directly
targets DAB2 interacting protein (DAB2IP), the loss of
which has previously been shown to promote radioresis-
tance in PCa through enhanced DSB repair, G2/M
checkpoint control, and evasion of apoptosis [93, 94].
An opposite effect is observed with radiosensitizer miR-
99a in C4-2 cells, with repression of chromatin remodel-
ing protein SNF2H by miR-99a decreasing DSB repair
following IR [53]. In addition, overexpression of miR-99a
increases PARP (poly ADP ribose polymerase) cleavage,
a recognized marker of late apoptosis which is cleaved
by caspase-3. The authors suggest that miR-99a de-
creases DSB repair following IR resulting in increased
cell death via apoptosis. Additional miRNAs affecting
IR-induced apoptosis are miR-498 and miR-449a, which
target PTEN and Rb respectively. miR-449a stimulates
radiosensitivity through increased G2/M arrest and
higher apoptosis induction, while miR-498 promotes

radioresistance through reducing radiation-induced
apoptosis indicated by lower caspase3/7 activity [47, 85].

miRNAs under hypoxia
Hypoxia is a biological phenomenon associated with
tumor progression and acquisition of an aggressive
phenotype in solid tumors [95] and radioresistance [96].
The combination of tumor growth and an inadequate
tumor vasculature leads to poor perfusion of nutrients
and oxygen to the TME and cancer cells [97]. Because of
this, tumor cells are exposed to transient hypoxic condi-
tions, which establishes an environment that favors
tumor progression and metastasis. Hypoxia is also im-
pacted by IR and modifies radiation response, notably
through the alterations in miRNA expression [98]. Nu-
merous studies have suggested that hypoxia triggers
EMT in several types of solid tumors, particularly PCa.
Hypoxia is known to increase zinc finger protein SNAI1
(SNAIL) and twist family bHLH transcription factor 1
(TWIST1) activity leading to the inhibition of E-
cadherin [99]. Wang et al. have investigated the relation-
ship of miR-301a and miR-301b to hypoxia and radiore-
sistance. They found that these two miRNAs are
hypoxia-responsive and enhance PCa radioresistance by
targeting N-myc downstream-regulated gene 2 (NDRG2)
[100], a protein which suppresses EMT via the inhibition
of signal transducer and activator of transcription 3
(STAT3)/SNAIL signaling [101] (Fig. 4). Hypoxia also
induces a decrease of miR-124 and miR-144 [102], which
reduces their inhibition of pim-1 oncogene (PIM1) and
leads to EMT [103], thereby enhancing radioresistance
in an in vitro model of PCa [102] (Fig. 4).
Several hypoxia-induced miRNAs have been investi-

gated as they have been thought to regulate radiosensi-
tivity through changes in autophagy and apoptosis.
Overexpression of hypoxia-induced miR-301a or miR-
301b increased clonogenic survival and lowered
radiation-induced apoptosis in LNCaP cells [100].
NDRG2 is a cell-stress response gene targeted by both
miR-301a or miR-301b, which regulates numerous sur-
vival related molecular pathways including STAT3,
SAPK/JNK, Bax, and PI3K/Akt signaling [104]. Con-
versely, miR-124, miR-144, miR-30a, and miR-205 are all
down-regulated in hypoxia, and when overexpressed in
PCa cells significantly increased caspase-3 apoptotic acti-
vation and inhibited autophagy post IR, while reducing
clonogenic survival [42, 102].

miRNAs in tumor microenvironment
The TME is comprised of a variety of cell types includ-
ing tumor cells, endothelial cells, immune cells, as well
as extra-cellular features such as the extracellular matrix
that surrounding cancer cells. All these components that
make up the TME components are known to be affected
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by IR and may therefore modulate therapeutic response
[19, 105]. In response to IR, the TME can promote im-
munogenic cell death through tumor antigen release
[106] and induce vascular remodeling to improve radio-
therapy efficiency [14], while conversely IR can also in-
duce radioresistance through the promotion of EMT
[107]. miRNAs are known to be involved in regulating
the TME and radiotherapy response [108, 109].
Tumor growth depends on angiogenesis, a normal

physiological process that involves the formation of new
blood vessels through proliferation, migration, and dif-
ferentiation of endothelial cells. Angiogenesis requires
coordination of various signaling pathways and cellular
activation factors, notably vascular endothelial growth
factor (VEGF) [110]. It has been estimated that cancer
cells can only reach a maximum volume of 1-2 mm3 in
the absence of a vascular system [110]. In order for

tumors to proliferate and metastasize, angiogenesis must
first take place, and miRNAs have been described to
regulate this process [111–113]. Lin et al. observed that
miR-30d promotes angiogenic proliferation and migra-
tion, and enhances the ability of PCa cells to recruit
endothelial cells via myosin phosphatase targeting sub-
unit 1 (MYPT1)/c-JUN/VEGF-A pathway (Fig. 4). The
over-expression of miR-30d is thus associated with ad-
vanced cancer progression and an unfavorable prognosis
[114]. After IR, miR-30d became decreased in PC-3 cells
[41] and it was therefore suggested that miR-30d may
increase the efficacy of radiotherapy. In the case of miR-
218, its down-regulation contributes to angiogenesis by
activating Rapamycin-insensitive companion of mamma-
lian target of rapamycin (RICTOR)/VEGFA pathways
[115]. This miRNA has also been shown to be down-
regulated after irradiation of a C4-2 cell line [46] (Fig. 4).

Fig. 4 Overview of several actors in the tumor microenvironment modulated by miRNAs involved in irradiation response. Irradiation-modulated
miRNAs regulate tumor microenvironment (TME), affecting the radiation response. Angiogenesis, hypoxia, epithelial to mesenchymal transition
(EMT) and the immune system are notably affected. Green arrow indicates an induction of the TME actors. Red inhibiting line indicates an
inhibition of the TME actors. Up- or down- arrows, next to miRNAs, indicate the expression of miRNAs after irradiation. For miRNAs where no
arrow is indicated, means that the miRNA influences the radiation response by modulating TME actors but its up- or down-regulation in PCa cells
following irradiation has not been studied. T cells, Lymphocytes T; PD-1, Programmed death 1; PD-L1, Programmed death-ligand 1
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Immune cells are critical players within the TME
[116]. Immune responses affect cancer development by
suppressing or destroying cancerous cells, but these cells
eventually develop mechanisms to escape immune sur-
veillance. miRNAs play an important role in the TME by
targeting immune cells. For example, miR-16 enhances
radiotherapy efficiency in PCa through cytotoxic T cell
activation in the TME by suppressing the immune
checkpoint regulator PD-L1 programmed death protein
1 (PD-L1) in PCa cells [45] (Fig. 3). miR-16 overexpres-
sion in PCa cells after IR may promote radiosensitivity
[44]. PD-L1, a ligand expressed on tumor cells, interacts
with programmed-death 1 (PD-1) on T cells in order to
inhibit CD8+ cytotoxic T lymphocyte survival and prolif-
eration [117]. Thus, PD-L1 down-regulation by miR-16
could enhance immune anti-tumor activity.

miRNA during the epithelial-mesenchymal transition
(EMT)
EMT is characterized by the loss of the polar and adhe-
sive epithelial features, enhanced cell motility and the
acquisition of mesenchymal characteristics. It is a com-
plex mechanism which involves modification of various
signaling pathways. These pathways are regulated by sev-
eral transcriptional factors, notably SNAIL, Zinc finger
protein SNAI2(SLUG), TWIST 1/2 , ZEB 1/2 [118]. In
PCa, miRNAs have been shown to induce EMT by regu-
lating these transcription factors directly [119, 120].
Some miRNAs implicated in EMT inhibition have been
found to be down-regulated by IR. Indeed, miR-145 has
been described to target ZEB2 [121] and human enhan-
cer of filamentation 1 (HEF1) [122] (Fig. 4), and was
shown to have reduced expression after irradiation [46],
consequently promoting EMT, bone invasion, and de-
creasing the effectiveness of radiotherapy. miR-205, es-
sential for the maintenance of the basal membrane
epithelium in the prostate gland, is implicated in the
modulation of IR response [123, 124]. It has been found
to be down-regulated in PCa cells compared to normal
prostate tissue [124]. In further studies, the over-
expression of miR-145 enhanced radiosensitivity in vitro
and in vivo [68], through targeting ZEB1 which in-
creased E-cadherin expression [125] (Fig. 4). Another
miRNA which can radiosensitize is miR-875-5p, which is
down-regulated in PCa and enhances tumor control
after radiation by preventing EMT, as it indirectly targets
ZEB1 [70, 126]. Other miRNAs involved in the inhib-
ition of EMT after IR have been shown to be up-
regulated, such as miR-29b and miR-200c [49] (Fig. 4).
miR-29b was found to inhibit EMT and subsequently re-
duce PCa metastasis in vivo, by inhibiting the expression
of SNAIL [127]. miR-200c, a known tumor suppressor
miRNA, also suppresses invasion by directly targeting
ZEB1 and ZEB2 [128–130]. Thus, miR-29 and miR-200c

might enhance the efficacy of radiotherapy via these
mechanisms. Radiation also alters the expression of
miR-154 in C4-2 cells [46], and over-expression of this
miRNA is known to inhibit EMT by targeting high-
mobility group A2 (HMGA2) [131] (Fig. 4).
Radiation response can also be influenced by the ex-

pression of miRNAs implicated in the induction of
EMT. miR-498 induces a radioresistant phenotype in
PCa cells by directly targeting PTEN [85]. A major
tumor suppressor, PTEN inhibition promotes cancer
metastasis and it is frequently loss during PCa progres-
sion, with up to 70 % in late stage [132]. With down-
regulation or inhibition of PTEN, AKT can be activated,
which increases expression of Vimentin, inhibits expres-
sion of E-cadherin by SNAIL [133], and ultimately leads
to invasion and migration (Fig. 4). In PCa, proliferation
and migration are also enhanced by miR-221-5p which
inhibits the tumor suppressor gene suppressor of cyto-
kine signaling protein 1 (SOCS1) [134] (Fig. 4). This
miRNA was found to be down-regulated in PC-3 cells
[41] and up-regulated in 22RV1-RR cells [50] after ir-
radiation. Thus, miR-221-5p might be involved in pro-
moting the radioresistant phenotype observed in these
cells. However future mechanistic studies must be per-
formed to definitively determine its role.

miRNA and Cancer stem cell (CSC)
Accumulating evidences supports that CSC are an im-
portant subset of cancer cells that play important roles
in radiation response, radioresistance and relapse in PCa
[135], but a limited number of experiments described
the implication of miRNAs in these processes. CSC pop-
ulations may be enumerated using cell surface markers
such as the adhesion molecule CD44. CD44 expression
is associated with radioresistance in PCa cells [136]. Liu
et al. have identified CD44 and EZH2 as direct target of
miR-141 [60]. This miRNA is downregulated in Prostate
CSC (PCSC) populations but highly expressed in pros-
tate cancer tissues. In PC-3 and LNCaP cells, expres-
sions of Nanog, Oct4 and EZH2 were correlated with
miR-21 under hypoxia [95]. Another study showed that
miRNA expression profile in PCSC was dependent on
the differentiation stage [137].

miRNAs in extracellular vesicles
Extracellular vesicles (EVs) are a heterogeneous popula-
tion of membrane vesicles of various origins, secreted by
cells into the extracellular space [138, 139]. The main
subtypes of EVs are microvesicles and exosomes, which
are distinguished based upon their biogenesis, release
pathways, size, content, and function. Exosomes are
small vesicles (50 – 150 nm in diameter) secreted by al-
most all cell types, tumoral or not. They are formed via
inward budding of endosomal membrane during
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maturation of multi-vesicular endosomes (MVEs) and
later secreted when the MVEs fuse with the plasma
membrane [138]. These small vesicles play a role in
intercellular communication by transferring their con-
tents in order to influence many physiological and
pathological functions in the recipient cell [140, 141]. It
has been suggested that EVs may be involved in cancer
progression and recurrence in this way [142]. In human
body fluids, such as blood and urine, miRNAs are pro-
tected from endogenous RNAse activities by their inter-
action with proteins or lipids, or their encapsulation into
exosomes [140, 143, 144]. PCa-derived exosomes have
been found to be released in diverse biofluids and could
serve as a liquid biopsy for PCa [145], which will be dis-
cussed in more detail in the following section. Cellular
stress, which can be caused by IR, can affect the molecu-
lar composition of miRNAs in exosomes, and also in-
crease loco-regional exosome secretion.
In a recent study, exosomal miRNAs in the sera from

11 PCa patients (6 intermediate-risk and 5 high-risk dis-
ease) treated with radiotherapy were analyzed [146]
(Table 2). A comparative analysis was performed looking
at the expression of miRNAs before and after radiother-
apy. Using Nanosight, they showed that exosome con-
centrations in serum were higher in PCa patients
compared to healthy individuals, and this trend held true
following IR. After radiotherapy, miR-21-5p and let-7a-
5p were found to be significantly higher in serum-
derived exosomes of high-risk (i.e. Gleason 7 or higher
(3+4, 4+4, 4+5 or 8) and pathological T stage (cT1c,
cT3a, pT3 or pT3a)) PCa patients compared to
intermediate-risk (i.e. Gleason 7 or under (3+3, 3+4 or
4+3) and pathological T stage (cT2a, cT2b or cT1c))

PCa patients. However, due to the small sample size,
these results require validation within larger patient
cohorts.
Yu and colleagues have also evaluated exosomal miR-

NAs to monitor the efficacy of carbon ion radiotherapy
(CIRT) [150] (Table 2), which has superior dose distri-
bution, higher linear energy transfer and increased bio-
logical effectiveness compared to conventional photon-
based external beam radiation. To do so, the authors an-
alyzed exosomal miRNAs from the sera of 8 patients
with localized prostate cancer exposed to CIRT. They
observed deregulated expression of 57 miRNAs after
CIRT, and 25 which correlated with PSA (prostate spe-
cific antigen). They next showed that patients respond-
ing to CIRT, based on PSA < 0.2 ng/mL after CIRT, had
higher expression of 9 miRNAs (miR-200c-3p, miR-
323a-3p, miR-379-5p, miR-409-3p, miR-411-5p, miR-
493-5p, miR-494-3p, miR-543 and miR-654-3p) in their
sera compared to non-responders (PSA > 0.2 ng/mL
after CIRT). They also performed a comparison of
miRNA content in exosomes before and after CIRT,
which correlated miR-379-5p and miR-654-3p expres-
sion with an effective response to CIRT. This study is
the first to explore the modulation of exosomal miRNAs
expression in PCa after CIRT exposure. However, these
results should be interpreted with caution due to the
small cohort of patients and may be specific to CIRT
treatment.
It has been shown that IR treated cells secrete exo-

somes that can be taken up by non-irradiated neighbor-
ing cells and induce biological changes via the bystander
effect [157, 158]. These IR-induced exosomes may pro-
mote radioresistance, leading to tumor progression and

Table 2 exosomal miRNAs in radiotherapy response in prostate cancer

miRNA Biomarkers Biofluids Main results Cohorts References Targets

let-7a-5p Efficacy of RT Serum exosomes Upregulated in exosomes
of high-risk PCa patients
after RT compared to
intermediate-risk PCa patients

11 PCa patients
(6 intermediate-risks,
5 high-risk disease)

[146] -

miR-21 Diagnostic/ efficacy
of RT

PTEN [147], MARCKS
[148], ANP32A,
SMARCA4 [149]

miR-200c-3p Efficacy of CIRT Serum exosomes Upregulation in exosomes
is associated with a good
response to CIRT

8 PCa patients
(3 intermediate risk,
2 high risk, 3 very
high risk)

[150] ZEB1, ZEB2 [128]

miR-323-3p p73 [151], AdipoR1 [152]

miR-379-5p -

miR-409-3p PHC3, RSU1,TUSC1 [153]

miR-411-5p -

miR-493-5p c-Met, CREB1, EGFR [154]

miR-494-3p CXCR4 [155]

miR-543 RKIP [156]

miR-654-3p AR [74]

RT radiotherapy, CIRT carbon ion radiotherapy, PCa prostate cancer, PTEN phosphatase and TENsin homolog, MARCKS myristoylated alanine-rich protein kinase c
substrate, ANP32A acid nuclear phosphoprotein 32 family member A, SMARCA4 SWI/SNF related matrix associated actin dependent regulator of chromatin
subfamily A member 4, AdipoR1 Adiponectin receptor 1, PHC3 polyhomeotic homolog 3, RSU1 Ras suppressor protein 1, TUSC1 tumor suppressor candidate 1,
CREB1 CAMP responsive element binding protein 1, EGFR epidermal growth factor, CXCR4 CXC chemokine receptor 4, RKIP Raf kinase inhibitor protein, AR
androgen receptor
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the formation of a pre-metastatic niche. Previous exam-
ples have indeed shown a resistance transfer by exo-
somes in breast cancer carcinoma [159, 160], head and
neck cancer [161] and glioblastoma [162]. The presence
of miRNAs in the circulation may make them a promis-
ing source of biomarkers for improving PCa manage-
ment and monitoring treatment response following
radiotherapy.

miRNAs as biomarkers
Improved clinical outcomes for patients with PCa are
highly dependent on the tests we use to detect and
monitor disease. Indeed, physicians and scientists are
limited by the current technologies available at hand to
understand this disease and its trajectory. In PCa, the
discovery of PSA and integration of magnetic resonance
imaging, have made huge strides in assisting with the
diagnosis of PCa. Despite this, histopathological analysis
of a biopsy specimen remains the gold standard test for
PCa diagnosis and it is required for prognostication and
treatment planning [163]. However, the core needle bi-
opsy is not without significant side effects. From pain
and bleeding, to infection with risk of progression to
sepsis [164], these complications are not to be taken
lightly. As such, prophylactic antibiotics are routinely
administered to prevent such risks, but in 2019 with a
rise of antibiotic-resistant bacterial strains, this practice
must also not be overlooked. There is a significant clin-
ical need to move toward developing non-invasive tests
for cancer diagnosis, prognosis and prediction.
The field of circulating biomarkers (i.e. from whole

blood, serum, plasma, and urine) has exploded in recent
years. These “liquid biopsies” are collected from simple,
non-invasive blood draws and urine samples, which har-
bor minimal (if any) side effects for patients. Once fine-
tuned, the possibilities are really endless for which clinical
setting circulating biomarkers could be used in – diagnos-
tic, predictive, prognostic – and they would open doors to
new ways of monitoring the progression of disease and re-
sponse to therapies.
In PCa, there are a few commercially-available circu-

lating biomarker tests. ExoDx Prostate (IntelliScore)
[165] and PCA3 [166, 167] utilize urine samples, col-
lected after a digital rectal exam (DRE). They use a
gene-based or non-coding RNA signature, respectively,
to help clinicians identify patients who are more likely to
harbor clinically-significant PCa (i.e., Gleason score 7 or
higher), and thus would benefit from a prostate biopsy.
The 4Kscore Test [168, 169] is blood-based test that
uses a panel of four kallikreins to predict the likelihood
of a clinically-significant cancer. Although there are no
commercially-available miRNA signatures, there are
many that have been described in the literature, as previ-
ously reviewed [170, 171]. A few studies of note will be

described in detail here. Alhasan et al. found a 5-miR
(miR-200c, miR-605, miR-135a*, miR-433, and miR-
106a) serum signature to identify patients with very
high-risk PCa (i.e. Gleason 8 (4+4 or 5+3) and Gleason
9) [172]. Hoey et al. identified a 4-miR (miR-20a, miR-
20b, miR-106a, and miR-106b) signature that stratifies
PCa patients into low- and high-risk categories after rad-
ical prostatectomy [173]. Post-radical prostatectomy is a
particularly important clinical setting for circulating bio-
markers to detect biochemical recurrence and identify
patients who would benefit from adjuvant therapy. A
serum-based 3-miR (miR-223, miR-24, and miR-375)
score was developed by Liu et al. to identify males on
active surveillance who have indolent PCa compared to
those with aggressive disease who need to be treated
[174]. miR-1246 has been described as an serum exoso-
mal biomarker to distinguish benign and aggressive PCa
[175]. miR-1290 and miR-375 in the plasma were associ-
ated with significantly poorer overall survival in patients
with castrate-resistant metastatic PCa [176]. Jeon et al.
found a urine-based 7-miR (miR-3195, let-7b-5p, miR-
144-3p, miR-451a, miR-148a3p, miR-512-5p, and miR-
431-5p) signature that identifies high-risk PCa patients
with high accuracy (AUC of 0.74, 95% CI = 0.55-0.92)
[177], and this miRNA signature was stable over time. It
is of particular relevance to note the unique superiority
of a urine-based biomarker for PCa, as Pellegrini et al.
discovered that urine collected after a DRE is enriched
in prostate-specific markers [178]. They found that post-
DRE urine EVs contain prostate-derived RNAs, which
were able to distinguish patients with low-risk (Gleason
6) and intermediate- and high-risk (Gleason 7 and
above) PCa.
In regards to biomarkers of radiotherapy response,

Zedan et al. identified miR-221 to be decreased in pa-
tient plasma after RT [179]. As previously mentioned,
miR-221 expression is decreased in radiosensitive PC-3
cells [49] and increased in radioresistant 22RV1-RR cells
[50]. Thus, the modulation of this miRNA might be in-
vestigated as a biomarker to monitor radiotherapy re-
sponse. Further studies need to be performed to confirm
that miR-221 could be used since biomarkers from bio-
fluids do not necessarily reflect the miRNA profile of the
tumor cells.
The temporal stability of miRNA in biofluids is a sig-

nificant feature of an ideal biomarker. Since miRNA bio-
marker signatures can remain stable over time, an
important application is their potential to non-invasively
monitor disease progression or treatment response (i.e.
before and after surgery, radiotherapy, hormone therapy
and chemotherapy, as well as throughout the course of
treatment). Various circulating miRNAs have been de-
scribed for their predictive biomarker utility to distin-
guish patients who would benefit from treatment, thus
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personalizing management decisions [180–184]. Circu-
lating miRNAs have even been used in the setting of
identifying which patients have a higher risk of treat-
ment toxicity. A study by Higgins et al. found that
lower expression of miR-6821 and miR-1290 in the
serum of patients with squamous cell carcinoma of
the head and neck was associated with increased
probability of developing acute and late radiation-
induced toxicity [185]. A study by Lin et al. looking
at circulating miRNAs in CRPC patients treated with
docetaxel, found that miRNAs isolated from patient
blood were associated with PSA response and overall
survival using pre-docetaxel levels, or the direction of
post-docetaxel change from baseline levels [181].
However, to the best of our knowledge, there are no
circulating miRNA biomarkers described for the pur-
pose of predicting response to or benefit of receiving
radiotherapy in prostate cancer.
There are various characteristics of miRNAs that

make them particularly attractive candidates for bio-
marker development, as previously reviewed by
Schwarzenbach et al. [171]. miRNAs are highly stable
in the blood and urine due to their association with
proteins (such as AGO) or their encapsulation in EVs
[171, 186]. After blood draw, miRNAs can remain
stable after incubation at room temperature and after
undergoing repeat freeze-thaw cycles [186]. They can
easily be detected with a standard qRT-PCR, which
offers high sensitivity and specificity for a relatively
low cost compared to other biomarker assays [171].
NGS has the ability to identify novel miRNA, and
distinguish miRNA with similar sequences and those
of splice variants (isomiRs) [171]. NGS deep sequen-
cing can also assess genome-wide expression, how-
ever, this improved technology comes with a high
financial cost [171]. Last but not least, miRNAs can
be readily found in all body fluids, not just blood and
urine [187].
Before non-invasive miRNA biomarkers can safely

and effectively be translated into clinical studies and
practice, various logistical issues must be addressed.
For one, a standardized test for assessing the expres-
sion levels of blood and/or urine miRNA must be
established. There is known to be large variability be-
tween platforms [188], even though individual plat-
forms show very high correlations between technical
replicates [189]. Aside from downstream technologies,
laboratory reagents and protocols must also be stan-
dardized. It has been found that the specific anticoag-
ulants (i.e. EDTA, heparin, citrate) used in blood
collection tubes can affect downstream qRT-PCR ana-
lysis [190]. Indeed, determining which miRNA signa-
ture from the literature is superior to be used for the
desired clinical setting, and reproducibility of this

particular miRNA signature must be determined using
large, prospective, multi-institutional cohorts.
Although there is still much work to be done before

non-invasive miRNA biomarkers can begin to be used
in the clinical setting, miRNAs show significant
promise as a future non-invasive biomarker for cancer
diagnosis, treatment prediction, and prognostication.

Future perspectives
There are currently very limited publications on the role
of miRNAs in regulating PCa radiotherapy response and
mediating PCa radioresistance [40, 41, 43, 44, 46, 49,
50]. Moreover, the majority of these studies are per-
formed on cell lines in vitro, and miRNAs found altered
by IR in one study are not necessarily observed in others.
This could be due to differences in IR doses and delivery
methods, or variations between cell lines. Future studies
are needed to explore miRNAs dysregulated by IR using
not only PCa cells lines but also validation with patient
samples.
In addition, the functional role of these miRNAs in

cellular response to IR is not well understood and is
largely in the infancy of discovery. Although miRNA
can target a multitude of mRNAs, their function may
be due to their regulation of only a select few. Thus,
potential targets of miRNAs involved in radioresis-
tance need to be thoroughly investigated in order to
delineate true contributors to resistance so that novel
therapeutic interventions will be focused on down-
stream components to overcome radioresistance. To
our knowledge, there are no reports on miRNAs in-
volved in ROS signaling, and only a few on hypoxia
signaling and angiogenesis, in PCa following radio-
therapy. Furthermore, no investigations have focused
on the effect of exosomal miRNAs from PCa modu-
lated by IR, and their impact on the tumor micro-
environment. Thus, it will be beneficial for
investigations to fill-in these missing gaps in radio-
biology, for example the role of IR-induced exosomal
miRNAs on immune escape. Indeed, Vignard et al.
recently report that several miRNAs from melanoma-
derived exosomes participate to tumor immune es-
cape by reducing CD8+ T cell response [191]. This
might also be the case in prostate cancer following al-
teration of exosomal miRNA expression, which could
lead to an enhancement in radioresistance.
Finally, it is essential to identify biomarkers to sup-

port the use of PSA in diagnosis and disease monitor-
ing to improve accuracy. The detection of changes in
circulating miRNAs shows promise as a prognostic
indicator to differentiate between indolent and aggres-
sive disease, and to predict radiation response in PCa
to individualize treatment for patients.
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Conclusion
Radiation therapy is a critical modality of treatment for
prostate cancer patients. Despite its delivery with cura-
tive intent, radioresistance frequently occurs and the
underlying mechanisms are poorly understood. It is well
characterized however, that ionizing radiation induces
aberrant expression of miRNAs. These miRNAs, which
are important regulators of gene abundance, play a role
in radioresistance by modulating key cellular pathways
that mediate radiation response. Overcoming radioresis-
tance is a significant clinical challenge in prostate cancer
management. Thus, identifying non-invasive biomarkers
to inform treatment decisions in the clinic are desper-
ately needed, and it is likely that miRNAs could be use-
ful for this purpose. Furthermore, highlighting the
targets of deregulated miRNAs will open doors for fu-
ture therapies to sensitize prostate tumors to radiother-
apy and improve tumor control. Various technologies
may prove useful in this setting: miRNA mimics to over-
express tumor suppressor miRNAs decreased by radio-
therapy, or small interfering RNAs and antisense
oligonucleotides to inhibit oncomiRs up-regulated after
radiotherapy. However, the delivery of these future treat-
ments is still challenging due to the plethora of down-
stream targets that each miRNA can regulate. Therefore,
it is imperative we untangle the cellular complexities in
PCa radiotherapy resistance in order to improve PCa
treatment and tumor control. Understanding the role of
miRNAs in this setting brings us one step closer to
achieving this goal and ultimately improving patient
outcomes.
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