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ABSTRACT Cyanobacterial mats profoundly influenced Earth’s biological and geo-
chemical evolution and still play important ecological roles in the modern world.
However, the biogeochemical functioning of cyanobacterial mats under persistent
low-O2 conditions, which dominated their evolutionary history, is not well under-
stood. To investigate how different metabolic and biogeochemical functions are par-
titioned among community members, we conducted metagenomics and metatran-
scriptomics on cyanobacterial mats in the low-O2, sulfidic Middle Island sinkhole
(MIS) in Lake Huron. Metagenomic assembly and binning yielded 144 draft metage-
nome assembled genomes, including 61 of medium quality or better, and the domi-
nant cyanobacteria and numerous Proteobacteria involved in sulfur cycling. Strains of
a Phormidium autumnale-like cyanobacterium dominated the metagenome and
metatranscriptome. Transcripts for the photosynthetic reaction core genes psaA and
psbA were abundant in both day and night. Multiple types of psbA genes were
expressed from each cyanobacterium, and the dominant psbA transcripts were from
an atypical microaerobic type of D1 protein from Phormidium. Further, cyanobacte-
rial transcripts for photosystem I genes were more abundant than those for photo-
system II, and two types of Phormidium sulfide quinone reductase were recovered,
consistent with anoxygenic photosynthesis via photosystem I in the presence of sul-
fide. Transcripts indicate active sulfur oxidation and reduction within the cyanobacte-
rial mat, predominately by Gammaproteobacteria and Deltaproteobacteria, respectively.
Overall, these genomic and transcriptomic results link specific microbial groups to
metabolic processes that underpin primary production and biogeochemical cycling in
a low-O2 cyanobacterial mat and suggest mechanisms for tightly coupled cycling of
oxygen and sulfur compounds in the mat ecosystem.

IMPORTANCE Cyanobacterial mats are dense communities of microorganisms that
contain photosynthetic cyanobacteria along with a host of other bacterial species
that play important yet still poorly understood roles in this ecosystem. Although
such cyanobacterial mats were critical agents of Earth’s biological and chemical evo-
lution through geological time, little is known about how they function under the
low-oxygen conditions that characterized most of their natural history. Here, we per-
formed sequencing of the DNA and RNA of modern cyanobacterial mat communities
under low-oxygen and sulfur-rich conditions from the Middle Island sinkhole in Lake
Huron. The results reveal the organisms and metabolic pathways that are responsible
for both oxygen-producing and non-oxygen-producing photosynthesis as well as
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interconversions of sulfur that likely shape how much O2 is produced in such ecosys-
tems. These findings indicate tight metabolic reactions between community mem-
bers that help to explain the limited the amount of O2 produced in cyanobacterial
mat ecosystems.

KEYWORDS cyanobacteria, geomicrobiology, metagenomics, metatranscriptomics,
photosynthesis, biogeochemistry, mats, oxygen, sulfur

Cyanobacterial mats host communities of microorganisms that are linked through
metabolic interactions in which the products of one metabolism are the substrate

for another (1–4). These metabolic interactions underpinned critical biogeochemical
processes throughout Earth’s history (5–7) and continue to do so in the modern world
(2, 4). Cyanobacterial mats have been a prevalent feature of the biosphere for billions
of years and strongly influenced the composition of the atmosphere (7, 8). Most promi-
nently, cyanobacteria mediated the oxygenation of Earth’s surface by producing O2 via
oxygenic photosynthesis, thus catalyzing a cascade of geobiological transitions that
set the stage for complex life (9).

Modern microbial mats have long served as analogs for studying their ancient
equivalents, and recent work has made great progress in elucidating cyanobacterial
mat processes, organisms, and their interactions (10–12). However, relatively little work
has been devoted to cyanobacterial mats that inhabit persistently low-O2 and/or sulfi-
dic environments. This is a critical gap in knowledge, because low-O2, sulfidic phototro-
phic habitats were likely common in the Precambrian (13) and thus prevailed for much
of the evolutionary history of cyanobacteria (6, 14). Further, cyanobacteria were likely
anoxygenic phototrophs prior to evolving oxygenic photosynthesis (15–18), and
anoxygenic cyanobacteria may have delayed Earth’s oxygenation during ;2 billion
years of low-O2 conditions in the Proterozoic (6, 19, 20).

Sulfide is a key control of the physiology of cyanobacteria and the biogeochemical
cycling of elements in cyanobacterial mats (6). Cyanobacteria typically conduct oxy-
genic photosynthesis, which is inhibited by sulfide because it blocks photosystem II
(PSII) (21). However, some cyanobacteria can tolerate sulfide through a variety of
mechanisms, including sulfide-resistant oxygenic photosynthesis, simultaneous opera-
tion of oxygenic and anoxygenic photosynthesis, and a complete switch to anoxygenic
photosynthesis using sulfide as the electron donor (21). In some strains, sulfide can ei-
ther inhibit or enhance oxygenic photosynthesis, depending on light availability and
sulfide conditions (22). Sulfide-quinone reductase (SQR) is the key enzyme for anoxy-
genic photosynthesis by cyanobacteria; it oxidizes sulfide and transfers electrons to PSI
through the quinone pool, effectively bypassing PSII (23–25). SQR is a diverse protein
family that has also been linked to sulfide detoxification in cyanobacteria and other
phototrophs (6, 24). Although studies have elucidated the physiological responses of
cyanobacteria to sulfide and the role of SQR in anoxygenic photosynthesis (21, 26, 27),
little is known about transcriptomic controls on cyanobacterial anoxygenic photosyn-
thesis within cyanobacterial mats.

The Middle Island sinkhole (MIS) in Lake Huron, MI, hosts cyanobacterial mats in
low-O2, intermittently sulfidic conditions (28). The mats sit atop anoxic, organic-rich
sediments in which microbial methanogenesis and sulfate reduction produce methane
and sulfide, leading to sharp redox gradients (29–32). The mats are metabolically versa-
tile, having the ability to conduct oxygenic photosynthesis, anoxygenic photosynthe-
sis, and chemosynthesis (30, 33, 34). Despite this metabolic versatility, early 16S rRNA
gene and metagenomic studies suggested that the mats have low taxonomic diversity,
being dominated by just one cyanobacterial genotype, an organism closely related to
Phormidium autumnale (29, 30, 34). However, deep 16S rRNA gene sequencing of the
mat and underlying sediments revealed a taxonomically diverse microbial community,
including numerous groups of sulfate-reducing and sulfur-oxidizing bacteria that are
suggested to mediate key biogeochemical processes within and beneath the mat (31).
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Further, diurnal vertical migration of sulfur-oxidizing bacteria and diatoms exerts a
strong influence on the biogeochemistry of the systems and on light availability and
photosynthesis in the mats (33, 35).

In order to investigate how different metabolic and geochemical functions are par-
titioned among community members and expressed over time, we conducted metage-
nomic analysis on 15 samples collected at seven time points between 2007 and 2012
and metatranscriptomic analysis on six samples taken during day and night in 2012.
The Phormidium species was found to dominate transcriptional activity in the MIS mat
community and displays gene expression patterns consistent with a mixture of oxy-
genic and anoxygenic photosynthesis. We also recovered genomes and transcripts of
diatoms, sulfate-reducing bacteria, and sulfur-oxidizing bacteria, providing insights
into the microbial groups that mediate key biogeochemical processes within the mat.

RESULTS AND DISCUSSION
Environmental setting and conditions. The environmental and geological setting

of the MIS was described previously (28). In May 2012, at the time of collection of sam-
ples for metatranscriptomic and metagenomic sequencing (Table S1), the groundwater
layer ;1 m immediately above the mat in the sinkhole had substantially elevated spe-
cific conductivity (1,813 mS cm21 versus 226 mS cm21 in the ambient lake water), lower
and temporally consistent temperature (7 to 9°C), and an average dissolved O2 level of
3.37 mg L21.

Community composition and function. Assembly and binning produced 16 high-
quality draft metagenome-assembled genomes (MAGs) (.90% completion, ,5% re-
dundancy), 45 medium-quality (.50% completion, ,10% redundancy), and 79 low-
quality draft MAGs (,50% completion, ,10% redundancy) according to estimates
based on single-copy genes expected to be present (36) (Table S2). In addition, four
MAGs had high redundancy (.10%), including three of the most abundant MAGs
(Bin_4_1, Bin_1, Bin_235_243; Rhodoferax, Phormidium, and Planktothrix, respectively),
which had high coverage and moderate completion (Table S2). For example, the domi-
nant MAG in most samples, Phormidium (Bin_1), had high redundancy (56%) and mod-
erate completeness (70%). Single-copy genes in the Phormidium MAG were on small
contigs, consistent with fragmentation of contigs due to high coverage and strain het-
erogeneity (37, 38), and they were classified taxonomically as various cyanobacteria, as
expected based on the lack of available Phormidium genomes (Fig. S1). Thus, these
MAGs likely contain contigs from multiple strains of Phormidium.

While community membership was dynamic across time and space, Phormidium was
consistently the dominant organism in the MIS mats (Fig. S2). Other cyanobacteria were
also abundant in the mat, including Planktothrix (formerly referred to as Oscillatoria in
previous studies of MIS, but its 16S rRNA genes are most similar to those of Planktothrix
agardhii and Planktothrix rubescens [39]), Pseudanabaena, and Spirulina. MAGs were also
recovered for various Bacteroidetes, Betaproteobacteria, Chloroflexi, Deltaproteobacteria,
Epsilonproteobacteria, Firmicutes, Gammaproteobacteria, and Spirochaetes (Table S2). In
most cases there were multiple MAGs recovered for each of these taxonomic groups.
Many of these groups are commonly found in anoxic or hypoxic sediments (40, 41), and
several are enriched in sediments below the mats at the MIS (29, 31).

To investigate which community members have metabolic pathways for mat bio-
geochemical processes, we searched the MAGs for key genes involved in carbon me-
tabolism, nitrogen and sulfur cycling, oxygenic and anoxygenic photosynthesis, and
other energy metabolisms. Cyanobacteria were the dominant phototrophs in terms of
genomic abundance; Phormidium had a mean genomic coverage of over 200�, though
based on high redundancy (56%), multiple strains are present (Table S2). While two pu-
tative diatom MAGs (Bin_3_1 and Bin_3_3) had low average coverages (0.31 and
6.19�), their chloroplasts were very abundant (up to 230� coverage), likely reflecting
their high copy number per cell and easier assembly than the nuclear genome
(Fig. S3). Marker genes of anoxygenic photosynthesis, including photosynthetic reac-
tions center (pufM and pufL) and bacteriochlorophyll synthesis (bchB and bchL), were
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present in Rhodoferax (Bin_4_1) and Chloroflexi (Bin_120) MAGs (Table S2). Diatoms
and Chloroflexi are often associated with cyanobacterial mats; migratory diatoms play
important roles in nitrogen cycling in MIS mats and sediments (35), and Chloroflexi
engage in tight metabolic interactions with cyanobacteria (2, 3, 10, 42).

The MAGs of various proteobacteria revealed organisms involved in sulfur cycling. Key
genes for dissimilatory sulfite reductase (dsrA) involved in sulfate reduction were present
in deltaproteobacterial genomic bins, including one unclassified Desulfobacteraceaemem-
ber, one unclassifiable Desulfobulbaceae member, and one Desulfobacula member
(Table S2). Based on their relatively high abundance, we infer that these sulfate-reducing
bacteria were present directly in the cyanobacterial mat (43, 44) rather than the alterna-
tive that the sequences could be due to contamination of the mat by underlying sedi-
ments. Related sulfate-reducing bacteria are associated with anoxygenic bacteria in Lake
Mahoney (45), with cyanobacterial mats at Guerrero Negro (46, 47), and in nearby mats of
chemolithotrophic sulfur oxidizers influenced by the same groundwater as MIS (48).

Potential for oxidation of elemental sulfur using reverse dissimilatory sulfite reduc-
tase (rdsrA) was detected in genomic bins of Arcobacter (Epsilonproteobacteria), several
Betaproteobacteria, Thiothrix, and Thioploca and in unbinned scaffolds putatively
belonging to Beggiatoa (Table S2). Thiothrix, Thioploca, and Beggiatoa are likely the
white filamentous bacteria observed directly underneath the cyanobacterial mat (29)
and in a nearby artesian fountain fed by the same groundwater (48). They can migrate
on diel cycles and influence the balance of oxygenic versus anoxygenic photosynthesis
by modulating light available to phototrophs when covering the mat (33). These large
sulfur-oxidizing bacteria likely contribute to the substantial rates of chemosynthesis
measured previously (30) and likely influence cyanobacterial photosynthesis by con-
suming sulfide. Potential for thiosulfate oxidation, indicated by the presence of soxA,
was observed in betaproteobacterial, deltaproteobacterial, and gammaproteobacterial
bins (Table S2). Finally, the mmoC gene, for methane oxidation, was identified within a
MAG classified as Methylococcales (Table S2).

Whole-community transcriptomics. Metatranscriptomic sequencing was con-
ducted to investigate the in situ metabolic activity of the MIS mat community mem-
bers. Although transcript abundance is not directly proportional to protein abundance
or enzymatic activity, transcriptomics provides valuable insights into which community
members and metabolic pathways are active at the time of sampling and their
response to environmental conditions (49). In order to evaluate the influence of light
availability on gene expression in MIS mats, three samples collected in 2012 at 1 p.m.
and three collected at 1 a.m. were studied. In terms of relative abundance, transcripts
mapped to MAGs from Phormidium, Bacteroidetes, Thiotricaceae, and the putative dia-
tom dominated the metatranscriptome (Fig. S2; Table S2). Other significant contribu-
tors (.1� mean coverage) to the transcript pool were bins from Paludibacter and
other Bacteroidetes members, Rhodoferax (Betaproteobacteria), Chloroflexi, Planktothrix,
and a variety of unidentified bins (Table S2). Mapping of metatranscriptomic data to
marker genes and MAGs provided a picture of the organisms responsible for meta-
bolic/biogeochemical processes within the mat in day and night (Fig. 1; Table S2).

Transcripts involved in phototrophy.We next focused our transcriptomic analysis
on key genes for photosynthesis. Core components of the reaction centers of PSI and
PSII, encoded by psaA and psbA genes, respectively, are degraded at an enhanced rate
compared to other proteins due to absorption of excess light energy from photosyn-
thesis (50, 51). This leads to higher cellular demand for protein and likely explains the
high abundance of transcripts we observed for these genes. The most abundant tran-
scripts for psaA and psbA genes were from Phormidium and the diatom, with minor
contributions from Planktothrix, Spirulina, and Pseudanabaena (Fig. 2). Included in our
analyses were multiple versions of the cyanobacterial psbA genes, encoding the D1
subunit of PSII, which are expressed according to light and redox conditions (52, 53)
and have been suggested to be involved in sulfide tolerance and/or anoxygenic photo-
synthesis in cyanobacteria (54). Phormidium contained three of the four psbA types,
and type 3 had the most transcripts (Fig. 2). This type of psbA is expressed during
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FIG 1 Detection of transcripts from marker genes of key metabolic/biogeochemical processes in MAGs (see Table S2 for details). Symbols are colored
according to the time of day at which transcripts were detected: white, day; black, night; gray, both night and day. “X” indicates that the gene was
observed in the MAG, but no transcripts were detected.
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microaerobic and/or dynamic redox conditions (55, 56). The other cyanobacterium that was
abundant in metagenomic data sets, Planktothrix, had type 3 and 4 psbA genes, with
similar relative abundance of transcripts in day and night but at much lower levels than
Phormidium.

Twenty-one of 32 psaA and psbA genes had transcripts that were more abundant at
night than in the day, although these differences were not statistically significant
(Fig. 2). When normalized by the number of transcript reads recruited to each bin,
which removes effects of transcriptomic variability across the whole community on
transcript counts for genes within each bin, 9 of 21 genes had transcripts that were
more abundant at night (Fig. S4). These patterns contrast those in several laboratory
studies of cyanobacterial transcription, which found highest expression of photosyn-
thesis reaction core genes during the day (57–62). Several field studies have also
shown highest expression of PSII genes during the day (63–65). One possible explana-
tion is that whereas many previous studies focused on oxygenic unicellular cyanobac-
teria that typically undergo rapid cell division (59, 66), Phormidium species are filamen-
tous and typically much slower growing (0.07 to 0.5 day21, depending on light and
nutrient availability) (67, 68). There is a precedent for high transcription of photosyn-
thetic genes in the dark and lower transcription in the light; in Synechococcus sp. strain
PCC 7002, transcript levels of several psbA genes were constant across several condi-
tions, including light and dark (69).

Phototrophic genes were among the most highly expressed genes in marine sur-
face waters collected 3 h before sunrise (70). Photosystem I genes in thrombolites
were constitutively expressed, with nearly even transcript abundance at midday and

Bacillariophyte
1

(Bin_3_1)

Bacillariophyte
2

(Bin_3_3)

Phormidium
(Bin_1)

Planktothrix
(bin_235_243)

Pseudanabaena
(bin_143)

Spirulina
(bin_256) Unassigned

ps
aA

: 3
30

00
02

02
6_

M
IS

_1
00

09
51

21
1

ps
bA

_4
: 3

30
00

02
02

6_
M

IS
_1

00
26

66
13

ps
bA

_4
: 3

30
00

02
02

6_
M

IS
_1

00
26

78
15

ps
aA

: 3
30

00
02

02
6_

M
IS

_1
00

00
10

39

ps
aA

: 3
30

00
02

02
6_

M
IS

_1
00

02
65

83
9

ps
bA

_4
: 3

30
00

02
02

6_
M

IS
_1

00
15

59
21

ps
bA

_4
: 3

30
00

02
02

6_
M

IS
_1

00
00

67
55

2

ps
bA

_4
: 3

30
00

02
02

6_
M

IS
_1

00
00

77
35

0

ps
aA

: 3
30

00
02

02
7_

M
IS

_1
01

93
78

72

ps
aA

: 3
30

00
02

02
4_

M
IS

_1
10

00
32

1

ps
aA

: 3
30

00
02

02
6_

M
IS

_1
00

34
24

44

ps
bA

_2
: 3

30
00

02
02

6_
M

IS
_1

00
10

11
01

1

ps
bA

_3
: 3

30
00

02
02

6_
M

IS
_1

00
29

92
44

ps
bA

_4
: 3

30
00

02
02

4_
M

IS
_1

17
96

32
1

ps
aA

: 3
30

00
02

02
6_

M
IS

_1
00

19
87

17

ps
bA

_3
: 3

30
00

02
02

6_
M

IS
_1

00
07

38
93

ps
bA

_4
: 3

30
00

02
02

7_
M

IS
_1

01
32

21
85

ps
aA

: 3
30

00
02

02
6_

M
IS

_1
00

05
89

03
9

ps
bA

_2
: 3

30
00

02
02

6_
M

IS
_1

00
03

90
89

ps
bA

_3
: 3

30
00

02
02

6_
M

IS
_1

00
00

77
62

9

ps
bA

_4
: 3

30
00

02
02

6_
M

IS
_1

00
29

92
06

ps
aA

: 3
30

00
02

02
7_

M
IS

_1
01

07
40

61

ps
aA

: 3
30

00
02

02
7_

M
IS

_1
01

09
62

11

ps
aA

: 3
30

00
02

02
4_

M
IS

_1
00

75
79

1

ps
aA

: 3
30

00
02

02
4_

M
IS

_1
01

37
00

1

ps
aA

: 3
30

00
02

02
7_

M
IS

_1
01

87
78

01

ps
aA

: 3
30

00
02

02
4_

M
IS

_1
10

90
41

1

ps
aA

: 3
30

00
02

02
4_

M
IS

_1
10

91
28

1

ps
aA

: 3
30

00
02

02
7_

M
IS

_1
00

10
14

24

ps
aA

: 3
30

00
02

02
7_

M
IS

_1
00

52
18

01

ps
bA

_3
: 3

30
00

02
02

7_
M

IS
_1

00
63

42
43

ps
bA

_4
: 3

30
00

02
02

4_
M

IS
_1

12
45

61
1

0

1

10

100

1000

Gene

lo
gT

P
M time

day

night

FIG 2 Relative abundance of transcripts for photosystem genes normalized by total number of sequences in each sample. Log-transformed transcript
abundance in the day (white) and night (gray) of genes encoding photosystem I (psaA) and photosystem II (psbA) is shown for each MAG (top) with box-
and-whisker plots. Boxes represent the 25th to 75th percentiles, the inside line indicates the median, and whiskers extend to minimum and maximum
values. Observations are overlaid as points. The x-axis labels “psbA_2,” “psbA_3,” and “psbA_4” refer to psbA types (see the text).

Grim et al.

November/December 2021 Volume 6 Issue 6 e01042-21 msystems.asm.org 6

https://msystems.asm.org


midnight (64). Anoxygenic phototrophs such as Chloroflexi and Chlorobi also express
structural components of the photosynthetic apparatus at night (11, 71). Finally, our
results could also be explained in part by decreased rates of afternoon photosynthesis
that have been observed in cyanobacterial mats, including sharp drops at midday (72–
74), which have been attributed to limitation of dissolved inorganic carbon (2). It
should also be noted that transcript levels do not necessarily reflect protein abun-
dance; under some circumstances, psbA messages accumulate without synthesis of the
D1:2 protein (75, 76).

The abundance of transcripts obtained from Phormidium PSII genes indicates that
genes for oxygenic photosynthesis were transcriptionally active at the time of sam-
pling. However, Phormidium had on average more than two times higher abundance
of transcripts for PSI genes than PSII genes (psbA-to-psaA ratio , 0.5) (Fig. 3). In con-
trast, the diatom chloroplast recruited more than 25 times more transcripts to PSII
genes (psbA) than PSI genes (psaA). However, likely due to high variability of the abun-
dance of diatom transcripts for these genes, this large difference in the ratio of tran-
script abundance from PSII and PSI genes was not statistically significant.

Other MIS cyanobacteria exhibited an intermediate ratio, with 2 to 7 times more
PSII than PSI transcripts. A high ratio of PSII to PSI transcripts was also found in
Prochlorococcus, a unicellular marine planktonic cyanobacterium (59). We infer that the
higher relative abundance of PSI transcripts in Phormidium (and perhaps other MIS cya-
nobacteria) reflects transcriptional regulation, either via downregulation of PSII genes
or upregulation of PSI genes, to conduct anoxygenic photosynthesis in the presence of
sulfide. Although to our knowledge these are the first transcriptional data from anoxy-
genic cyanobacteria, they are consistent with the physiological shift toward PSII-inde-
pendent anoxygenic photosynthesis that was reported previously (21, 27), with a
decrease in the stoichiometry of PSII-PSI in response to sulfide (77), and with genes for
anoxygenic photosynthesis being inducible via transcriptional regulation (24, 78, 79).
The stoichiometry of PSII-PSI can also be regulated according to light levels (80); the
PSII/PSI ratio is lower at lower light levels, which also favors anoxygenic photosynthesis
in the MIS mat system (33).
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Sulfide quinone oxidoreductase (SQR) transfers electrons from sulfide to PSI during
anoxygenic photosynthesis (24). Of the five cyanobacterial sqr homologs recovered
from the MIS community, the Phormidium SQR had the highest abundance of tran-
scripts, from both its type I and II sqr genes (Fig. 4). The bin-normalized transcripts-per-
million (TPM) value of Phormidium’s type II SQR was significantly higher than that for
SQRI (P , 0.05). While MAGs of Planktothrix and Pseudanabaena have SQRs (6), tran-
scripts for these genes were not observed. The Phormidium SQRs showed transcript
abundance comparable to that of the PSI genes psaL and psaX (Fig. S5). Little is known
about how anoxygenic photosynthesis and sulfide tolerance are regulated at the
genetic level in cyanobacteria. Expression of type II SQR for sulfide detoxification in
Synechocystis sp. strain PCC6803 (79) and type I SQR for anoxygenic photosynthesis in
Geitlerinema sp. strain 9228 (24, 81, 82) is inducible by sulfide. Both constitutive expres-
sion (25, 83, 84) and inducible expression (85, 86) of sqr have been observed in anoxy-
genic bacteria. There was little metatranscriptomic evidence of anoxygenic photosynthesis
by anoxygenic bacteria (i.e., Chloroflexi or Betaproteobacteria). Genes for photosynthetic
reaction cores (pufM and pufL) and bacteriochlorophyll (bchB and bchL) were not highly
expressed, with 0 or 1 read mapped in all samples. Overall, these results suggest that the
cyanobacteria are largely responsible for anoxygenic photosynthesis previously measured
in MIS mats (30, 33).

The most highly expressed terminal oxidase for respiration in Phormidium was a
cytochrome bd-type oxidase (Fig. S6), which has exceptionally high affinity for O2, with
a Km of 3 to 8 nM (87). The high transcriptional activity of this low-O2 respiratory oxi-
dase is consistent with adaptation to low-O2 conditions for extended time periods.

Transcripts involved in sulfur cycling and carbon fixation. Transcripts of seven
different dsrA genes were observed, and the presence of dsrD on the same scaffold
(Fig. S7) was used to confirm inclusion of these genes in the dissimilatory sulfite reduc-
tase pathway (dsr genes). dsrD is useful a marker of sulfite reduction because it is
absent from organisms that use homologous rdsrA genes for sulfur oxidation (88, 89).
Transcriptionally active reductive dsrA genes were present in seven MAGs representing
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six genera of Deltaproteobacteria, with most transcripts coming from Desulfococcus
(Deltaproteobacteria; Desulfobacterales), followed by Desulfomicrobium (Fig. 5). These
results reveal the organisms responsible for active sulfate reduction within the cyanobacterial
mat, which has been measured at high rates by 35SO4

22 tracer studies (32). For most sulfate-
reducing MAGs, dsrA transcripts were detected and even more abundant during the day, sug-
gesting sulfate reduction during the photosynthetic period and likely metabolic interactions
with cyanobacteria via the cycling of sulfur and/or carbon (6, 90). These sulfate-reducing bacte-
ria are also present in sediments underlying the cyanobacterial mat (31).

Seven rdsrA genes for sulfur oxidation were observed, including those in MAGs from
three Betaproteobacteria (two unclassified and one member of the Hydrogenophilales), one
classified only as proteobacteria, and one Thiobacillus organism (Fig. 5). Two unbinned genes
most similar to Thiothrix and Beggiatoa (Gammaproteobacteria) were also recovered. With
the exception of the unbinned proteobacterial gene, all of these rdsrA genes had more
transcripts at night. Transcripts from soxA genes for thiosulfate oxidation were detected,
with those from Rhodoferax (Betaproteobacteria) and unbinned representatives of the
Campylobacterales (Epsilonproteobacteria) having the highest abundance of transcripts
(Fig. S8). Transcripts of genes for sulfide oxidation via flavocytochrome c sulfide dehydrogen-
ase (fcc) were also observed in bins from the Betaproteobacteria and Gammaproteobacteria,
though their sample-normalized transcript abundance was nearly an order of magnitude
lower than those of dsrA.

To assess sources of primary production at MIS, we measured abundance of transcripts
encoding key genes of four autotrophic pathways: ribulose-1,5-bisphosphate carboxylase/
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oxygenase (RuBisCO) for the Calvin cycle (rbcL), ATP citrate lyase (aclB) for the reverse tri-
carboxylic acid cycle, CO dehydrogenase/acetyl coenzyme A (acetyl-CoA) synthase (acsB)
for the Wood-Ljungdahl pathway, and malyl-CoA/(S)-citramalyl-CoA lyase (mcl), malonyl-CoA
reductase/3-hydroxypropionate dehydrogenase, and 3-hydroxypropionyl-CoA dehydratase
(mcr) for the 3-hydroxypropionate cycle (Fig. 6). RuBisCO had the highest transcript abundance
of any autotrophic pathway. Phormidium, Planktothrix, and a diatom chloroplast actively tran-
scribed rbcL, and the cyanobacteria especially were active at night. Thiotricaceae also expressed
rbcL but at substantially lower levels than the phototrophs. Several Desulfobacterales
(Deltaproteobacteria) MAGs expressed the Wood-Ljungdahl genes, with higher expression
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during the day. We did not observe transcriptional activity of aclB,mcl, ormcr genes in any
samples.

Conclusions. Our data on taxon-specific genomic content and gene expression pat-
terns provide insights into the microbial players and pathways that mediate biogeo-
chemistry in anoxygenic cyanobacterial mats, which likely underpinned critical aspects
of Earth’s geobiological evolution but have been understudied in the modern world. The
metatranscriptomic data revealed that a Phormidium autumnale-like cyanobacterium
previously found to be the dominant community member (29, 30) is also responsible for
the majority of transcripts for photosynthesis, underscoring its essential role in the MIS
ecosystem. Taken together, low expression ratios of PSII genes to PSI genes and expres-
sion of SQR indicate that Phormidium within MIS mats conducts anoxygenic photosyn-
thesis with sulfide as the electron donor, consistent with previous geochemical measure-
ments at the MIS (30, 33) as well as studies of other members of the Oscillatoriales (24,
91). Hence, the Phormidium population appears to be metabolically versatile, capable of
both oxygenic and anoxygenic photosynthesis. It is not clear whether this phototrophic
versatility stems from niche adaptation among closely related ecotypes (e.g., differential
activity of strains that are oxygenic and anoxygenic specialists) or true cellular versatility
in which Phormidium cells switch pathways depending on sulfide concentration. Further,
our bulk sampling of mats was not sensitive to the vertical microgradients of sulfide con-
centration, so we are unable to evaluate potential vertical stratification of oxygenic/
anoxygenic photosynthesis within the mat.

This study provides a picture of how metabolisms encoding specific biogeochemi-
cal functions are partitioned among mat community members (Fig. 1). Primary produc-
tion occurs via oxygenic photosynthesis by cyanobacteria and diatoms, anoxygenic
photosynthesis by cyanobacteria (with minor contributions potentially from Chloroflexi
and Betaproteobacteria), and chemosynthesis via sulfur oxidation by Thiotrichales and
Chromatiales (Gammaproteobacteria) and Epsilonproteobacteria. Sulfide sets the stage
for these metabolisms and is produced via sulfate and/or sulfur reduction by several
different groups of Deltaproteobacteria both within the cyanobacterial mat and in
underlying sediments. Bacteroidetes are the major heterotrophs, consuming organic
carbon released as photosynthetic exudate or via viral lysis (92). Although the spatial
arrangement of these processes within the mat remains unresolved, sulfide, oxygen,
and organic carbon are likely rapidly cycled between the organisms producing and
consuming them (1–4). Such tightly coupled interactions would help explain why there
is little mat-derived carbon sequestered in the sediments (93). Tight coupling of O2

production and consumption metabolisms, together with substantial primary produc-
tion by anoxygenic photosynthesis, also helps explain the limited net O2 production by
the cyanobacterial mat when measured in bulk (30). Overall, these findings emphasize the
importance of microbial metabolic interactions in shaping biogeochemical processes in cya-
nobacterial mats under low-O2 conditions, which dominated the long evolutionary history
of cyanobacteria and played key but poorly understood roles in Earth’s major geobiological
turning points.

MATERIALS ANDMETHODS
Sample collection and sequencing. This study used samples and metagenomic and metatranscrip-

tomic sequence data produced as described by Voorhies et al. (92). Fifteen mat samples were collected
by scuba divers from the R/V Storm between 2007 and 2012 from within a 100-m area of the Middle
Island sinkhole (45.1984°N, 83.32721°W) by hand push cores of sediments, mat, and overlying ground-
water (Table S1). Cores were rapidly transferred to the surface, and mats were separated from underlying
sediments and submerged in RNAlater immediately shipboard. Less than 5 min elapsed between collec-
tion and preservation. Before preservation, mat samples were quickly washed with groundwater to remove
as much sediment as possible. Mat structure ranged from conical structures we refer to as “fingers” (30) to
prostrate mat. In May 2012, at the time of metagenomic and metatranscriptomic sequencing, conductivity,
temperature, and dissolved O2 in the overlying lake water as well as the groundwater above the mats
were measured by a YSI 6600 multiparameter sonde.

DNA was extracted and processed for shotgun metagenomic sequencing as previously described
(30). Samples were sequenced using an Illumina Hi Seq 2000 (paired end, 100 bp) instrument at the
University of Michigan DNA Sequencing Core. In 2012, three samples of mat were collected at approxi-
mately 1 p.m. (day) and 1 a.m. (night) from within a 9-m2 sampling area. RNA was extracted from these
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six samples, randomly amplified with the MessageAmp II-Bacteria kit (Ambion), and converted to cDNA
using the SuperScript double-stranded-cDNA synthesis kit (Invitrogen), as previously described (70). In
the interest of cost efficiency and to minimize sample handling, rRNA was not removed (94, 95). cDNA
was sequenced at the University of Michigan DNA Sequencing Core on an Illumina Hi Seq 2000 instru-
ment producing paired-end reads.

Assembly and genomic analysis. In order to optimize assembly of genomes from low abundance
members, a total of 922 million sequence reads from all 15 genomic DNA samples were combined and
coassembled and binned by two different methods. We used IDBA-UD (96) for assembly and checked
the results against previous assemblies of MIS mats that used multiple sequencing platforms and assem-
bly programs, including a previously published metagenome based on 454 (28, 30), and assemblies of
Illumina data from individual samples performed with Velvet (97). Specifically, the assembly was checked
by verifying recovery of key genes and MAGs that were observed in the previous assemblies and by
manual curation using the Integrated Genome Viewer (98) and Geneious (99) to visualize reads mapped
to contigs and genes by BWA (Burrows-Wheeler aligner) (100) and look for signs of misassembly (e.g.,
discontinuities in coverage). Multiple strategies and software were used to generate metagenome-
assembled-genome (MAG) bins. The first strategy used CONCOCT (101) to automate binning by differen-
tial coverage and tetranucleotide frequency for the subset of contigs that were 5 kb and larger. The
resulting bins were refined manually in anvi’o (102, 103) and assigned taxonomy via Centrifuge (104)
and CheckM (105). Likely due to high coverage and putative strain heterogeneity (37, 38), the 12.5-Mbp
MAG bin representing the dominant cyanobacterium Phormidium had high completion (95.0%) but
poor contamination (97.1%) metrics (106) (Table S2). For this bin as well as 6 other cyanobacterial MAG
bins from the initial refinement, 6,011 contigs that were previously unbinned due to their short length
(1,000 bp to 4,999 bp) were assigned to bins on the basis of similar coverage, nucleotide composition
(tetranucleotide frequencies), and taxonomy via manual refinement in anvi’o.

We also employed a second, purely automated binning strategy for comparison. EukRep (107)
removed eukaryotic contigs from the data set, and MetaBAT (108) used differential coverage and tetra-
nucleotide frequency to generate MAGs from contigs 1,500 bp and longer. We again used CheckM to
taxonomically identify MAG bins and tracked 16S rRNA, psbA, and sqr genes from the previously
extracted cyanobacterial bins to identify their counterparts in the MetaBAT bins. Contigs previously
assigned to Phormidium were poorly binned in this method. dRep (109) was used to pick the best repre-
sentative bin from the two methods. Though 10 of the bins from CONCOCT1anvi’o were retained
through dRep, the MetaBAT-generated bins were more often picked because they generally had lower
estimates of contamination and strain heterogeneity. Putative Phormidium scaffolds that were not binned by
MetaBAT were manually evaluated in anvi’o, and retained as the representative Phormidium bin in this analysis.
Gene calling and functional annotation was performed by the Joint Genome Institute’s Integrated Microbial
Genomes Expert Review portal (https://img.jgi.doe.gov/cgi-bin/mer/main.cgi) (110).

Coverage of contigs by cDNA and DNA sequence reads from each sample was assessed by mapping
reads to contigs using BWA (100) with default settings. Raw counts of cDNA reads (referred to here as
counts) for each predicted protein-coding gene were determined using the IMG-derived coordinates of
gene start and stop sites, along with the mapping information. rRNA genes erroneously called as pro-
tein-coding genes were identified by BLASTn against the SILVA SSU and LSU database, release 123 (111),
and removed. The python script HTSeq.scripts.count from HTSeq (112) extracted transcript counts that
unambiguously mapped to genes. In targeted searches for metabolic genes of interest, we identified 20
partial “genes” that were not suitable lengths when IMG-determined start and stop sites were used and
were of appropriate lengths when partial “genes” were incorporated immediately upstream or down-
stream. Thus, for metatranscriptomic analyses, the counts of these partial genes were merged.

For analysis of metatranscriptomic data, only genes with at least two counts were considered. Two
different normalization methods were used to analyze the metatranscriptomic data, depending on the
question. First, transcript abundance was normalized by total mRNA reads recovered in each sample to
calculate relative abundance of transcripts at the gene level. This metric is a function of both the orga-
nism abundance and expression per gene copy and provides a measure of total contribution to the tran-
script pool for each gene. Second, to compare relative gene expression within genomic bins (and
remove the effect of dynamic community-wide transcript and organism abundance), we normalized rel-
ative abundance of transcripts by number of mRNAs mapped to each genome bin. To account for vari-
ability in sequencing effort between samples and for the impact of gene and read lengths, gene expres-
sion levels were normalized using TPM (113). To evaluate differences in expression levels between
organisms of assembled metagenomic bins, TPM for bin-specific genes were also calculated with the de-
nominator consisting of only reads recruited to the bin of interest. Statistical testing was conducted on
the sample- and bin-normalized TPM of genes in RStudio using Kruskal-Wallis nonparametric tests and
paired t tests, corrected with a Benjamini-Hochberg false discovery rate (q) of 0.05.

Data availability. Sequences from this study are available from NCBI under BioProject no. PRJNA72255.
Reads from all 15 metagenomes and 6 metatranscriptomes are available in NCBI’s Sequence Read Archive
(Table S1). Accession numbers for MAGs that passed NCBI quality filtering are provided in Table S2.
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