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Locating human splenic capillary 
sheaths in virtual reality
B. S. Steiniger  1, V. Wilhelmi1, M. Berthold2, M. Guthe2 & O. Lobachev  2

Stromal capillary sheath cells in human spleens strongly express CD271, the low affinity nerve growth 
factor receptor p75. Serial sections of a representative adult human spleen were double-stained for 
CD271 versus smooth muscle alpha actin (SMA) plus CD34 to visualise capillary sheaths, the arterial 
tree and endothelial cells by transmitted light. Preliminary three-dimensional (3D) reconstructions of 
single regions were inspected in virtual reality (VR). This method showed that a large number of CD271+ 
sheaths occur in a post-arteriolar position often surrounding capillaries located close to divisions of 
arterioles. The length and diameter of capillary sheaths are rather heterogeneous. Long sheaths were 
observed to accompany one or two generations of capillary branches. We hypothesise that human 
splenic capillary sheaths may attract recirculating B-lymphocytes from the open circulation of the red 
pulp to start their migration into white pulp follicles along branches of the arterial tree. In addition, 
they may provide sites of interaction among sheath macrophages and B-lymphocytes. Our innovative 
approach allows stringent quality control by inserting the original immunostained serial sections into 
the 3D model for viewing and annotation in VR. Longer series of sections will allow to unequivocally 
localise most of the capillary sheaths in a given volume.

The existence of capillary sheaths in human spleens and the first inter-species comparison of these structures have 
been reported about 150 years ago. Schweigger-Seidel1 described the location of the sheaths around post-arteriolar 
capillaries and published an almost correct drawing of a longitudinally sectioned sheath. Solnitzky2 confirmed 
this location and regarded the sheaths as macrophage accumulations, an opinion that was shared by several sub-
sequent authors. Attempts at reconstructing human capillary sheaths from serial sections exist3. However, the 
exact shape of the sheaths, their arrangement in the vasculature, their cellular composition and their function 
have remained enigmatic.

Our recent studies showed that human splenic capillary sheaths consist of three main cell types surrounding 
capillary endothelia, namely CD271+ stromal capillary sheath cells, CD68+CD163− macrophages and recircu-
lating B-lymphocytes4,5. Up to now, most descriptions of human capillary sheaths have missed one of these cell 
types. Human capillary sheaths are morphologically similar to those of other species including birds, the sheaths 
of which have been described in most detail6–11. The term “ellipsoid” is commonly used to describe non-human 
capillary sheaths, but this term does not seem to be morphologically adequate for any species investigated so 
far4,12,13. It may be derived from misinterpretations of splenic white pulp compartments in the early days of his-
tology. Capillary sheaths do not exhibit an elliptical shape, but they are elongated structures accompanying cap-
illary branches of first, second or even higher order3,6,12,13. In birds, capillary sheaths consist of stromal cells, 
macrophages and a thick peri-ellipsoidal B-cell sheath. This sheath represents a distinct B-cell compartment in 
addition to follicles6,14,15 and is dependent on the existence of the bursa16. One of the cell types in avian and other 
vertebrate capillary sheaths - most probably macrophages - is responsible for uptake of immune complexes and 
particulate materials from the blood7,17,18. This is also true for fish ellipsoids19,20.

It has been known for a long time, that mouse and rat spleens do not possess capillary sheaths. Apparently, 
rodents and lagomorphs2 do not exhibit these microanatomical structures in their spleens. In consequence, the 
dominance of mouse-based research has led to a more or less total neglect of splenic capillary sheaths.

We now present a first and preliminary step towards analysing the three-dimensional arrangement of human 
splenic capillary sheaths. This leads to a hypothesis on their function in the context of the open circulatory system 
of the splenic red pulp.
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Results
The distribution of CD34, SMA and CD271 in human spleens have been described in previous publications4,5,21,22. 
Briefly, CD34 occurs in endothelia of capillaries and large vessels, in adventitial fibroblasts of large vessels and in 
superficial fibroblasts of trabeculae. In addition, perifollicular sinus endothelia are faintly stained. SMA is present 
in vascular smooth muscle cells, in perivascular fibroblasts and in marginal reticular cells surrounding the splenic 
white pulp, especially the follicles. Subcapsular and trabecular fibroblasts express SMA. Ubiquitous fibroblasts in 
the red pulp cords are faintly positive. CD271 is also weakly present in ubiquitous red pulp fibroblasts, in vascular 
adventitial fibroblasts and in the fibroblastic reticulum cells (FRCs) of T-lymphocyte zones. The most strongly 
CD271-positive cells are the more or less isoprismatic stromal cells of capillary sheaths. Follicular dendritic cells 
(FDCs) are also rather strongly stained.

A paraffin-embedded sample of a normal human spleen which had been studied previously23 and which was 
found representative of the majority of adult human spleens with small symmetric secondary follicles was pro-
cessed to 24 serial sections which were simultaneously stained for CD34 and SMA in brown colour and for 
CD271 in blue (Fig. 1a,c,e). The sections were scanned and 11 regions of interest (ROIs) each representing a 
volume of 0.17 mm3 were selected for study (Fig. 2). The ROIs were chosen to always contain red pulp tissue, but 
it was inevitable that parts of follicles, trabeculae and larger arteries or veins were also included.

After appropriate processing, 3D models representing CD34 plus SMA in yellow and CD271+ stromal capil-
lary sheath cells in blue or green colour were generated and inspected in virtual reality (VR), (Figs 1b,d,f and 3;  
Supplementary Videos S1–3: https://zenodo.org/record/1229434; Supplementary Files S1–11: https://doi.
org/10.5281/zenodo.1229434). In detail, capillary sheaths were detected automatically by using a threshold on 
the cyan colour channel. By this method, all voxels brighter than a certain intensity were regarded as constituting 
sheaths. In addition, FDCs in follicles were detected. Each original immunostained section could be blended 
into the VR model to control the quality of the reconstruction (Fig. 3; Supplementary Video S4: https://zenodo.
org/record/1229434/files/Video_S4.mov; Supplementary Files S1–11: https://doi.org/10.5281/zenodo.1229434). 
Arterial vessels were defined by the presence of a layer of SMA+ smooth muscle cells surrounded by branched 
adventitial SMA+ fibroblasts and could thus be distinguished from capillaries lacking such a surrounding. In 
order to alleviate recognition, the surface of those arteries and arterioles (partially including their adventitial 
cells) which led to capillary sheaths were manually annotated in the model and coloured red using mesh col-
ouring with geodesic distances in VR. In the next step, all CD271+ capillary sheaths, which were contacted by 
SMA-positive arterioles were manually attributed a green colour, irrespective of the fact whether they were com-
pletely or only partially contained in the model. All other sheaths which could not be unequivocally related to 
a feeding arteriole were visualised in blue colour. Thus, blue sheaths might also be located in a post-arteriolar 
position, but this could not be diagnosed, because the respective sheath or its adjacent feeding vessel had been cut 
at the surface of the model.

By this method, we found that capillary sheaths were much longer than anticipated. Most of them were not 
completely contained in the section series covering about 150 µm. Altogether, we found 528 capillary sheaths 
in the 11 ROIs, i.e., in a volume of 1.85 mm3 (Supplementary Table S1: https://zenodo.org/record/1229434/
files/table_S1.xlsx). 44,5% of all sheaths were observed in a post-arteriolar position and were marked green 
(Supplementary Table S1: https://zenodo.org/record/1229434/files/table_S1.xlsx). The exact position of the 
remaining capillary sheaths could not be defined. The maximal volume of a complete or incomplete sheath was 
about 0.0003 mm3 for green (Fig. 4a,b; Supplementary File S12: https://zenodo.org/record/1229434/files/File_S12.
zip) and blue (Fig. 4c,d; Supplementary File S13: https://zenodo.org/record/1229434/files/File_S13.zip) sheaths.

The number of sheaths contained in each ROI was not uniform (Supplementary Table S1: https://zenodo.org/
record/1229434/files/table_S1.xlsx). This was partially due to the fact that variable parts of the ROIs were occu-
pied by regions not containing sheaths, such as follicles, larger arteries and veins. The density of capillary sheaths 
in the red pulp tissue proper did, however, also vary. On inspection in VR, the length and diameter of individual 
sheaths in one and the same ROI differed substantially. In addition, the stromal sheath cells themselves varied in 
shape among individual sheaths ranging from rather flat to almost prismatic. They appeared to form a continu-
ous CD271+ periendothelial layer, which was, however, sometimes interrupted by unstained stromal cell nuclei 
and/or by intervening cells. From previous investigations4 it was known that CD68+CD163− macrophages and 
B-lymphocytes invade the sheaths, which might provide an explanation of the latter phenomenon. These inter-
ruptions sometimes led to fragmentation of sheaths in the 3D model. Weakly SMA-positive cells in the interior 
of the sheaths were regarded as pericytes. It could, however, not be excluded that faint reactivity for SMA was 
present in single stromal sheath cells.

Several sheaths were very long and covered up to two (or even more) sequential post-arteriolar capillary 
branching points (Fig. 4a–d; Supplementary Files S12–13: https://zenodo.org/record/1229434), while others con-
sisted of only a few sheath cells. Sheaths were often located distal to the branching points of arterioles (Fig. 1b). In 
this case, the typical wall structure of arterioles reached up to the beginning of the sheath. Thus, it was sometimes 
difficult to decide, whether the sheath overlapped the final part of the arteriole. However, typical smooth muscle 
cells were not included in sheaths for longer distances. The smaller arterial vessels often divided in a sequential 
dichotomous manner producing an unsheathed main vessel and a side branch with a sheath until the main vessel 
finally also ended in a sheath (Fig. 1b,d,f). In addition, in several ROIs we also found a single unsheathed capillary 
with a relatively short course and an apparently open end arising from an arteriole directly proximal to a sheath 
(Fig. 5a,b; Supplementary Files S14-15: https://zenodo.org/record/1229434). In such cases the sheathed capillary 
appeared to continue into the red pulp capillary network, while the unsheathed did not.

Thus, due to the limited number of sections, sheaths could only be identified in less than 50% of the 
post-arteriolar capillaries. The course of a sheathed capillary was not always straight, but sometimes involved a 
turn so that the sheath ran back into the direction of the feeding arteriole, as observed in supplementary file S1 
(https://zenodo.org/record/1229434). Sheathed capillaries often occurred at the surface of follicles originating 
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from arterioles bending around the follicle (Figs 1c–f and 5a). In all ROIs some sheaths even seemed to cover ini-
tial parts of the red pulp capillary network, preventing the direction of blood flow to be unequivocally recognised.

Discussion
Our findings are based on inspection of selected regions of splenic tissue visualised as 3D models derived from 
serial sections stained for SMA, CD34 and CD271 using VR. This method does not only permit the observer 
to totally immerse into the model itself but also to inspect whether the model truly represents each individ-
ual immunostained section. Following all sections across the model permits stringent quality control (Fig. 3; 
Supplementary Video S4: https://zenodo.org/record/1229434/files/Video_S4.mov; Supplementary Files S1–11: 
https://zenodo.org/record/1229434). Inspecting a microvascular network in VR decisively helps to avoid errors 

Figure 1. Immunostained first sections and 3D models of R1 to R3 showing the location of capillary sheaths 
First section of R1 (a), R2 (c) and R3 (e) stained for CD34 plus SMA in brown and CD271 in blue. The first 
sections are compared to the 3D-model of R1 (b), R2 (d) and R3 (f) showing staining for CD34 plus SMA in 
yellow, for post-arteriolar CD271+ capillary sheaths in green and for capillary sheaths of undetectable location 
in blue. CD271+ FDCs in follicles are also blue. The direct connections of arterial vessels to green sheaths were 
manually marked in red. The iso-values were chosen to exclude weakly CD34+ perifollicular sinus endothelia 
and weakly CD271+ interstitial fibroblasts without compromising microvesssel continuity. As a consequence 
of this, the diameter of microvessels differs among the ROIs. Scale bars = 100 µm, f = follicle, t = trabecula, 
tv = trabecular vein.
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due to superpositioning of structures. Such superpositioning is extremely difficult to circumvent, when a 3D 
model is visualised on a conventional (2D) computer screen, even if the visualisation is interactive.

We confirm that a large number of the sheathed capillaries in human spleens are located in an immediate 
post-arteriolar position. This may even be true for all capillary sheaths, but our series of 24 sections is too short 
to diagnose the location of all capillary sheaths with respect to the arterial tree. Sheathed capillaries tend to occur 
distal to side-branches of small arteries so that they are located close to one another (Fig. 1a,b). We highlighted 
all sheaths in green colour which were unequivocally connected to arterioles and arteries. Because of the limited 
number of sections investigated, many capillary sheaths were incomplete. Thus, in 55,5% of all sheaths detected 
the relation to arterioles could not be analysed, because they were only partially preserved or because the supply-
ing vessel could not be unequivocally diagnosed.

Our models show that the length of capillary sheaths is extremely variable and that their shape is much more 
complicated than shown in present textbooks. A large number of sheaths continues for more than 150 µm (the 
estimated total length of 24 serial 7 µm sections) and may cover two or more successive capillary branching 
points. Sheaths of maximal volume do, however, continue outside the section series, so that their real volume 
remains undetermined. The size and shape of the CD271+ stromal sheath cells is also variable among the sheaths 
ranging from large isoprismatic to rather flat cells.

We have previously published the cellular composition of human splenic capillary sheaths4,5. They consist of 
endothelia with pericytes, stromal CD271+ sheath cells, special macrophages and recirculating CD20+CD27− 
B-lymphocytes. T-lymphocytes are also found in the sheaths, but their frequency does not differ from that in the 
surrounding red pulp.

Our study now extends these findings by visualising splenic capillary sheaths in three dimensions. We stained 
both endothelia and smooth muscle cells in brown, which poses some problems in defining the exact location 
of the ends of arterioles, i.e., the termination of SMA staining. Most sheathed capillaries can be clearly classi-
fied as capillaries lacking smooth muscle cells. It is, however, difficult to recognize whether the stromal sheath 
cells sometimes initially overlap with some terminal smooth muscle cells of arterioles. In addition, it cannot be 
excluded that single stromal sheath cells are weakly positive for SMA. The next step of the study thus needs to 
involve at least three to four colours to more precisely differentiate cells associated with capillary sheaths from 
smooth muscle cells.

The distribution of CD271 in human spleens described by us corresponds to the description of others24. 
CD271 and SMA are present in multiple cell types. This fact necessitated a careful choice of the iso-value for mesh 
construction especially with respect to blue colour. CD271 also occurs in FDCs, FRCs of T-cell zones and in ubiq-
uitous perivascular fibroblasts in the red pulp. The latter two cell populations could be excluded from the models 
due to their low staining intensity, but FDCs were inevitably co-visualised. The iso-values needed to be adapted 
for each individual ROI (Supplementary Table S2: https://zenodo.org/record/1229434/files/table_S2.xlsx). The 
detection of blue was chosen with the aim of excluding unwanted cell types while minimising the loss of capillary 

Figure 2. Overview of all 11 regions (R) visualised in 3D.

https://zenodo.org/record/1229434/files/table_S2.xlsx


www.nature.com/scientificreports/

5SCientifiC REPORtS |  (2018) 8:15720  | DOI:10.1038/s41598-018-34105-3

sheath staining. Losing weakly CD271+ capillary sheath cells and even entire sheaths could, however, not be 
totally avoided.

Besides smooth muscle cells, marginal reticular cells, periarteriolar fibroblasts and trabecular cells are always 
strongly positive for SMA. This staining could not be eliminated thus excluding automatic highlighting of arteries 
and arterioles. In contrast to the automatic detection of all capillary sheaths, arterial vessels supplying sheathed 
capillaries needed to be manually annotated, which may be error-prone.

Capillary sheaths have been described in fish18–20, birds6–11,14, pigs13, cats12, dogs12, humans1–3 and many other 
species of vertebrates. In animals, particulate materials and immune complexes injected intravenously initially 
accumulate in capillary sheaths as described for birds and fish7,14–20. Although not always mentioned in detail, it is 
likely, that this accumulation occurs in capillary sheath macrophages and not in stromal sheath cells. We suppose 
that the materials approach the sheaths from the outside in those species with an open splenic circulation and that 
they are not transported across the walls of sheathed capillaries.

Human capillary sheaths are probably involved in the initial part of naive B-lymphocyte recirculation through 
the spleen. Recirculating B-lymphocytes may arrive via the open circulation of the splenic cords and be then 
attracted to capillary sheaths. There are two reasons for this assumption: First, the B-lymphocyte accumulations 
around human capillary sheaths resemble a much reduced version of a special B-cell region around capillary 

Figure 3. A serial section blended into the 3D model of R2 showing staining for CD34 plus SMA in yellow, for 
post-arteriolar CD271+ capillary sheaths in green and for capillary sheaths of undetectable location in blue. The 
direct connections of arterial vessels to green sheaths were manually marked in red.
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sheaths in avian spleens called the “periellipsoid B-lymphocyte sheath”16. Second, we were able to detect a decisive 
B-cell attracting chemokine, CXCL13, in and around human stromal sheath cells4,5.

Interestingly, not only CD271, but also CXCL13, is described to be associated with FDCs25. Strong expres-
sion of both molecules may thus be a hallmark of stromal cells interacting with B-cells. Nevertheless, human 
sheath-associated macrophages may also be involved. These macrophages exhibit a special phenotype, which 
differs from that of the majority of red pulp macrophages by the absence of CD1634. In the vicinity of follicles, 
but not in the entire red pulp, human sheath-associated macrophages resemble rat marginal zone macrophages 
(MZMs), rat marginal metallophilic macrophages (MMMs) and mouse MMMs, because they strongly express 
CD16926. MZMs have been shown to intimately interact with B-lymphocytes27,28. Thus, not only stromal sheath 
cells, but also macrophages may attract B-lymphocytes and additionally offer contact to antigens. Signals from 
stromal sheath cells may directly or indirectly induce recirculating B-cells to enter the white pulp and to migrate 
along SMA+CXCL13+/− periarteriolar and perarterial stromal cells heading for the surface of T-cell zones and for 
the mantle zones of follicles.

CD271 represents a member of the TNF receptor family with affinity for different neurotrophins and their 
precursors. Its function in lymphatic stromal cells has so far not been investigated. Thus, one needs to speculate 

Figure 4. 3D visualisation of the two largest sheaths found in all regions investigated. (a) The largest sheath 
with a demonstrable connection to an artery highlighted in white colour in R1 (view from last section of the 
series). (b) Same sheath as in (a) at higher magnification and after removal of non-connected structures.  
(c) The largest sheath without demonstrable connection to an artery highlighted in white colour in R10 (view 
from last section of the series). (d) Same sheath as in (c) at higher magnification and after removal of non-
connected structures. (a–d) show staining for CD34 plus SMA in yellow, for post-arteriolar CD271+ capillary 
sheaths in green and for capillary sheaths of undetectable location in blue. In (a) and (c) CD271+ FDCs in a 
follicle are also blue. The direct connections of arterial vessels to green sheaths were manually marked in red. 
Length of the horizontal part of the bounding box = 1 mm in (a) and (c); 596 µm in (b) and 293 µm in (d).  
f = follicle, t = trabecula, tv = trabecular vein, v = vein.
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why cells derived from the mesenchyme such as FDCs and, potentially, stromal sheath cells strongly express 
CD271. CD271 is known to be present in normal human mesenchymal and other types of stem cells and in cancer 
stem cells29. In addition, it is widely expressed in normal neurons. In vitro, CD271 either enhances longevity or 
induces apoptosis in different cell lines29. Recently, it has been described as an antagonist of p5330. Thus, CD271 
may enhance the differentiation and the subsequent longevity of certain normal cell types, if strong expression 
is preserved. This function may be necessary, if stromal sheath cells were indispensable to initate B-lymphocyte 
immigration into the splenic white pulp and to channel B-lymphocytes into subsequent interactions with T 
helper cells.

The highly variable shape of capillary sheaths may indicate that they are dynamic structures. Sheath mac-
rophages appear to be able to leave the sheaths26, if immune reactions occur. In this context, investigations on 
capillary sheaths in pathological human spleens are needed. Macrophages may also be of primary importance to 
induce perivascular fibroblasts to assume the special shape of stromal sheath cells and to become attractive for 
B-lymphocytes. Thus, macrophages have been described to produce neurotrophins31, which may interact with 
CD271. Macrophages themselves may not only be attracted by stromal sheath cells, but also by splenic postarteri-
olar endothelial cells. Our 3D-models suggest that a few post-arteriolar capillaries without sheaths also exist and 
that these vessels have open ends. Larger numbers of serial sections are needed to find out whether the occurrence 
and the shape of capillary sheaths and their specialised stromal cells depend on their exact location in the vascular 
tree. Microvascular blood pressure or blood flow may be a decisive variable in this context explaining why some 
capillaries exist without sheaths.

Why rodents and lagomorphs apparently get along without capillary sheaths in their spleens and thus form a 
phylogenetic exception, while the majority of vertebrates possess these structures, remains enigmatic. A convinc-
ing answer cannot be given as long as a comprehensive immunohistological review of splenic microanatomy in 
different species is lacking. Jeurissen et al.7 put forward the hypothesis that avian periellipsoid B-cell sheaths and 
their surrounding macrophages are the equivalents of rat and mouse splenic marginal zones. The cell composition 
of capillary sheaths does not entirely support such a hypothesis with respect to humans. Human sheath-associated 
B-lymphocytes phenotypically resemble naive recirculating B-cells and thus differ from the majority of rat or 

Figure 5. Two non-sheathed capillaries arising from an arterial vessel proximal to a capillary sheath. The non-
sheathed capillaries are marked in white colour. All non-connected structures were removed. (a) Part of R3 
seen from the last section in the series. (b) Part of R8 seen from the first section in the series. (a) and (b) show 
staining for CD34 plus SMA in yellow, for post-arteriolar CD271+ capillary sheaths in green and for capillary 
sheaths of undetectable location in blue. In (a) the blue structure in the lower right part corresponds to CD271+ 
FDCs in follicles. The direct connections of arterial vessels to green sheaths were manually marked in red. 
Length of the horizontal part of the bounding box = 882 µm in (a) and 709 µm in (b).
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mouse marginal zone B-lymphocytes. The phenotype of most sheath-associated macrophages is also slightly 
different from rodent MZMs or MMMs.

In summary, sheathed capillaries appear to form a decisive splenic compartment which has been preserved in 
most vertebrate phyla including humans. This compartment merits a more detailed investigation with respect to 
its involvement in B-lymphocyte recirculation and stimulation.

Methods
Specimen. The spleen investigated came from a 22-year-old healthy male. The spleen was divided into small 
specimens which were fixed in 3.7% formaldehyde for 24 h and embedded in paraffin. The material was obtained 
in the year 2000 after the attending surgeon had informed the patient and received verbal consent that it could be 
used for anatomical research by the first author. This procedure corresponded to the standard in use at Marburg 
University Hospital at that time and was retrospectively approved by the ethics committee of the medical faculty 
of Marburg University.

Immunohistology. After removal of paraffin, the sections were incubated with glucose oxidase (Sigma, St 
Louis, MO, No. G-6641) at 100 U/ml in PBS, pH 7.2, containing 20 mM beta-D-glucose and 2 mM NaN3 for 
1 h at 37 °C to remove endogenous peroxidase activity. In the first step, monoclonal antibody (mAb) QBend10 
(Dianova, Hamburg, Germany, No. DLN-09135) against CD34 was applied overnight at a concentration of 1:3000 
in PBS/1% BSA/0.1% NaN3 together with mAb asm-1 (Progen, Heidelberg, Germany, No. 61001) against SMA 
at 1:1000. Binding of both reagents was revealed in brown colour using the Vectastain Elite system (Vector Labs, 
No. PK-6100 and BA-9200) for mouse IgG with diaminobenzidine as chromogen. Subsequently, the sections were 
autoclaved in citrate buffer pH 6.0 and mAb EP1039Y (GeneTex, No. GTX61425, via Biozol, Eching, Germany) 
against CD271 was used at 1: 80 overnight and revealed in blue using UltraVision for mouse and rabbit IgG (Lab 
Vision, Fremont, USA, via Thermo Fisher Life Technologies, Dreieich, Germany, No. TL-060-AL) and Fast Blue 
as chromogen. The sections were then coverslipped in polyvinyl alcohol (Mowiol 40–88, Sigma/Aldrich/Merck, 
No. 324590, with 9.6 g Mowiol dissolved in 48 ml glycerol/water and diluted in 48 ml Tris-HCl pH 8.5) and sealed 
with Eukitt.

Digital image processing. After staining and coverslipping, the 24 serial sections were scanned using a 
Leica SCN 400 scanning microscope for transmitted light and a ×20 lens. The final resolution was 0.5 µm/pixel. 
The average thickness of a single section was measured to be 7 µm.

The acquired sections (with resolution 18.5 k × 19.5 k pixels) were initially registered using our coarse regis-
tration method32. After selection of regions of interest (ROIs), a fine-grain registration33 was applied. Each ROI 
had 2.5 k × 2.5 k pixel during the registration. These registered series were the input for further processing and 
quality control. After some initial experiments, we decided against colour deconvolution for the separation of 
both staining colours. Instead, we selected in CMYK (cyan-magenta-yellow-black colour space) channel C for the 
violet-blue chromogen and channel K for brown. The single-channel images were separately processed further. 
We applied inter-slice interpolation34 in order to reduce the 14:1 anisotropy of the data. Our interpolation method 
is based on dense optical flow35. We created intermediate images between slices to obtain a resolution of 1 µm/
image in the direction of the z axis axis after interpolating the resulting volume and cropping the corresponding 
reference images to 2 k × 2 k pixels in the xy plane (equivalent to 1 × 1 mm). The cropping operation removed 
possible border effects from registration and interpolation. These operations were performed in a custom writ-
ten software, which heavily utilised the Open CV library36. For format conversions ImageMagick (https://www.
imagemagick.org) and Fiji37 packages were also used.

The resulting volume was further processed using 3D Slicer38. The typical outline was a grayscale closing oper-
ation and a Gaussian blur. The cyan channel was additionally dilated by a 11-11-3 kernel and partially exposed to 
a larger closing operation kernel of up to 14-14-4. The reason for this was the large colour heterogeneity in capil-
lary sheaths, provoked by the unstained nuclei of stromal sheath cells and by unstained intercalated macrophages 
in the sheath. Without our processing, the reconstructed sheaths were much more inhomogeneous. In the black 
channel the closing operation had a radius of 7-7-2. This value was derived from other 3D reconstructions of 
blood vessels in human specimens. In both cases a blur with sigma value 1.0 was applied afterwards.

The present experiment was designed as a double-staining study. Thus, CD34 and SMA were both stained in 
brown colour. The SMA staining was primarily intended to differentiate arterioles from capillaries. However, as 
published previously22,39, SMA is also present in marginal reticular cells and in periarteriolar fibroblasts of the 
human splenic white pulp. In addition, it occurs in some interstitial fibroblasts in the red pulp as well as in cells 
of the splenic capsule and trabeculae. Thus, the reconstruction of brown-stained cells not only revealed smooth 
muscle cells, but also produced large fibroblast networks around arterioles and showed trabeculae. This peculiar-
ity necessitated manual labelling of all vessels at the arterial side of the capillary sheaths in red colour.

The surface models (the meshes) were constructed using the marching cubes algorithm40, implemented in 3D 
Slicer. The typical iso-values, which determine inclusion or exclusion of a voxel with respect to a 3D surface, were 
about 120 (of 255) for the brown channel and about 30 for the blue channel. The actual values varied from ROI to 
ROI because of slightly varying staining intensity due to the different quality of fixation at the surface and in the 
interior of the specimen. This led to slightly variable diameters of the reconstructed capillaries in different ROIs. 
All iso-values are summarised in Supplementary Table S2: https://zenodo.org/record/1229434/files/table_S2.xlsx.

After mesh construction, multiple processing steps were applied. Generally speaking, the meshes were 
healed41, smoothed, and small unconnected components were removed. These operations varied based on which 
channel was processed. Arteriole annotations necessitated further treatment. All mesh processing except healing 
was performed in MeshLab42 (version 2016.12). We used Taubin smoothing43, because it does not change the size 
of blood vessels in the mesh representation. The processing parameters were: octree depth 9 for mesh healing and 

https://www.imagemagick.org
https://www.imagemagick.org
https://zenodo.org/record/1229434/files/table_S2.xlsx
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10 iterations (the default) of Taubin smooth. In the blue channel (i.e., CD271+) meshes, non-connected compo-
nents smaller than 5% of their main diagonal (i.e., 71 µm) were removed. In the black channel (i.e., CD34+ and/
or SMA+), this was only 2%, i.e., 28 µm.

3D reconstructions from histological serial sections inevitably require quality control (QC), because multiple 
cell types may be stained by a single mAb and because digital processing features multiple parameters, most 
prominently the iso value. Wrong choice of these parameters impacts the reconstruction quality. Further, recon-
structions always reveal interesting or unexpected findings that need to be more thoroughly investigated. The best 
way of doing so is to re-inspect the original immunohistological section in question. However, finding the correct 
section and communicating with the 3D reconstruction expert may be difficult. We have thus developed a custom 
software for QC of our reconstructions in VR. Using commodity graphics hardware (NVidia GTX 1070) with 
an available head-mounted display and controllers (HTC Vive), we were able to immerse the histology expert 
into VR. We presented the reconstructed meshes (with free choice of displayed combination) and the original 
data as a correctly positioned section in the virtual space (Fig. 3; Supplementary Video S4: https://zenodo.org/
record/1229434/files/Video_S4.mov; Supplementary Files S1–11, https://zenodo.org/record/1229434). Thus, the 
user could freely move around in and through the model to investigate the original data at own choice.

The capillary sheaths were annotated by the expert immersed in VR according to their location as 
post-arteriolar (coloured green) or undefined (blue). Most of the sheaths in the latter category were incomplete 
sheaths cut at the surfaces of the ROI. The blood supply to these sheathed capillaries could not be traced, because 
the feeding arteriole (if present at all) was either located outside the ROI or was too short to be diagnosed. Feeding 
arterioles were defined by their SMA+ smooth muscle cells and by a characteristic arrangement of peri-arteriolar 
SMA+ fibroblasts. Both cell types and the endothelium inside the sheaths were manually labelled in red colour. 
At the surface of larger arteries, the majority of periarterial SMA+ fibroblasts remained unlabeled to more clearly 
visualise the course of the vessel. Each sheath which was contacted by red cells was labelled green. Thus, green 
sheaths were either completely included in the ROI or were cut at one of its surfaces.

We developed a special VR application for annotating arterial vessels as an interactive task. Basically, on user 
input, the mesh surface inside a user-controlled sphere of a given radius was coloured red. This method was 
implemented as a geodesic distance computation from the centre of the sphere. Thus, unintended spreading of 
red colour to connected or unconnected blood vessels was avoided.

The videos were encoded with FFmpeg (version 3.4.2, https://ffmpeg.org). Mesh statistics were computed with 
pymesh44.

Data Availability Statement
All supplementary information is to be found at https://zenodo.org/record/1229434.
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