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The occurrence of high- (H) and low- (L) yielding field sites within a farm is a commonly
observed phenomenon in soybean cultivation. Site topography, soil physical and
chemical attributes, and soil/root-associated microbial composition can contribute to
this phenomenon. In order to better understand the microbial dynamics associated
with each site type (H/L), we collected bulk soil (BS), rhizosphere soil (RS), and
soybean root (R) samples from historically high and low yield sites across eight
Pennsylvania farms at V1 (first trifoliate) and R8 (maturity) soybean growth stages (SGS).
We extracted DNA extracted from collected samples and performed high-throughput
sequencing of PCR amplicons from both the fungal ITS and prokaryotic 16S rRNA gene
regions. Sequences were then grouped into amplicon sequence variants (ASVs) and
subjected to network analysis. Based on both ITS and 16S rRNA gene data, a greater
network size and edges were observed for all sample types from H-sites compared
to L-sites at both SGS. Network analysis suggested that the number of potential
microbial interactions/associations were greater in samples from H-sites compared
to L-sites. Diversity analyses indicated that site-type was not a main driver of alpha
and beta diversity in soybean-associated microbial communities. L-sites contained a
greater percentage of fungal phytopathogens (ex: Fusarium, Macrophomina, Septoria),
while H-sites contained a greater percentage of mycoparasitic (ex: Trichoderma) and
entomopathogenic (ex: Metarhizium) fungal genera. Furthermore, roots from H-sites
possessed a greater percentage of Bradyrhizobium and genera known to contain plant
growth promoting bacteria (ex: Flavobacterium, Duganella). Overall, our results revealed
that there were differences in microbial composition in soil and roots from H- and
L-sites across a variety of soybean farms. Based on our findings, we hypothesize that
differences in microbial composition could have a causative relationship with observed
within-farm variability in soybean yield.

Keywords: soybean, spatial yield variation, microbiome, metagenomics, fungal ITS, bacterial 16S rRNA,
metabarcoding

INTRODUCTION

Spatial heterogeneity in soil characteristics within agricultural fields is a frequently observed
phenomenon that can influence yield and other crop traits (Khakural et al., 1996; Jaynes and
Colvin, 1997; Paz et al., 1998; Kravchenko and Bullock, 2000; Vollmann et al., 2000; Batchelor
et al., 2002; Shahandeh et al., 2005). Spatial field heterogeneity typically implies the occurrence of
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soil fertility gradients, owing to trends in different soil
parameters, such as soil physical properties (Becher, 1995),
element concentration (Berndtsson and Bahri, 1995), organic
carbon content (Ball et al., 1993), and water and nitrogen content
(Mulla et al., 1992; Wade et al., 1996). Spatial field heterogeneity
can be closely linked with spatial variability in crop yields. In fact,
understanding observed yield variability within corn and soybean
fields is one of the most captivating problems in production
research (Batchelor et al., 2002).

The site-scale spatial heterogeneity of various soil
characteristics and their relationships with soybean yields
have been previously reported in several locations including
Iowa (Kaspar et al., 2004; Rogovska et al., 2007), Mississippi
(Cox et al., 2003), and Michigan (Jiang and Thelen, 2004). These
studies indicated that site-scale heterogeneity in soil factors,
such as pH, P, K, slope of the site, site elevation, and soil texture
explained the observed variability in soybean yield. Mann et al.
(2019) studied bulk soil samples from farmer-designated “good”
vs. “poor” sites across 34 farms in Maritime Canada and used
Cornell’s Comprehensive Assessment of Soil Health (CASH),
which integrates soil texture, available water capacity, surface and
subsurface hardness, wet aggregate stability, autoclaved-citrate
extractable soil protein, and soil respiration (Moebius-Clune
et al., 2016), combined with phospholipid fatty acid analysis
(PLFA), and conventional soil chemical analysis to assess the
collected samples. Although CASH and PLFA assays did not
statistically differentiate farmer-designated “good” and “poor”
sites, differences between good and poor sites were evident when
focusing on certain soil nutrients, pH, and organic matter. For
example, the authors found that farmer-identified good sites
contained significantly greater levels of B, Ca, Mg, and higher
pH, compared to poor sites.

In order to understand the causes behind the occurrence of
high- and low-yielding field sites (=within-farm-spatial-variation
of soybean yields) across, we conducted a soil survey by using
14 farms within the Pennsylvania soybean on-farm network
(Bandara et al., 2020b). Bulk soil samples were collected and
a number of soil chemical, physical, topological, and biological
factors were assessed. Samples from two site types did not
exhibit significant differences based on the assessed factors. Our
findings indicated that the causes behind within-farm-spatial-
variation of soybean yields across selected farms are complex and
investigations using additional variables such as soil and plant-
associated microbial composition may be useful in understanding
within-site variability in yield.

Although the potential association of fungal and prokaryotic
composition with within-site spatial variability in crop yield has
not been previously demonstrated, differences in fungal and
prokaryotic composition have been reported as a function of
space-related variables. For example, Srour et al. (2017) found
significant differences in prokaryotic and fungal composition
between soils collected from healthy areas and areas where
sudden death syndrome symptoms were visible. Kasel et al.
(2008) observed that sites differing in land use within the same
location also differed in soil fungal composition. Furthermore,
substantial differences in microbial composition have been
observed in relation to different agronomic/cultural practices,

such as tillage (Yin et al., 2010; Dorr de Quadros et al., 2012;
Mathew et al., 2012), crop rotation (Yin et al., 2010; Dorr de
Quadros et al., 2012; Mathew et al., 2012), pesticide/herbicide
use (Crouzet et al., 2010; Lo, 2010; Banks et al., 2014),
and organic/conventional agriculture (Moeskops et al., 2010;
Sugiyama et al., 2010; Schmid et al., 2011).

The composition of microorganisms in the rhizosphere, which
is the region of the soil in contact with plant roots, can affect
plant performance. If host plants can capitalize on the microbial
services presented by the microbiome, agricultural productivity
could be augmented through more fully harnessing beneficial
functions. Microbial services may include the production of
phytohormones (Ping and Boland, 2004), improved tolerance
to abiotic and biotic stresses (Redman et al., 2002), induction
of the plant innate immune response mechanisms (Jain et al.,
2011), delivery of nutrients (Janos, 2007), modification of plant
functional traits (Friesen et al., 2011), or tissue chemistry (Larsen
et al., 2006). All of these services are directly related to microbial
composition. Therefore, spatial differences in microbial structure
could potentially contribute to differential plant performance,
manifested as yield variation either at a narrow geographic scale
(e.g., site-to-site variation within the farm) or at a broader
geographic scale (e.g., farm-to-farm variation). In this study,
our objective was to investigate the association between site-to-
site spatial variation of soybean yield within a farm (hereafter
referred to as within-farm-spatial-variation of soybean yields)
and fungal/prokaryotic composition in bulk soil, rhizosphere soil,
and soybean roots using an amplicon-sequencing approach.

MATERIALS AND METHODS

Experimental Locations, Sample
Collection, and Sample Processing
Eight farms located in eight Pennsylvania counties (Cambria,
Bedford, Bucks, Butler, Lancaster, Mercer, Northumberland,
Tioga) within the “Pennsylvania Soybean On Farm Network”
were randomly chosen for this study. Figure 1 summarizes the
sampling strategy that was used for sample collection. At each
farm, farmer-designated high- and low-yield sites were defined
and the Global Positioning System (GPS) coordinates were
recorded, as well as the sampling date (Supplementary Table 1).
Within each site type, five soybean plants were randomly
selected and surface debris around the plant was removed. The
aboveground plant organs were aseptically removed. Using a
shovel, plants were removed with the root ball intact. The size of
each root ball was∼15–20 cm3. Entire root balls were transported
to the Esker Lab at The Pennsylvania State University on dry ice
on the same day that they were sampled. Sampling was performed
at two soybean growth stages (SGS) (V1 = one set of unfolded
trifoliate leaf is visible, and R8 = 95% of the pods have reached
their mature color). These two growth stages were selected to
represent early vegetative and late reproductive stages of the
soybean lifecycle.

Each root ball was fractionated into bulk soil, rhizosphere
soil, and roots. For bulk soil, loose soil was manually removed
from the root ball by kneading and shaking the soil with
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FIGURE 1 | Strategy adopted for sample collection. Bulk soil, rhizosphere
soil, and roots were collected from one farmer designated high and one low
yield site at V1 (one set of unfolded trifoliate leaf is visible) and R8 (95% of the
pods have reached their mature color) soybean growth stages from eight
soybean farms in Pennsylvania.

sterile gloves on to a sterile work surface. Accumulated soil was
homogenized manually and approximately 20 g was placed into a
50 ml sterile Falcon tube. Subsequently, the left-over soil around
the root system was removed by patting roots with a sterile
spatula to reach rhizosphere soil. Soil aggregates that extended
up to 1 mm from the root surface were carefully collected into
a 50 ml Falcon tube (approximately 5–10 g) and these were
designated as rhizosphere soil. From the remaining root system,
secondary roots were excised using a sterile scalpel and placed in
a sterile 50 ml Falcon tube containing ice cold 25 ml phosphate
buffered saline (doi: 10.1101/pdb.rec8247 Cold Spring Harb.
Protoc. 2006). Only secondary roots were collected across all root
balls for consistency. Tubes were vortexed at maximum speed
for 20 s, which released most of the leftover soil particles from
the roots and turned the buffer turbid. The turbid buffer was
then decanted and filled with fresh, ice cold PBS (25 ml) and
vortexed as indicated above. The buffer was decanted, and this
process was repeated five times, although by the end of the fourth
cycle, the PBS solution was typically clear, meaning that there
were no visible soil particles in the wash buffer. After the last
cycle, the remaining buffer was removed from root sample using
Kimwipes. Roots were then placed in a new sterile 50 ml Falcon
tube. Tubes containing bulk soil, rhizosphere soil, and roots were
stored at−80◦C.

DNA Extraction, PCR Amplification, and
High-Throughput Sequencing
All samples were lyophilized for 48 h prior to DNA extraction.
Lyophilization is particularly important for efficient DNA
extraction from root samples. However, for the sake of
consistency, soil samples were also subjected to lyophilization.
DNA was extracted from 0.25 to 0.30 g of bulk soil, rhizosphere
soil, and roots using the Macherey-Nagel NucleoSpin R© 96
Soil DNA Isolation Kit (Macherey-Nagel GmbH & Co. KG,
Düren, Germany).

Initial PCR reactions were performed targeting the ITS1
region of the ribosomal gene using universal primers ITS1F (5′-
CTTGGTCATTTAGAGGAAGTAA-3′) and 58A2R (5′-CTGC
GTTCTTCATCGAT-3′) (Gardes and Bruns, 1993;
Martin and Rygiewicz, 2005). As described by Bell
et al. (2016), both primers were modified to include
overhangs needed for index attachment (ITS1F-
Illu = TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCT
TGGTCAT TTAGAGGAAGTAA; 58A2R-Illu = GTCTCGTGG
GCTCGGAGATGTGTATAAGAGACAGCTGCGTTCTTCATC
GAT). Initial 16S rRNA gene PCR reactions were performed
according to the 16S Metagenomic Sequencing Library
Preparation guide (part no. 15044223 rev. B) with some
modifications (Howard et al., 2017). The universal prokaryotic
primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACNVGGGTWTCTAAT-3′) were used for 16S
rRNA gene amplifications (Herlemann et al., 2011). Similar
to the ITS primers, both 16S primers were also modified
to include overhangs needed for index attachment (515F-
Illu= TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGT
GYCAGCMGCCGCGGTAA; 806R-Illu = GTCTCGTGGGCT
CGGAGATGTGTATAAGAGACAGGGACTACNVGGGTWTC
TAAT).

PCR reactions occurred in 30 µl volumes comprised of
0.3 µl (=1.5 U) of HotMaster Taq DNA Polymerase (QuantaBio,
Beverly, MA), 3 µl of 10x Taq Buffer with 25 mM Mg2+

(QuantaBio, Beverly, MA), 1.5 µl of each primer at 10 µM,
0.6 µl of 10 mM dNTP mix (New England Biolabs Inc., Ipswich,
MA), 20.6 µl of H2O, and 2.5 µl of template DNA. PCR cycling
for fungal ITS amplicons was performed using the following
protocol: 94◦C for 3 min; 35 cycles of 94◦C for 20 s, 45◦C for 30 s
and 72◦C for 45 s; with a final elongation at 72◦C for 5 min. For
16S rRNA gene amplifications, the reaction mix was the same as
described above. PCR cycling for 16S rRNA gene amplicons was
performed using the following protocol: 94◦C for 2 min; 25 cycles
of 94◦C for 20 s, 55◦C for 20 s, and 72◦C for 30 s; and 72◦C for
5 min for the final elongation.

PCR products were run on E-GelTM 96 Gels with SYBRTM

Safe DNA Gel Stain (Thermo Fisher Scientific, Waltham,
MA) with E-GelTM Low Range Quantitative DNA Ladder
(Thermo Fisher Scientific, Waltham, MA) to visualize/confirm
the PCR products/bands (fungal ITS1 ∼ 380 bp, prokaryotic 16S
rRNA∼ 420 bp).

The initial amplicon cleanup was carried out in clear 96-well
plates using the Mag-Bind R© TotalPure NGS Kit (Omega Bio-Tek
Inc., Norcross, GA). Cleaned PCR amplicons were then subjected
to a second round of PCR to attach Illumina Nextera-compatible
barcode and adaptors to the amplicons. PCR reactions occurred
in 25 µl volumes in 96-well plates and were comprised of 5 µl
of PCR product (from the first round of PCR), 2.5 µl of forward
and reverse primers (i5 and i7, each at 10 µM) with designated
barcodes for overhang attachment, 0.3125 µl (=1.5625 U) of
HotMaster Taq DNA Polymerase (QuantaBio, Beverly, MA),
3.125 µl of 10x Taq Buffer with 25 mM Mg2+ (QuantaBio,
Beverly, MA), 0.625 µl of 10 mM dNTP mix (New England
Biolabs Inc., Ipswich, MA), and 10.9375 µl of water. Conditions
for index attachment PCR cycling were as follows: 98◦C for 1 min;
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8 cycles of 98◦C for 15 s, 55◦C for 30 s, and 72◦C for 20 s; and
72◦C for 5 min for final elongation.

All barcoded amplicons were normalized (∼25 ng) using
the SequalPrep Normalization Kit (Thermo Fisher Scientific,
Waltham, MA). From each normalized sample, 20 µl was
combined into separate pools for fungal ITS fragments and 16S
rRNA genes, concentrated using a SpeedVac, and resuspended in
90 µl of molecular grade water. From these suspensions, 45 µl
was decanted, mixed with 15 µl loading dye, and run separately
on 1.2% agarose gels (100 ml) precast with 3 µl of SYBRTM

Safe DNA Gel Stain (Thermo Fisher Scientific, Waltham, MA).
Target bands were cut out from the gel and cleaned using the
PureLinkTM Quick Gel Extraction Kit (Thermo Fisher Scientific,
Waltham, MA), for a final pool volume of 30 µl. 16S rRNA
gene and ITS pools were separately sequenced at the Cornell
Genomics Facility (Ithaca, NY) on the Illumina MiSeq. A 500-
cycle MiSeq Reagent Kit v.2 was used for both fungal ITS pool
and prokaryotic 16S rRNA pool.

Sequence Processing and Analysis
Initial sequence processing was conducted using DADA2 v.1.18
pipeline (Callahan et al., 2016). The taxonomic assignment
was performed using the UNITE General FASTA release v.8.3
database (Kõljalg et al., 2005) for ITS gene sequences and Silva
version 138.1 (Quast et al., 2012) database for prokaryotic 16S
rRNA gene sequences.

All global analyses, including co-occurrence networks, linkage
clustering, beta diversity, alpha diversity, and relative abundance
were performed in R v. 3.5.3. All global analyses were conducted
using rarefied read counts (based on the minimum available reads
per sample among all samples). Rarefying helped in obtaining
even numbers of reads by sample, thus normalizing inter-sample
comparisons. In the case of ITS sequences, bulk soil, rhizosphere
soil, and roots were rarefied to 11,113, 7,663, and 16,565 reads.
With respect to 16S rRNA gene sequences, bulk soil, rhizosphere
soil, and roots were rarefied to 3,754, 3,993, and 6,078 reads.

The co-occurrence networks containing both Fungal and
prokaryotic taxa were constructed and analyzed using the
SpiecEasi and Igraph packages in R (Csardi and Nepusz,
2006; Kurtz et al., 2015). Networks were constructed
with ASVs that were present in 50% of samples or more.
Network sparsity and stability were examined using SpiecEasi.
The “spiec.easi” function was executed with the following
specifications to construct all the networks: (i) method = “mb,”
(ii) lambda.min.ratio = 1e−2, (iii) nlambda = 50, (iv)
sel.criterion = “stars,” (v) pulsar.select = TRUE, (vi)
rep.num = 99. As outlined in Agler et al. (2016), hub taxa
were identified as those above the 90th percentile (1.3 standard
deviations from the mean) of network ASVs for the measures of
(i) betweenness centrality, (ii) hub scores (eigenvector centrality),
and (iii) degree, for both Fungi and prokaryotes in that specific
network. Following network construction in SpiecEasi and
hub identification, networks were visualized with the ggnet2
function of the Ggally package of R (Schloerke et al., 2018). In
order to test whether the layouts of the experimental networks
were consistently and significantly different from stochastically
created, scale-free networks with the same number of nodes as
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experimental networks, 100 stochastic networks were generated
using Barbasi-Albert model of the “sample_pa” function in
the igraph package of R. The degree distributions of random
networks were also compared to those of experimental networks
using the non-parametric two sample Kolmogorov-Smirnov
using the “ks.test” function in the stats package of R. The
“sample_pa” and “ks.test” functions have been previously used in
a number of articles including (Longley et al., 2020).

The Bray-Curtis dissimilarities between samples were
used to perform principal coordinates analyses (PCoA) to
investigate β-diversity (OTU diversity between samples).
Permutational multivariate analysis of variance (PERMANOVA)
was performed using Bray-Curtis dissimilarity to identify the
factors/explanatory variables (=Site type, soybean growth stage)
that significantly contributed to total observed variation in PCoA
plots. Significance was assessed from 999 permutations.
PERMANOVA was performed separately for bulk soil,
rhizosphere soil, and roots.

Alpha diversity was estimated for each sample using the
Inverse Simpson index and Chao1 richness within the vegan
R package. Subsequently, analysis of variance (ANOVA) was
performed using generalized linear mixed model (GLMM)
approach in SAS version 9.4 (SAS R© Institute, 2017) to test the
main/simple effects (α= 0.05) of site type, soybean growth stage,
and sample type (fixed factors) on two alpha diversity measures.
Location was considered as a random factor. As both measures
were count data, modeling was performed with the negative
binomial distribution and using integral approximations to the
likelihood. The following specifications were used for modeling:
(1) link function = Log; (2) variance component estimation
method = Maximum Likelihood; (3) degrees of freedom
method = Residual; (4) non-linear parameter optimization
method = Newton-Raphson with Ridging; (5) overdispersion
fixation method = Laplace. The inverse link function was used
to create means and associated standard errors at the data scale.

Relative abundance of taxonomic groups (phylum and genus
level) was determined using the transform_sample_counts ()
function in the R package phyloseq. Heatmaps and dendrograms
based on average linkage clustering of ASV relative abundance
were generated with the heatmap() function in R package
Heatplus. For both fungal and prokaryote analyses, ASVs with
>2% relative abundance were included in the analysis.

RESULTS

Structure of Microbial Co-occurrence
Networks
Microbial networks constructed for three sample types from
high and low yield sites at two SGS differed in their network
statistics (Table 1). Analyses performed with three sample
types showed greater network size and total/positive/negative
edges for high yield sites compared to low yield sites at both
V1 and R8 growth stages, with the exception of rhizosphere
soil at V1 stage (Table 1 and Figures 2A–D). All networks
contained a greater number of prokaryotic than fungal nodes,
except for root networks at V1 stage from both site types.

Overall, networks had a diverse mix of bacterial and fungal
phyla. In case of bacteria, bulk soil, rhizosphere soil, and root
networks were dominated by Proteobacteria, Actinobacteriota,
and Bacteroidota (Figures 2A–D, 3A–D, 4A–D). Fungal
nodes were primarily from Ascomycota, Basidiomycota, and
Mortierellomycota (Figures 2A–D, 3A–D, 4A–D) for bulk
and rhizosphere soil networks. For root networks, Ascomycota
and Glomeromycota were predominant in V1 networks while
Ascomycota and Basidiomycota were predominant in R8
networks. When compared to 100 stocastic networks, each
network except the rhizosphere soil-high sites-R8 and roots-low
sites-V1 networks consistently had a significantly (p < 0.05)
different network layouts than 100 stochastic networks (Table 1).

The co-occurrence analyses for bulk soils showed a reduction
in network size and number of edges from V1 to R8 SGS for both
site types (Table 1 and Figures 2A–D). However, for rhizosphere
soil and roots from both site types, the network size as well as
the number of edges increased from V1 to R8 (Figures 3A–D,
4A–D). Out of 118 hub ASVs detected in 12 networks (two site
types, three sample types, and two SGS), 89 were restricted to
a single network (Supplementary Table 1). Certain hub species
were present in multiple networks. For example, the fungus
Corynespora cassiicola was a hub in networks created for both site
types with rhizosphere soil and roots from R8 soybean growth
stage. Most prokaryotic hubs consisted of Proteobacteria and
Actinobacteriota while fungal hubs were mainly comprised of
Ascomycota and Basidiomycota (Supplementary Table 1). For
bulk soil, high yield site network showed a greater number of
hubs compared to that of low yield site network at both growth
stages (Table 1). For, rhizosphere soil, although high yield site
network showed a greater number of hubs compared to that
of low yield site network at V1 growth stage, the opposite was
observed at R8 growth stage. For, roots, high yield site network
showed a lower number of hubs compared to that of low yield
site network at V1 growth stage. However, the opposite was
observed at R8 growth stage. Bradyrhizobium elkanii, which
is the most common symbiotic nitrogen fixer associated with
soybean in the continental United States, was present in networks
created for all sample types (bulk/rhizosphere soil and roots).
However, it was not detected as a hub in any of the networks
(Supplementary Table 1).

Beta-Diversity Analysis of Fungal and
Prokaryotic Composition
Principal coordinates analyses (PCoA) of fungal data using Bray-
Curtis dissimilarity values showed that the percent variation
explained by the first two principal coordinates was greatest
for root samples (33.8%) followed by bulk soil (31.4%) and
rhizosphere soil samples (30.9%) (Figures 5A–C). Neither bulk
soil nor rhizosphere soil samples were appeared to cluster
based on site type (high/low yield) or soybean growth stage
(Figures 5A,B). However, a clear grouping was observed among
root samples based on soybean growth stage but not based on site
type (Figure 5C). PERMANOVA showed non-significant effect
of site type on the observed total variation for all sample types
(bulk soil: R2

= 0.03, P = 0.6753; rhizosphere soil: R2
= 0.02,
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FIGURE 2 | Network of taxon associations for bulk soil samples. Co-occurrence of fungal and prokaryotic taxa for high yield sites at V1 soybean growth stage (A),
low yield sites at V1 soybean growth stage (B), high yield sites at R8 soybean growth stage (C), and low yield sites at R8 soybean growth stage (D). Nodes
represent exact sequence variants (ESVs). Colors represent specific phyla. Shapes represent specific domains. Red solid lines (edges/links) connecting nodes
indicate statistically significant negative correlations, and solid blue lines, positive correlations between the connected taxa. Node sizes are proportional to the degree
(=node connectivity). Nodes with degree ≥5 were included in the network for the purpose of visualization clarity.

P = 0.9540; roots: R2
= 0.02, P = 0.8621). The effect of soybean

growth stage on the observed total variation was non-significant
for bulk soil samples (R2

= 0.03, P= 0.7173) and rhizosphere soil
samples (R2

= 0.04, P = 0.1459). However, a significant growth
stage effect was evident for root samples (R2

= 0.16, P < 0.0001).
For prokaryotic data, the percent variation explained by

the first two principal coordinates was similar for bulk and
rhizosphere soil samples (17.5 and 20.4%, respectively), while
it was greater for root samples (56.1%) (Figures 5D–F). Bulk

and rhizosphere soil samples did not cluster based on site type
or soybean growth stage (Figures 5D,E). A clear grouping was
observed among root samples based only on soybean growth
stage but not based on site type (Figure 5F). PERMANOVA
revealed non-significant effect of site type on the observed
total variation for all sample types (bulk soil: R2

= 0.03,
P = 0.7952; rhizosphere soil: R2

= 0.03, P = 0.8591; roots:
R2
= 0.02, P= 0.8741). The effect of soybean growth stage on the

observed total variation was non-significant for bulk soil samples
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FIGURE 3 | Network of taxon associations for rhizosphere soil samples. Co-occurrence of fungal and prokaryotic taxa for high yield sites at V1 soybean growth
stage (A), low yield sites at V1 soybean growth stage (B), high yield sites at R8 soybean growth stage (C), and low yield sites at R8 soybean growth stage (D).
Nodes represent exact sequence variants (ESVs). Colors represent specific phyla. Shapes represent specific domains. Red solid lines (edges/links) connecting nodes
indicate statistically significant negative correlations, and solid blue lines, positive correlations between the connected taxa. Node sizes are proportional to the degree
(=node connectivity). Nodes with degree ≥5 were included in the network for the purpose of visualization clarity.

(R2
= 0.04, P= 0.0769). However, a significant growth stage effect

was evident for rhizosphere soil (R2
= 0.06, P = 0.0020) and root

samples (R2
= 0.36, P < 0.001).

Heatmap Analysis With Average Linkage
Clustering
Based on ASVs >2% abundance criterion, 103, 115, and 115
fungal ASVs were included in the heatmap analysis for bulk soil,
rhizosphere soil, and roots, respectively. Similarly, 34, 65, and
63 prokaryotic ASVs were included in the analysis for bulk soil,
rhizosphere soil, and roots, respectively. Analysis with fungal as
well as prokaryotic ASVs did not cluster bulk soil samples into
two distinct groups based on either site type or soybean growth

stage (V1 and R8) (Figures 6A–F). Similar results were observed
for rhizosphere soil samples. Although not distinctly grouped
into two groups, root samples showed some degree of clustering
based on soybean growth stage with both fungal and prokaryotic
ASV data (Figures 6C,F).

Alpha-Diversity Analysis of Fungal and
Prokaryotic Composition
Here we measured diversity within samples (i.e., how different
are ASVs within samples) using Inverse Simpson index, which
accounts for both the number of ASVs observed and evenness
in the relative abundance of ASVs, where higher index values
imply greater diversity and vice versa. We also used Chao1
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FIGURE 4 | Network of taxon associations for root samples. Co-occurrence of fungal and prokaryotic taxa for high yield sites at V1 soybean growth stage (A), low
yield sites at V1 soybean growth stage (B), high yield sites at R8 soybean growth stage (C), and low yield sites at R8 soybean growth stage (D). Nodes represent
exact sequence variants (ESVs). Colors represent specific phyla. Shapes represent specific domains. Red solid lines (edges/links) connecting nodes indicate
statistically significant negative correlations, and solid blue lines, positive correlations between the connected taxa. Node sizes are proportional to the degree (=node
connectivity).

index, which is a measure of the number of different ASVs
present in a given sample. For fungal ASVs, ANOVA showed
a significant main effect of soybean growth stage (P = 0.0016)
and sample type × site type interaction effect (P = 0.0412)
on mean Inverse Simpson index. The mean Inverse Simpson
index for fungal ASVs was significantly greater (P = 0.0016)
at V1 growth stage (9.94 ± 1.12) compared to that of at R8
stage (13.27 ± 1.45). Although the mean Inverse Simpson index
for rhizosphere soil and roots from two site types did not
significantly differ, bulk soil from high yield sites showed a
significantly greater index than that from the low yield sites
(Figure 7A). Per the ANOVA, sample type × growth stage
interaction effect was significant (P < 0.0001) on the mean Chao1
richness. At V1 growth stage, Chao1 richness was greater in
bulk soil compared to rhizosphere soil (P < 0.0001) and roots
(P < 0.0001) while the Chao1 richness of rhizosphere soil was
significantly greater than roots (P < 0.0001) (Figure 7C). At R8

growth stage, the Chao1 richness of bulk soil (P < 0.0001) and
rhizosphere soil (P < 0.0001) was greater compared to that of
roots (Figure 7C).

For prokaryotic ASVs, the sample type × growth stage
interaction effect was significant (P < 0.0001) on Inverse Simpson
index. At both V1 and R8 growth stages, the Inverse Simpson
index was greater in bulk soil compared to rhizosphere soil
(P < 0.0001) and roots (P < 0.0001) while the same of
rhizosphere soil was significantly greater than roots (P < 0.0001)
(Figure 7B). The sample type × growth stage interaction effect
was also significant (P < 0.0001) on the mean Chao1 richness.
At V1 growth stage, Chao1 richness was greater in bulk soil
compared to rhizosphere soil (P < 0.0001) and roots (P < 0.0001)
while the same of rhizosphere soil was significantly greater than
roots (P < 0.0001) (Figure 7C). At R8 growth stage, the Chao1
richness of bulk soil (P = 0.0002) was greater than that of
roots (Figure 7C).

Frontiers in Microbiology | www.frontiersin.org 8 November 2021 | Volume 12 | Article 675352

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-675352 November 24, 2021 Time: 13:37 # 9

Bandara et al. Soybean Yield Variation and Microbiome

ITS ASVs − Bulk Soil
PC

oA
2 

(1
2.

7 
%

 v
ar

ia
nc

e 
ex

pl
ai

ne
d)

16S ASVs − Bulk Soil

ITS ASVs − Rhizosphere Soil

PCoA1 (20.3 % variance explained)

16S ASVs − Rhizosphere Soil

ITS ASVs − Root

16S ASVs − Root

CBA

D FE
PC

oA
2 

(1
0.

6 
%

 v
ar

ia
nc

e 
ex

pl
ai

ne
d)

−0.2

0.0

0.2

0.4

−0.2 0.0 0.2 0.4

Site type
High

Low

Growth stage
R8

V1

PCoA1 (18.7 % variance explained)

−0.2

0.0

0.2

0.4

−0.4 −0.2 0.0 0.2

−0.4

−0.2

0.0

0.2

−0.2 0.0 0.2 0.4

PC
oA

2 
(1

5.
2 

%
 v

ar
ia

nc
e 

ex
pl

ai
ne

d)

PCoA1 (18.6 % variance explained)

−0.3

−0.2

−0.1

0.0

0.1

0.2

−0.25 0.00 0.25

PC
oA

2 
(7

.9
 %

 v
ar

ia
nc

e 
ex

pl
ai

ne
d)

PCoA1 (9.6 % variance explained)

−0.2

0.0

0.2

−0.2 0.0 0.2

PC
oA

2 
(9

.2
 %

 v
ar

ia
nc

e 
ex

pl
ai

ne
d)

PCoA1 (11.2 % variance explained)

−0.2

0.0

0.2

−0.25 0.00 0.25

PC
oA

2 
(1

5.
2 

%
 v

ar
ia

nc
e 

ex
pl

ai
ne

d)

PCoA1 (40.9 % variance explained)

Growth stage

R8

V1

Site type

High

Low

FIGURE 5 | Principal Coordinates Analysis (PCoA) of ASVs based on Bray-Curtis dissimilarity for ITS-bulk soil (A), ITS-rhizosphere soil (B), ITS-roots (C), 16S
rRNA-bulk soil (D), 16S rRNA-rhizosphere soil (E), and 16S rRNA-roots (F). Marker shape and color indicate site type (high/low yield) and soybean growth stage
(V1 = one set of unfolded trifoliate leaf is visible; R8 = 95% of the pods have reached their mature color), respectively.

Relative Abundance of Fungal and
Prokaryotic Taxa
Phylum-level fungal abundance analysis showed that
Ascomycota was the predominant phylum in all sample
types at both growth stages and site types (Figures 8A–C).
For bulk and rhizosphere soils, the relative abundance of
Ascomycetes appeared to be relatively similar at both SGS for
both site types; nonetheless, it tended to increase in roots from
V1 to R8 at both site types. Further, the Ascomycota abundance
in roots from high yield sites was greater than that of low yield
sites at both growth stages. On the contrary, the abundance of
Mortierellomycota and Basidiomycota in roots from high yield
sites was lower than that of low yield sites at both growth stages.
Although Zoopagomycota was prominent in both soil types, it
was less prominent in roots. Glomeromycota was very prominent
in roots, particularly at V1 growth stage.

Genus level fungal abundance analysis showed that the relative
abundance of Apodus, Cladosporium, Fusarium, Podospora, and
Septoria, was greater in bulk soil from low yield sites compared
to high yield sites at both SGS (Figure 9A). Abundance of
Clonostachys, Corynespora, Exophiala, Humicola, Lophotrichus,
Metarhizium, Solicoccozyma, and Trichoderma was greater in
bulk soil from high yield sites compared to low yield sites at
both growth stages.

For rhizosphere soil, low yield sites contained greater
abundance of Cladosporium, Fusarium, Mrakia, Podospora, and
Septoria than high yield sites at both growth stages (Figure 9B).
The abundance of Conioscypha, Corynespora, Metarhizium,
Preussia, and Solicoccozyma was greater in high yield sites than
low yield sites at both growth stages.

Soybean roots from low yield sites had greater abundance
of Ilyonectria, Macrophomina, Mortierella, and Septoglomus
compared to those in high yield sites at both growth stages while
the abundance of Fusarium and Rhizophagus was greater at R8
(Figure 9C). Acrocalymma, Corynespora, and Podospora were
more abundant in roots from high yield sites than low yield sites
at both growth stages, while Cercophora, Clonostachys, Diaporthe,
and Hymenoscyphus were present in greater abundance at R8.
For high yield sites, abundance of root associated Corynespora
increased from V1 to R8, but it decreased in roots from
low yield sites.

Phylum-level prokaryotic abundance analysis showed that
Proteobacteria was the predominant phylum in all sample
types at both growth stages and site types (Figures 10A–
C). Actinobacteriota and Bacteroidota were also abundant
in all sample types. Although Acidobacteriota, Chloroflexi,
Crenarchaeota, Gemmatimonadota, Planctomycetota, and
Verrucomicrobiota were abundant in both soil types (across
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FIGURE 6 | The heat map analysis of ASVs based on average linkage clustering for ITS-bulk soil (A), ITS-rhizosphere soil (B), ITS-roots (C), 16S rRNA-bulk soil (D),
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growth stages and site types), they were less conspicuous in roots.
Cyanobacteria was prominent in roots, particularly at V1 stage.

Genus-level prokaryotic abundance analysis showed that the
relative abundance of major prokaryotic genera in both bulk and
rhizosphere soils was similar between high and low yield sites
at both growth stages (Figures 11A,B). Further, for majority of
the genera, there was no marked difference between two site
types at both growth stages. For roots, abundance of Niastella,
Piscinibacter, Pseudomonas, and Rhizobacter from low yield sites
was greater compared to high yield sites at both growth stages
(Figure 11C). Abundance of Bradyrhizobium, Flavobacterium,
Novosphingobium, and Rhodoferax was greater in roots from high
yield sites compared to low yield sites at both SGS.

DISCUSSION

Microbial composition in soil and roots can influence plant
physiological performance and yield. However, little is
known about the association between the spatial variation
of microbial composition and the corresponding spatial
variation of crop yields at the site scale. Since many
soil- and root-inhabiting fungal and prokaryotic taxa are
uncultivable using conventional methods, a metabarcoding
approach offers insights into populations only known by
sequencing (Prosser, 2015). Our results, among the first
using this approach to address such questions, showed

that the abundance of key taxa and network structures
of fungi and bacteria are different between high and
low yield sites.

Network analysis is a powerful tool for investigating and
recognizing patterns in large, complex datasets, which can
be more challenging to detect using common methods in
ecology like standard alpha/beta diversity analyses (Proulx
et al., 2005). Our results showed greater network sizes and
total/positive/negative edges for high yield sites compared to low
yield sites at both growth stages for all sample types, except
for the V1-rhizosphere soil network. These results indicated
that microbial networks from high yield sites are more complex
compared to those of low yield sites. A previous study by
Zheng et al. (2021) showed that the healthy tobacco plants had
more complex microbial networks than the plants with bacterial
wilt caused by Ralstonia solanacearum. Although we did not
visually observe any disease conditions in soybean plant from
low yield sites, it is possible that less complex microbial networks
contributed to less healthy plants that will eventually translate
into poorer yields. More in-depth investigations are required
to gain insights into mechanistic understanding on how greater
network complexity and soybean yields.

Bradyrhizobium elkanii is reported as the major soybean
nodulating rhizobia (Jordan, 1982). Although B. elkanii was
present in all microbial co-occurrence networks constructed in
the present study, it was not detected as a hub in any of the
networks. This finding indicated that the potential interactions
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of B. elkanii with other prokaryotic/fungal members of the
community is minimal, despite its importance in soybean
cropping system. Poudel et al. (2016) discussed that the most
important taxa for plant health may neither have any links
to other taxa, nor have correlations with plant or pathogen
performance components. Therefore, it was not surprising to see
B. elkanii as a non-hub taxon in the current study.

Although the network association structure and related
attributes tended to change depending on soybean growth stage,
such changes did not appear to depend on site type. For instance,
the network size and total/positive/negative edges increased
from V1 to R8 for rhizosphere soil and roots for both high
and low yield sites. Therefore, while there were temporally
defined ecological rearrangements of microbial composition, as
evidenced by the changes in topological attributes with the
co-occurrence network, such changes appeared to be common
between the two site types. As such, at least considering the
seasonal scale, the temporal dynamics of microbial composition
may not contribute to site-dependent spatial yield variation.

For both fungal and prokaryotic data, regardless of growth
stage and site type, bulk soil showed the greatest Inverse Simpson

index and Chao1 richness (measure of α-diversity), followed by
rhizosphere soil and roots. As such, there was a diversity gradient
from bulk soil to roots via the rhizosphere interface. Results were
consistent with studies that have demonstrated the highest alpha
diversity of both fungi and bacteria in the soil (Lebreton et al.,
2019; Suárez-Moo et al., 2019).

As revealed by relative abundance analysis, fungal
and prokaryotic composition varied based on site type
(high/low), soybean growth stage (V1/R8), and sample type
(bulk/rhizosphere soil, roots) at both phylum and genus level.
Previous reports clearly demonstrated growth stage (Mougel
et al., 2006; Houlden et al., 2008; Xu et al., 2009; Chaparro et al.,
2014) and sample type (Sugiyama et al., 2014; Yurgel et al.,
2017) dependent relative abundance variation of prokaryotic
and fungal taxa.

Our findings showed a greater relative abundance of the fungal
genus Fusarium in roots from low yield sites compared to high
yield sites. Other than a single ASV that corresponds to an
unclassified species of genus Fusarium, we detected F. acutatum,
F. solani, F. cuneirostrum, and F. oxysporum in these root samples.
Interestingly, all of these Fusarium species are known soybean
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FIGURE 8 | Stacked bar plots showing the mean relative abundance of major fungal phyla for (A) bulk soil, (B) rhizosphere soil, and (C) soybean root samples
collected from high and low yield sites at V1 (one set of unfolded trifoliate leaf is visible) and R8 (95% of the pods have reached their mature color) soybean growth
stages across eight soybean farms in Pennsylvania.

pathogens (Daamen et al., 1991; Aoki et al., 2005; Zhang et al.,
2010; Arias et al., 2013; Yan and Nelson, 2020; Degani and
Kalman, 2021). We also found a greater relative abundance of
the fungal species, Macrophomina phaseolina in roots from low
yield sites compared to high yield sites. M. phaseolina is one of
the most devastating pathogens in soybean causing charcoal rot
disease (Mengistu et al., 2013; Bai et al., 2015; Bandara et al.,
2020a). As such, soybean roots from low yield sites appeared to
be under higher pathogen pressure and corresponding disease
risks, although external disease symptoms such as rots, spots, and
lesions were not visually observed during the sampling process.

Interestingly, the relative abundance of root-colonizing genus
Corynespora (represented by a single species, C. cassiicola) was
greater in high yield sites compared to low yield sites. This
organism causes target spot on leaves, stems, roots and flowers
of more than 280 plant species, including many economically
important crops, such as soybean (Silva et al., 1995). However,
Dixon et al. (2009) and Shimomoto et al. (2011) demonstrated
greater pathogenicity variability among C. cassiicola isolates. It
is possible that the pathogenicity of C. cassiicola from high yield

sites is significantly lower, despite higher relative abundance.
Alternatively, as an endophyte, C. cassiicola is reported to secrete
an array of polyketide and fatty acid derivatives where their
biological activities have not been tested (Chagas et al., 2015).
These compounds can potentially be antifungal or antibacterial
in nature. Given this possibility, greater relative abundance of
C. cassiicola in roots from high yield sites could also be beneficial
and contribute to greater yields. More investigations are essential
to precisely determine the association between root colonizing C.
cassiicola and soybean yields.

The bacterial genus, Pseudomonas was present in greater
percentages, particularly in rhizosphere and root samples
collected from low yield sites at both growth stages.
Pseudomonads from rhizosphere soil was predominantly
represented by P. umsongensis while P. chlororaphis and
P. frederiksbergensis were the two species detected in roots.
Most of the Pseudomonas species are pathogenic to plants
(Young, 2010; Mansfield et al., 2012; Lamichhane et al., 2015).
However certain Pseudomonas species such as P. fluorescens and
P. protegens are useful as biocontrol agents (Ramette et al., 2011;
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Gull and Hafeez, 2012; Santoyo et al., 2012; Sivasakthi et al.,
2014). Interestingly, the two species that we observed in greater
quantities in roots from low yield sites are reported as antifungal
and plant growth promoting (Bardas et al., 2009; Chatterjee et al.,
2017). Although it seems counterintuitive to observe a greater
number of beneficial Pseudomonads in roots from low yield sites
compared to that of high yield sites, more in-depth studies could
justifiably explain this phenomenon.

A noteworthy observation was the greater relative abundance
of the genus Flavobacterium in roots from high yield sites
compared to low yield sites at both SGS. Some Flavobacterium
species are known as plant growth promoters (Sessitsch et al.,
2004) while other species are reported to protect plants against
microbial infections through root colonization (Sang and Kim,
2012) or bioremediation (Kang et al., 2013). Given these
beneficial effects, greater Flavobacterium colonization in roots
from high yield sites can in turn contribute to better physiological
performance and greater yields.

The bulk soils from high yield sites at both SGS contained
greater percentages of Trichoderma (predominantly T. spirale

and an unclassified Trichoderma species) fungal genera. The
beneficial mycoparasitic and other roles of various Trichoderma
species are widely reported in relation to soybean production
(Menendez and Godeas, 1998; Shovan et al., 2008; Bagwan, 2010;
John et al., 2010; Khalili et al., 2016; Khaledi and Taheri,
2016; Zhang et al., 2016). Certain Trichoderma species can
also control phytopathogenic nematodes like soybean root knot
nematodes (Oyekanmi et al., 2007). In particular, the utility of
T. spirale as a biocontrol agent against C. cassiicola is previously
reported (Baiyee et al., 2019). Note that, as discussed above, the
abundance of C. cassiicola was greater in high yield sites. Even
if we assume that C. cassiicola isolates from high yield sites are
pathogenic, the greater abundance of T. spirale in high yield sites
can potentially suppress C. cassiicola and mitigate its negative
impacts on soybean yields. Moreover, rhizosphere soils from
high yield sites at both SGS contained greater percentages of
genus Metarhizium (M. anisopliae and M. marquandii) compared
to low yield sites. The beneficial entomopathogenic behavior
of Metarhizium including M. anisopliae and M. marquandii
is widely documented in relation to soybean production
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(Clifton et al., 2018; Baron et al., 2020; Lopes et al., 2020).
Therefore, the greater occurrence of beneficial fungal genera
such as Trichoderma and Metarhizium can potentially eases the
soilborne pathogen and insect pressure. This could eventually
translate into greater yields in high yield sites.

While the relative abundance of symbiotic nitrogen fixers like
Bradyrhizobium elkanii was greater in roots from high yield sites
at both V1 and R8 growth stages, free-living nitrogen fixers
such as Klebsiella and Kosakonia were more abundant in roots
from low yield sites compared to high yield sites. Symbiotic
nitrogen fixation occurs under a narrow range of environmental
conditions while free-living nitrogen fixation can occur under a
wide range of environmental conditions (Smercina et al., 2019).
In contrast to symbiotic fixation, free-living nitrogen fixation can
take place even under non-optimal conditions such as greater
oxygen concentration and lower carbon (energy) availability
(Smercina et al., 2019). The greater abundance of free-living
nitrogen fixers in low yield sites is therefore indicative of a less
efficient nitrogen fixation via symbiotic fixers. Nevertheless, these
symbiotic nitrogen fixers directly depend on the host (soybean

plant in this case) to fulfill their carbon requirements. Given these
observations, we hypothesize that soybean plants from low yield
sites lose more carbon due to symbiotic nitrogen fixers while not
getting enough fixed nitrogen, which in turn contributes to the
poor yields. Furthermore, natural environments are ubiquitously
inhabited by unproductive rhizobia strains that extort benefits
without compensating costs and thus proliferate more efficiently
than nitrogen-fixing cooperators (Gibson et al., 1975; Bottomley
and Jenkins, 1983; Moawad et al., 1998; Burdon et al., 1999;
Fujita et al., 2014). In the current study, the genus Allorhizobium
(comprised of A. cellulosilyticum, A. daejeonense, A. mesosinicum,
A. phaseoli, and two unclassified Allorhizobium species) was
present in greater abundance in roots from low yield sites
compared to that of high yield sites. The reports that reveal
their use as efficient Nitrogen fixers are sparse. Therefore, we
further hypothesize that different Allorhizobium species detected
in the current study could be parasitic. The greater presence of
potentially parasitic Allorhizobia in roots from low yield sites
could use surplus energy for their own growth or for creating
storage substances and in turn results in lower plant productivity
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and yields. A comprehensive comparison of Allorhizobia strains
isolated from high and low yield sites in terms of their ability to
affect soybean yields could provide additional insights into the
relationship between site scale spatial variation of soybean yields
and symbiotic nitrogen fixers.

CONCLUSION

Spatial variation of crop yields exists even within small
geographic regions (i.e., within a farm) is a commonly
observed phenomenon. Several factors can contribute to such
variation including soil microbiota. Recent advances in high-
throughput sequencing have allowed us to explore microbial
composition in much greater detail, as we can identify even
poorly known phyla with limited phenotypic data. Using an
amplicon sequencing approach, we found that high yield
sites contain significantly fewer fungal genera that contain
known pathogenic species and more fungal genera that contain
species that are known to be mycoparasitic or nematophagous.

Moreover, the number of root-colonizing bacterial genera that
contain known plant growth promoting bacteria was also
greater in high yield sites. The greater occurrence of free-
living nitrogen fixing bacterial genera in roots from low
yield sites indicates that prevailing edaphic conditions in low
yield sites were not ideal for symbiotic nitrogen fixation.
Additionally, results from microbial network analysis showed
that the size and the total number of edges in networks from
high yield sites is greater with a larger number of specific
biological interactions among them. Therefore, our findings
showed that the occurrence of high and low yield spots in
soybean fields was associated with a consortium of microbial
taxa suggesting the importance of certain microbial taxa to
the establishment and stability of healthy soil. Taken together,
our findings provide new insights into the relationship between
fungal and prokaryotic composition to observed site-scale spatial
heterogeneity in soybean yield. These findings will be helpful in
devising future site-specific management practices of soil and
root-associated microorganisms toward better soil health and
increased agricultural production.
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