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Abstract Proteases are enzymes that cleave and hydrolyse the peptide bonds between two specific

amino acid residues of target substrate proteins. Protease-controlled proteolysis plays a key role in

the degradation and recycling of proteins, which is essential for various physiological processes.

Thus, solving the substrate identification problem will have important implications for the precise

understanding of functions and physiological roles of proteases, as well as for therapeutic target

identification and pharmaceutical applicability. Consequently, there is a great demand for bioinfor-

matics methods that can predict novel substrate cleavage events with high accuracy by utilizing both

sequence and structural information. In this study, we present Procleave, a novel bioinformatics

approach for predicting protease-specific substrates and specific cleavage sites by taking into

account both their sequence and 3D structural information. Structural features of known cleavage

sites were represented by discrete values using a LOWESS data-smoothing optimization method,
nces and
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which turned out to be critical for the performance of Procleave. The optimal approximations of all

structural parameter values were encoded in a conditional random field (CRF) computational frame-

work, alongside sequence and chemical group-based features. Here, we demonstrate the outstand-

ing performance of Procleave through extensive benchmarking and independent tests. Procleave is

capable of correctly identifying most cleavage sites in the case study. Importantly, when applied to

the human structural proteome encompassing 17,628 protein structures, Procleave suggests a num-

ber of potential novel target substrates and their corresponding cleavage sites of different proteases.

Procleave is implemented as a webserver and is freely accessible at http://procleave.erc.monash.edu/.
Introduction

Protease-specific cleavage is a ubiquitous type of irreversible
post-translational modification (PTM) that occurs when pro-
teases specifically cleave the peptide bonds between the P1 and

P10 sites of target proteins or peptide substrates [1]. Numerous
experimental studies indicate that proteolytic cleavage plays a
critical role in a variety of developmental and physiological pro-

cesses, including cell cycle, pathway regulation, and protein
degradation. On the other hand, the dysregulation of proteases
is associated with numerous diseases [2]. Thus, it is very impor-
tant to identify protease-specific substrate cleavage sites, as such

knowledge can provide deeper insights into themechanisms and
biological functions of proteases, which in turn might lead to
novel therapeutic targets and pharmaceutical applicability.

However, current existing experimental methods for protease
substrate cleavage site identification are expensive, labour-
intensive, and time-consuming. Therefore, the development of

cost-effective computational approaches for precise prediction
of protease-specific proteolytic events is very important. Such
tools can not only provide high-quality predictions of target

substrates for a specific protease, but also guide hypothesis-
driven experimental efforts to identify substrate specificity and
associated biological functions of proteases.

Due to the importance and the benefits of computational

predictions of protease-specific target substrates, over the past
two decades, more than 20 computational methods have been
proposed [3,4]. In our recent review paper, we categorized

these methods into two major groups according to the
employed methodologies: (i) sequence-scoring function-based
methods, such as PoPS [5], SitePrediction [6], and CAT3 [7],

and (ii) machine learning methods, such as Pripper [8], Cascle-
ave [9], PROSPER [10], LabCaS [11], ScreenCap3 [12], Cascle-
ave 2 [13], iProt-Sub [14], and PROSPERous [15]. These
publicly available computational tools have successfully

guided experiments in finding novel cleavage sites and
obtaining a better understanding of protease–substrate
interactions.

A number of encouraging studies have been done regarding
the development of computational methods and tools for pre-
dicting protease-specific cleavage sites. However, all of these

existing prediction methods are developed based on protein
sequences and they are only used for predicting the cleavage
sites from substrate sequences. Previous studies have shown

that protease cleavage sites are primarily distributed in loop
regions of the substrate proteins, while cleavage within other
structural regions of substrate proteins, such as a-helices and
b-sheets, is also possible [16–18]. These findings indicate pro-

tease substrate cleavage specificity at the secondary structure
(SS) level. The majority of existing predictors did not consider
the structure-level preference and parameters, which can

potentially improve the prediction performance and also help
better understand the biological functions of proteases.

In this study, we introduce Procleave to fill the knowledge

gap outlined above and enhance protease substrate cleavage
site prediction by incorporating 3D structural features of sub-
strate cleavage segments. More specifically, Procleave uses the

data curated from the MEROPS database [19] and maps sub-
strate sequences to PDB structures by performing BLAST
search, thereby generating an extensive 3D structural substrate
dataset. Multi-faceted sequence and structural features are

then extracted, which are further integrated into a novel con-
ditional random field (CRF) algorithm with a data-
smoothing framework to train cleavage site prediction models.

A comprehensive performance test confirms that smoothed
structural features combined with sequence-based features
can greatly improve the prediction performance. Subsequently,

we implement a webserver for 27 major proteases, taking
advantage of the findings in this study, and make it publicly
accessible.
Method

Overall framework

Figure 1 provides an overview of the Procleave framework.

Five major steps are involved in the construction and evalua-
tion of Procleave. At the first step, i.e., data collection and
pre-processing, the benchmark training and independent test

datasets were collected from MEROPS [19]. At the second
step, multi-faceted sequence features and 3D structure features
were generated. At the third step, a novel integrative CRF
framework was developed for model training and optimiza-

tion. At the fourth step, the trained CRF models were further
evaluated and validated by performing the independent test. A
performance comparison with currently existing methods was

also conducted. At the final step, the Procleave webserver
was implemented to facilitate public use.

Dataset collection and pre-processing

The experimentally verified protein substrate cleavage annota-
tions for training and benchmarking Procleave were extracted

from the MEROPS database (Release 9.0) [19]. MEROPS is a
public resource and knowledgebase for experimentally vali-
dated protease substrates and cleavage sites, which is accessible
via https://www.ebi.ac.uk/merops/. To develop reliable predic-

http://procleave.erc.monash.edu/
https://www.ebi.ac.uk/merops/


Figure 1 The overall framework of Procleave

There are five major steps in the framework of Procleave, including data pre-processing, feature extraction, model training and

optimization, model testing and evaluation, as well as web server development.
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tion models and objectively evaluation the model performance,
we discarded highly homologous sequences from the initial

substrate dataset with a sequence identity (SI) threshold of
70% between any two substrate protein sequences. This avoids
overestimating the prediction performance in cross-validation

tests. It is noticeable that a number of existing studies used
SI cut-off values of 70% [9,14,15] or a higher, e.g., 80% [12].
The MEROPS database was recently updated (Release 12.0,

26-April-2019) and we decided to use all the newly added pro-
tease substrates and cleavage sites as the independent test data-
set to assess the performance of trained Procleave models and
conduct the performance comparison with existing methods.

In addition, in order to perform a more fairly independent test,
we used a stricter SI threshold (30%) to remove the sequence
redundancy in the independent test dataset. CD-HIT [20]

was applied to remove the redundant sequences between the
independent test datasets and training datasets at the SI
threshold of 30%. This ensures that any two substrates in

the training and independent test datasets have a SI of
<30%. A statistical summary of both benchmark and inde-
pendent test datasets is provided in Tables S1 and S2, respec-
tively. Subsequently, the remaining sequences were mapped to

PDB [21] by performing PSI-BLAST [22] to search against the
PDB sequence database (using the ‘pdbaa’ file) with three iter-
ations, with an e-value of 10�3, and a SI threshold of 95%. We
only retained the X-ray crystallography (X-ray) structures,

while nuclear magnetic resonance (NMR) and electron micro-
scopy (EM) structures were discarded. After this procedure, all
substrate cleavage sites were mapped onto respective 3D struc-

tures using our in-house Perl script and all of these cleavage
sites were used as positive samples to train the Procleave mod-
els. Sites that have been not annotated as cleavage sites in sub-

strate proteins were considered as negative samples.
Accordingly the same number of negative sites was randomly
selected as that of the positive samples. In this study, a gallery
of all mapped respective 3D structures with visualized cleavage

sites can be accessed at http://procleave.erc.monash.edu/gal-
lery.html.
Feature engineering

The substrate cleavage site prediction task can be regarded as a
binary classification problem. Each cleavage site is denoted as

an N-dimensional feature vector F = {f1, f2, . . ., fN}. Three
major types of features were extracted, namely structural fea-
tures, sequence features, and chemical group features. A

detailed description of each feature type is presented below.

http://procleave.erc.monash.edu/gallery.html
http://procleave.erc.monash.edu/gallery.html
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Structural features

In this study, several different types of 3D structural descrip-

tors were extracted from the P4–P40 local windows surround-
ing cleavage sites, which include:

(1) Protrusion and depth index. We calculated the protru-
sion (cx) index and the depth index by CX [23] and
DPX [24] programs, respectively.

(2) Solvent accessibility. Naccess [25] was employed to com-
pute the absolute and relative solvent accessibility fea-
tures using the default settings. There are five types of
solvent accessibility features, including all atoms, total

side chain, main chain, non-polar side chain, and all-
polar side chain solvent accessibility.

(3) Packing. Packing was calculated using the method pro-

posed previously [26].
(4) Molecular surface accessibility. Molecular surfaces are

either solvent-accessible surfaces (SAS) or solvent-

excluded surfaces (SES). Both were calculated by the
MSMS program [27].

(5) Secondary structure features. The DSSP program [28]

was used to calculate the secondary structure features.
These encompass hydrogen bonds, secondary structures
(eight classes were transformed to three classes, i.e., a-
helix, b-sheet, and coil), and backbone torsion angles.

The HBPLUS v.3.06 program [29] was used to calculate
the hydrogen bond.

(6) Solvent exposure properties. Half-sphere exposure prop-

erties were also used as candidate features. They were
extracted using the Biopython package [30]. They
included contact number (CN), the number of Ca atoms

in the upper half-sphere (HSEAU), the number of Ca
atoms in the lower half-sphere (HSEAD), the number
of Cb atoms in the upper half-sphere (HSEBU), and the

number of Cb atoms in the lower half-sphere (HSEBD).
(7) B-factor. The B-factor values of all atoms were extracted

from PDB files, with the average values being used as the
input feature [31].

Sequence features

We employed the binary encoding scheme to extract and

encode sequence features. In particular, a sliding window
approach (P4–P40) centred around the potential cleavage sites
was used to extract the local sequence features. Each amino

acid (AA) residue was encoded by a binary vector with 20
dimensions. Therefore, the total number of dimensions of the
obtained vector is 8 � 20 = 160.

Chemical group features

Apart from structural and sequence features, the chemical/
structural groupings of AAs were also used as candidate fea-

tures. According to the chemical/structural properties, 20
AAs were clustered into eight chemical groups [32]. These
include sulfur-containing (residues C and M), aliphatic 1 (resi-

dues A, G, and P), aliphatic 2 (residues I, L, and V), acidic
(residues D and E), basic (residues H, K, and R), aromatic
(residues F, W, and Y), amide (residues N and Q), and small

hydroxy (residues S and T) residues. Then, these eight chemical
groups were encoded as input features using the one-hot
encoding. The total number of dimensions of the chemical
group features is 8 � 8 = 64 (for any 8-AA window).

Model training and optimization

CRFs and LOWESS data smoothing

CRFs are a type of undirected graphical models originally
introduced by Lafferty et al. [33] to deal with the segmentation
and labelling tasks of text sequences. CRFs have been proven

to be effective in a number of applications with structured out-
puts, such as information extraction, image processing, and
parsing. A CRF is an undirected graph, and its nodes can be

categorized as two disjoint sets, namely the observed variables
X and the output variables Y. Its principle is to define a con-
ditional probability distribution pðYjXÞ over label sequences
Y ¼ fy1; y2; � � � ; yng, given the observational sequence

X ¼ fx1; x2; � � � ; xng. Yis a sequence of hidden state variables
that needs to be inferred given the observation.
y1; � � � ; yi; yiþ1; � � � ; yn are structured to form a chain, with an

edge between each yi and yiþ1. The distribution of the network

has the following form:

p YjXð Þ ¼ 1

ZðXÞ exp
XK
k¼1

kkfk yi; yi�1; xið Þ
 !

; ð1Þ

where Z Xð Þ ¼Pyi
expðPK

k¼1kkfk yi; yi�1; xið ÞÞ, K denotes the

number of class labels (e.g., K= 2 stands for a two-class
classification), kk is the weight vector of features, and fk is
the function of features for the clique yi; yi�1; xif g.

Since a CRF does not have the assumption for the distribu-

tion of inputs and, instead, finds the decision boundary
directly, it may be considered as an extended version of logistic
regression to model sequential data. CRFs have been applied

to bioinformatics rather recently and have delivered promising
results, such as for gene prediction [34] and phosphorylation
sites prediction [32]. CRFs can capture sophisticated depen-

dencies and combine information from different aspects. The
specific advantages of CRFs are well-suited for incorporating
structural information into a cleavage site prediction algo-
rithm. Many of the structural parameters are closely related,

and structural parameters contain important information for
determining the potential cleavage site that might be better
captured by CRFs.

In this study, our input variables X are the structural,
sequence, and chemical group features of a given substrate
peptide and the output variables are binary labels correspond-

ing to ‘‘cleavage site” or ‘‘non-cleavage site”. The CRF models
were trained by maximizing the likelihood that the positive
samples of a training set were cleavage sites, given their struc-

tural, sequence, and chemical group features. We used the
open source package CRF++ (version 0.54) and, as part of
the CRF implementation, used Boolean feature functions to
train the models. As the Boolean feature functions evaluate

one of the two states of being true or false for a feature appear-
ing at an exact position, all structural features are regarded in
the form of discrete instead of continuous values during the

model training. In addition, considering that the substrate
cleavage depends on the overall 3D shape or neighbourhood
of multiple AAs, structural features recognized by cleavage

sites, e.g., the overall shape of the P4–P40 segment surrounding
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the potential cleavage sites, we combined CRF with a LOW-
ESS data-smoothing approach [35] and examined whether
cleavage site prediction could be further improved. Specifi-

cally, feature optimization first ran the LOWESS smoothing
algorithm on the input vectors of each structural feature. Then
the resulting vectors were discretized into equally sized bins to

group similar values for use by the Boolean feature functions.
Algorithm 1 describes the detailed procedures of the LOWESS
smoothing algorithm.

Algorithm 1 LOWESS data-smoothing algorithm

Input:

Range value, range; Initial feature array, @iniArry;

Output:

Smoothed feature array, @smoothedArray;

1: for each i 2 ½1;#iniArry� do
2: avey ¼avex ¼ norm ¼weight ¼ 0;

3: if ExpressionN
4: for each j 2 ½SN� do
5: calculate weight;

6: aveyþ ¼weight� iniArray j�;½
7: avexþ ¼weight� j;
8: normþ ¼weight;

9: end for;

10: avey ¼avey=norm;avex ¼ avex=norm;
11: mtop ¼mbot ¼ 0;

12: for each k 2 ½SN� do
13: weight ¼ 1� ði�kÞ=ð2� range�iþ 1Þð Þ3

��� ���� �3
;

14: mtopþ ¼weight� ð k�avexð Þ � ðarray k��aveyÞÞ½ ;

15: mbotþ ¼weight� ððk�avexÞ2Þ;
16: end for;

17: smoothedArray½i� ¼ mtop

mbotÞ�iþ avey � mtop

mbotÞ�avexÞ;

��
0
BB@

18: end if;

19: end for;
The input to Algorithm 1 was the smoothing range range and
the initial feature vector @iniArry, which needed to be
smoothed and tuned. In this study, each type of structural fea-

ture was described by an 8-bit vector, where each bit was asso-
ciated with the feature value of a local sliding window (P4–P40)
surrounding the potential cleavage site. The output of Algo-

rithm 1 was the 8-bit vector smoothedArray. The smoothing
procedure was performed in a ‘for’ loop. At step 1,
#iniArray was the length of feature vector, which equals to

eight. At the second step, four variables, namely avey, avex,
norm, and weight, were set to 0. These variables represented
the average value of y (i.e., values of the features), the average

value of x (positions of the feature vector), the normalization
variable, and the weight of the variable, respectively. At step
3, the if statement has three different expressions
ExpressionN, which can be presented as:

Expression1 i�range < 0;

Expression2 rangeþi > #iniArray;

Expression3 Others.
For these three expressions, the range SN of the parameter
range in the step 4 and step 12 is different:

Expression1 S1 ½1; 2� range�;
Expression2 S2 ½#iniArray� 2�range;#iniArray�;
Expression3 S3 ½i�range; iþrange�.
Then, at step 5, the weight of the variable was calculated. The

method used for calculating the variable weight is also
different:

S1 weight ¼ 1� ði�jÞ=ð2� range�iþ 1Þð Þ3
��� ���� �3

;

S2 weight ¼ 1� ði�jÞ=ðx�#iniArry� 2� rangeþ 1ÞÞ3jÞ3;
�����

S3 weight ¼ 1� ði�jÞ=ð2� rangeþ 1ÞÞ3jÞ3
�����

.

At steps 6 and 7, weight was used to calculate the normalized
values of x and y. Then, avey and avex were updated at step 10
by dividing the normalization variable calculated at step 8. At

step 11, the smoothed value of mtop and the smoothed bottom
value of mbot were initialized to 0. At steps 12–16, these two
variables were calculated and updated, and at step 17 the final

output smoothedArray was generated according to these two
values.

We set the smoothing range range from 1 to 5 and the bin
number from 1 to 10, respectively, in this study. The smooth-

ing procedure and the number of bins for each type of struc-
tural feature were optimized by maximizing the area under
the curve (AUC) of the receiver operating characteristic

(ROC) curves on the 5-fold cross validation test using the
benchmark dataset. In this way, by optimizing the smoothing
range and the number of bins for each of the structural fea-

tures, the optimal combination of smoothing and discretiza-
tion that best represented structural features of all samples in
the training set could be determined.

Performance evaluation

To assess the performance of the Procleave models and bench-
mark it with other currently available methods, a set of five

commonly used performance measures were applied, including
sensitivity (Sn), specificity (Sp), precision, accuracy (Acc),
Matthew’s correlation coefficient (MCC), and AUC. Sn, Sp,

Precision, Acc, and MCC are defined as:
Sn ¼ TP

TPþ FN

Sp ¼ TN

TNþ FP

Precision ¼ TP

TPþ FP

Acc ¼ TPþ TN

TPþ TNþ FPþ FN

MCC¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ � TPþFNð Þ � TNþFPð Þ � TNþFNð Þp

where TP, TN, FP, and FN represent the numbers of true pos-
itives, true negatives, false positives, and false negatives,

respectively. Moreover, we plotted the ROC curves and
accordingly calculated the AUCs, as a primary measure to
assess the prediction performance of Procleave models and
all compared methods.
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Results and discussion

Characterization of structural features in the proximity of

cleavage sites

To better understand the structural determinants surrounding

cleavage sites of different proteases, we examined the struc-
tural features of protease cleavage sites using the curated
PDB structure datasets. Bar graphs for a total of 27 proteases
presented in Figure 2 (9 proteases) and Figure S1 (18 proteases)

show the secondary structure preferences of protease-specific
substrates across the P4–P40 sites surrounding the cleavage
sites. As shown in these figures, different protease cleavage

sites generally have distinctly different secondary structure
preferences. However, on the other hand, some proteases also
share similar secondary structure preferences. For instance, the

P4–P40 site surrounding cleavage sites of caspase-3, granzyme
Figure 2 Structural determinants of the substrate specificity of nine p

A. Cathepsin D. B. Cathepsin E. C.HIV-1 retropepsin. D. Cathepsin B

Cathepsin G. MMP, matrix metallopeptidase. The secondary structure

L, loop.
B (human) (Figure 2E and H), cathepsin S, caspase-6, meprin
a subunit, meprin b subunit, and LAST_MAM peptidase (Fig-
ure S1G, J, and L–N) are more likely to be located in loop

regions than in helix and strand regions. In addition, the cleav-
age sites of most proteases can be found in all three types of
secondary structures, except for those of necepsin-1, cathepsin

L1 (Fasciola sp.), falcipain-2, and falcipain-3 (Figure S1D, F,
H, and I). The cleavage sites of these four proteases are pre-
dominately found in helix and loop regions, but not in strands.

The results are in good agreement with the findings of existing
studies and suggest that proteases prefer to cleave within loop
regions of substrate proteins, while cleavage within helix/sheet
regions is also possible [16–18]. In addition, we plotted the

boxplots for other structural features of positive samples
(cleavage sites) for all 27 proteases. These results are provided
in supplementary figures, including protrusion index (Fig-

ure S2), depth index (Figure S3), solvent accessibility calcu-
lated by Naccess (Figures S4�S13), packing (Figure S14),
roteases across the P4–P40 cleavage sites

. E. Caspase-3. F.MMP-2. G.MMP-9.H.Granzyme B (human). I.

information was extracted from DSSP results. H, helix; E, strand;
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solvent exposure properties (Figures S15 and S16), solvent
accessibility calculated by DSSP (Figure S17), backbone tor-
sion angles (Figures S18 and S19), solvent exposure properties

(Figures S20–24), B-factor (Figure S25), and hydrogen bonds
(Figure S26).

Performance assessment

To examine how the structural features help to predict the
cleavage sites and how our proposed feature smoothing algo-

rithm improves the prediction performance of trained CRF
models, we evaluated the performance of different types of fea-
ture combinations. The experiments were conducted by per-

forming 10 times of 5-fold cross-validation tests using the
benchmark datasets. The evaluated features/feature combina-
tions include Seq only (using sequence features only), Seq
+ Chem (using sequence features together with chemical fea-

tures), Seq + Chem + real structure (using sequence, chemi-
cal, and original structural features, without any smoothing),
Seq + Chem + smooth DSSP (using sequence, chemical,

and smoothed DSSP structural features), and Seq + Chem
+ smooth structure (using sequence, chemical, and smoothed
structural features). Performance comparisons of different fea-

ture combinations in terms of AUC values (average AUC val-
ues of 10 times of 5-fold cross-validation tests) are shown in
Figure 3 and Table S3.

From these results, several important observations can be

made. The Seq + Chem+ smooth structure models per-
formed the best compared with all other feature combinations
in terms of AUC values for 22 of the 27 tested proteases (see

Figure 3 and detailed results in Table S3). Also, the Seq
+ Chem + smooth DSSP models achieved highest AUC val-
ues for meprin b and chymotrypsin A (bovine), while the

Seq + Chem models achieved highest AUC values for cathep-
sin B and lysyl peptidase (bacteria). Seq only model performed
the best for HIV-1 retropepsin. These results demonstrate that

the sequence features and chemical group features are more
relevant and important for the three proteases, while the struc-
tural features may not be useful for further improving the
cleavage site prediction performance for these proteases. Not

surprisingly, the Seq + Chem + real structure models per-
formed the worst among all the compared feature combination
models, because the Boolean feature functions of the CRF

cannot deal properly with continuous values. This not only
leads to the loss of some useful feature information, but also
affects the model training.

In addition, to test and verify the statistical significance of
AUC improvement by the Seq + Chem + smooth structure
models, we conducted a student’s t-test to compare the
AUC values of different feature combination models trained

with CRF. The P values of the student’s t-test are given in
Table 1, indicating that the AUCs of the Seq + Chem
+ smooth structure models were significantly (P �0.01,

marked in bold) higher than those of other models according
to the pairwise tests. Feature combinations that achieved the
best performance during each comparison test are underlined

in Table 1. Furthermore, the AUC values of the Seq
+ Chem + smooth DSSP models were significantly higher
than those of the Seq + Chem and the Seq + Chem+ real

structure models, while inconclusive with the Seq only mod-
els. Altogether, both the performance comparisons and pair-
wise t-test comparisons demonstrate that structural features
smoothed by the LOWESS data smoothing algorithm can
greatly help to boost the performance of CRF models. A pos-

sible explanation is that the LOWESS smoothing takes the
structural variables defined over the cleavage segment P4–
P40 sites, and flattens the fluctuations of the structural vari-

ables over the eight AA residues of the cleavage sites. This
makes intuitive sense because the structural variables are
defined over the crystal structure of the protein, which repre-

sents only one of the many conformations that constitute the
equilibrium ensemble of the protein in solution. In particular,
the cleavage site is generally located on or near the surface of
the protein, where the side chains of residues on the surface

are particularly prone to fluctuations due to thermal contact
with the water [16]. As such, a single value for the structural
variables of a given AA residue will not be a fair representa-

tion, especially given that in crystal structures, sidechain con-
formations on the surface are often flush against symmetric
repeats of the protein [16]. As such, the smoothing of the

structural parameters provides a way to reduce these effects
and a more appropriate representation of the structural deter-
minants of cleavage sites.

Moreover, in order to further illustrate the advantage of
CRF, we benchmarked the performance of CRF models with
that of the other two popular machine learning algorithms, i.e.,
support vector machine (SVM) and random forest (RF), on

both the training and independent test datasets. The perfor-
mance results on the 5-fold cross validation and independent
tests are provided in Tables S3 and S4, respectively. As a

result, the CRF models achieved the best performance across
almost all comparative experiments on the training datasets.
The only exceptions were the Seq + Chem+ real structure

feature for matrix metallopeptidase 2 (MMP-2) and the Seq
+ Chem feature for both astacin and meprin a, for which
the RF models achieved the best prediction results. For the

performance evaluation on the independent test, we applied
the SVM and RF models trained using the Seq + Chem
+ smooth structure feature combinations, as the SVM and
RF models trained on this feature combination performed

the best compared to all the other feature combinations. The
performance results on the independent tests confirm that
the CRF models of Procleave achieve overall a better perfor-

mance than SVM and RF models, for all 27 proteases exam-
ined. Taken together, the performance results on both 5-fold
cross validation and independent tests demonstrate the superi-

ority of the CRF framework, making it the model of choice for
the development of Procleave.

Therefore, we accordingly built two prediction models for
protease cleavage site prediction from both protein sequences

and structures. We built the Procleave_sequence based on
Seq + Chem feature combination models for protease cleav-
age site prediction from protein sequences; while the Pro-

cleave_smooth based on Seq + Chem+ smooth structure
feature combination was built for protease cleavage site predic-
tion from protein structures.

Comparison with existing methods

We compared the performance of two variant models

‘Procleave_sequence’ and ‘Procleave_smooth’ against five
existing tools, including PoPS, SitePrediction, PROSPER,



Figure 3 Performance comparison of CRF models trained using different feature combinations in terms of AUC values

A. Cathepsin D. B. Cathepsin E. C. HIV-1 retropepsin. D. Cathepsin B. E. Caspase-3. F. MMP-2. GMMP-9. H. Granzyme B (human). I.

Cathepsin G. The evaluation was based on 10 times of 5-fold cross-validation tests on training datasets.
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PROSPERous, and iProt-Sub, by performing the independent
test. In order to avoid any potential bias and objectively assess
the performance, we submitted the PDB sequences in the
FASTA format in the independent test dataset to each of the
Table 1 P values for pairwise t-test comparisons of prediction perform

Feature combination

Seq + Chem± smooth DSSP vs. Seq only

Seq + Chem± smooth DSSP vs. Seq + Chem

Seq + Chem± smooth DSSP vs. Seq + Chem+ real structure

Seq + Chem+ smooth structure vs. Seq only

Seq + Chem+ smooth structure vs. Seq + Chem

Seq + Chem+ smooth structure vs. Seq + Chem+ real structure

Seq + Chem+ smooth structure vs. Seq + Chem+ smooth DSSP

Note: Tests were performed using AUC results of 10 times 5-fold cross-va
webservers of these methods. The detailed performance results
are summarized in Table S4. In addition to AUC, MCC, Acc,
Sn, Sp, and precision are also provided and listed in Table S4,
while ROC curves are presented in Figure 4.
ance using different feature combinations

P value

0.10

0.01

1.12E�20

1.91E�13

2.04E�16

3.94E�49

5.38E�09

lidation tests of all the 27 proteases examined.



Figure 4 Comparison of cleavage site prediction performance of Procleave and other methods in terms of AUC values for 5 different

proteases

A. Cathepsin E. B. Caspase-3. C. Caspase-6. D.MMP-2. E.Granzyme B. PoPS, PROSPER, and iProt-Sub cannot predict cleavage sites of

cathepsin E; SitePrediction and PROSPER cannot predict cleavage sites of granzyme B. SVM and RF were included to test whether the

conditional random field model employed in Procleave provides better performance.
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Figure 4 displays the ROC curves of PoPS, SitePrediction,
PROSPER, PROSPERous, iProt-Sub, Procleave_smooth, and
Procleave_sequence on the independent test dataset. As the

entries in the independent test dataset were obtained solely
from the newly identified protease substrates and cleavage sites
from the most-recent version of MEROPS (12.0) as compared

to its previous version (release 9.0), the amount of newly added
data was relatively small, and there was even fewer data
remaining after mapping onto the PDB 3D structures. There-

fore, only five proteases were used for the test, including
cathepsin E, caspase-3, caspase-6, MMP-2, and granzyme B
(human). As can be seen, Procleave_smooth (red line) per-
formed the best and Procleave_sequence (green line) ranked

second in terms of AUC for Cathepsin E (Figure 4A),
MMP-2 (Figure 4D), and granzyme B (human) (Figure 4E).
For caspase-3, Procleave_sequence and PROSPERous

achieved the best performance (AUC = 1) and Pro-
cleave_smooth achieved the second highest AUC (0.990) (Fig-
ure 4B). While for caspase-6, PROSPERous achieved the

highest AUC (0.999) value and Procleave_smooth ranked sec-
ond (Figure 4C). To summarize, all these results demonstrate
that Procleave is a reliable and powerful bioinformatics
approach that improves protease cleavage site prediction. In
particular, there are three important factors that account for
the good performance of Procleave. First, the high quality

and comprehensive 3D structural substrate cleavage data pro-
vide solid foundation for the training of Procleave. Second,
extracting useful and complementary 3D structural features

as calculated by multiple software tools provides a better
description of the characteristics of substrate cleavage sites.
And lastly, processing initial 3D structural features using the

LOWESS data-smoothing algorithm is necessary to enable
CRF to learn the underlying rules and characteristics of
protease-specific cleavage events.

Webserver implementation

To facilitate bioinformatics analyses of novel protease target
substrates and cleavage sites, we implemented the CRF-

based Procleave approach and developed a publicly available
webserver for the wider research community. The Procleave
webserver was implemented using HTML and Perl. The web-

server is freely accessible at http://procleave.erc.monash.edu/.
Procleave webserver is operated by Tomcat7 and configured

http://procleave.erc.monash.edu/
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in a Linux server with an eight-core CPU, 500-GB hard disk
and 16-GB memory. Both the Procleave_smooth and Pro-
cleave_sequence variant models are implemented on the web

server. The web server requires two steps of inputs in order
to make a prediction of the potential cleavage sites for the
given protein. First, Procleave_smooth requires users to supply

a protein 3D structure file (*.pdb file is preferred), while for
Procleave_sequence models, users are required to input the
FASTA formatted protein sequences. Second, users need to

specify the PDB chain name and protease type in the case of
submitting the 3D structure file. Each submission takes
approximately 3–4 min to complete. The prediction outcome
for the submitted structure file is returned on the result web-

page. The prediction results can be exported in the CSV, Excel,
and PDF formats. 3Dmol.js [36] is also employed for protein
3D structure visualization at the webserver. The predicted

potential cleavage sites are labelled at their corresponding
positions.

Structural proteome-wide prediction

Furthermore, we conducted a structural proteome-wide pre-
diction of novel protease substrate cleavage sites (containing
Figure 5 Predicted cleavage sites of four substrate protein structures

A. Human aB crystalline (PDB ID: 3L1G, chain: A) cleaved by MMP

MMP-9. C. ATPase p97 mutant (PDB ID: 3HU2, chain A) cleaved by

by meprin b.
17,628 human proteins extracted from the PDB database) by
applying the Procleave_smooth model. The results are briefly
summarized in this section. We applied an Sp threshold of

99% to all predictions [15,31,37,38] to generate a compendium
of high-confidence predicted cleavage sites and then performed
the statistical analyses. Statistics of the identified cleavage sub-

strates and the predicted cleavage sites for the 27 different pro-
teases are summarized in Table S5. The results of the identified
cleavage substrates and their cleavage sites are also accessible

at the Procleave webserver, which can be freely downloaded
at http://procleave.erc.monash.edu/.

Case study

To illustrate the utility and capacity of Procleave, a case study of
the protease-specific cleavage site prediction in four substrate
proteins was conducted in this section. The four proteins were

selected from the independent test dataset. The first protein is
human aB crystalline (PDB ID: 3L1G, chain A), which func-
tions as a chaperone and oligomeric assembly. It serves as a sta-

bility sensor and can recognize and bind to destabilized proteins
in eye lens and other tissues [39]. The second protein is human
interferon b (PDB ID:1AU1, chain A), which is the protein to
-9. B. Human Interferon b (PDB ID: 1AU1, chain: A) cleaved by

caspase-6. D. Human enolase 1 (PDB ID: 3B97, chain A) cleaved

http://procleave.erc.monash.edu/
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defend the cells from various viruses [40]. The third protein is an
ATPase p97 mutant (PDB ID: 3HU2, chain A). ATPase p97 is
one of the most abundant cytosolic proteins and can interact

with different adaptor proteins involved in many cellular activi-
ties, including protein degradation, cell cycle regulation, and
membrane fusion [41]. The fourth protein is human enolase 1

(PDB ID: 3B97, chain A), which is a glycolytic enzyme expressed
in most tissues. A previous study indicates that this protein is
involved in many diseases, including metastatic cancer, ischae-

mia, autoimmune disorders, and bacterial infection [42]. Struc-
ture scanning results and the predicted cleavage sites are
shown in Figure 5 and Table S6. All correctly predicted
cleavage sites are highlighted in red. These prediction results of

demonstrate that Procleave could correctly identify all the
experimentally verified cleavage sites. These results suggest that
Procleave is a useful tool and can be used to identify cleavage

sites based on the 3D structural information of the substrate
proteins.
Conclusion

In the present work, we developed Procleave, a new CRF
approach, which combines both sequence and structural

information to enhance the protease-specific cleavage site pre-
diction. Procleave employs multi-faceted 3D structure-based
features, in combination with a LOWESS smoothing opti-

mization algorithm to train and optimize the CRF-based
cleavage site prediction models for a protease. We conducted
a comprehensive set of empirical benchmarking tests to

benchmark the performance of CRF models built based on
different combinations of sequence, chemical, and structural
features. We also assessed the performance of Procleave with

several state-of-the-art approaches. The comparison results
demonstrate that Procleave outperforms these methods, and
the LOWESS smoothing optimization is critical to the perfor-
mance of Procleave. The aim of this study is to systematically

investigate whether both sequence-derived and real 3D struc-
tural information can be integrated in a machine learning
framework to improve the substrate cleavage site prediction

for 27 major proteases. A user-friendly webserver of Pro-
cleave has been made available as an implementation of the
proposed approach. All predicted cleavage sites of the human

proteome with 3D the structure data available are provided
for further protease biology research. We envisage that Pro-
cleave will become a useful tool in the future, facilitating

community-wide hypothesis-driven experimental design and
functional characterization studies. As a generally useful
framework, the CRF-based methodology combined with the
LOWESS smoothing optimization algorithm can be readily

extended and applied to develop useful methods for predict-
ing other important types of PTM sites [43–46] and func-
tional sites that utilize 3D structural information in future

work.
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