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As extracellular vesicles, exosomes are released from most cells to perform cell–cell
communication. Recent studies have shown that exosomes could be released into
tumor microenvironment and blood to promote tumor progression through packaging
and transmitting various bioactive molecules, such as cholesterol, proteins, lipids,
miRNAs, mRNAs, and long non-coding RNAs (lncRNAs) to distant cells. LncRNAs
have emerged as a major class of non-coding transcripts. A lot of LncRNAs have
been discovered during the past few years of research on genomics. They have been
proven to participate in various biological functions and disease processes through
multiple mechanisms. In this review, we analyzed the role of exosome-derived lncRNAs
in lung carcinogenesis and metastasis. We also highlight opportunities for the clinical
potential of exosomes with specific lncRNAs as biomarkers and therapeutic intervention
in lung cancer.
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INTRODUCTION

Lung cancer is still the most common malignancy with the highest morbidity and mortality. In
China, it has been estimated that 733,300 new cases of lung cancer were diagnosed and 610,200
cases died in 2015 (1). In America, approximately 228,150 people were firstly diagnosed with lung
cancer and 142,670 patients with lung cancer died in 2019 (2). High mortality rate occurred in lung
cancer patients mainly due to late-stage diagnosis of the disease (3). Patients often go to the hospital
with symptoms of chest distress, hemoptysis, or systemic involvement. The 5-year survival rate of
lung cancer is as low as 4% for patient with distant metastases (4), and the overall 5-year survival
rate is only 24%. In view of this, it is of great importance to clarify the mechanism of lung cancer
metastasis, find relevant biomarkers for early diagnosis, and treat patients with precision therapy.

Recent studies have shown that exosomes play an important role in the metastasis of lung cancer
cells (5–8). Characterized by inflammation, angiogenesis, immunosuppression, and organotropism,
pre-metastatic niche is used to spread tumor cells (9–11). It has been confirmed that exosomes
secreted by primary tumor site possibly contribute to the establishment of premetastatic niche
(12–14). Various bioactive molecules, such as proteins, RNAs, cholesterol, etc., are encapsulated by
exosomes and transported to adjacent cells or distant tissues to optimize tumor microenvironment
(15–17). LncRNAs are emerging as epigenetic regulators affecting transcription and playing a key
role in human health (18–21). In addition to directly regulating intracellular biological activities,
lncRNAs can also be detached from the surface of primary cells in the form of exosomes, which
were subsequently transmitted to adjacent cells or distant organs through circulatory system
(22–24). Exosome-transmitted lncRNAs have been detected in both blood and tumor tissues in lung
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cancer (25–27). In this review, we highlight the exosomal
lncRNAs in lung cancer and summarize the potential biomarkers
and mechanisms of exosome-derived lncRNAs.

EXOSOME BIOLOGY AND FUNCTION

As one of three types of extracellular vesicles, exosomes have a
diameter of 40–150 nm, which can be secreted by a vast majority
of cells (28–30). The formation mechanism of exosomes is
different from other types of vesicles. For the first step, the plasma
membrane buds inward to form early endosomes (membrane-
bound vacuoles) (31, 32). After undergoing several changes, the
late endosomes named multivesicular bodies (MVBs) form with
the membrane-bound vacuoles budding inward and pinching
off to shape intraluminal vesicles (ILVs) (33, 34). Subsequently,
the ILV-loaded MVBs release into extracellular space to act as
exosomes or fuse with lysosomes to degrade the ILV contents
(35–37). Vesicles with exosome-like structures were discovered
by (38), while the true definition of exosomes was in 1983 (39).
During the past decade, with the in-depth study of exosomes, it
has been found that exosomes are involved in the development
and prognosis of various diseases (40–44), and especially, play
an irreplaceable role in tumor invasion (45), metastasis (46),
and progression (47). Exosomes contain a variety of bioactive
molecules, including proteins, RNAs, cholesterol, and lipids (24,
48–52). Figure 1 shows the structure and contents of exosomes.
The contents of exosomes are the key to the biological function
of exosomes in the pathophysiological process. For example,
plasma exosomal proteins derived from endothelial cells play
an important role in small cerebral vascular disease caused
by Alzheimer’s disease (53). Exosomes shuttling high levels of
microRNA-221-3p promote the resistance of breast cancer cells
to adriamycin by targeting PIK3R1 (54).

EXOSOMES LOADED WITH CARGOS
AND SECRETED BY DONOR CELLS

The current mainstream view is that cell membrane invaginates
and internalizes extracellular ligands and particles to form
nascent exosomes, which originate from ILVs. ILVs fused with
the serous membrane to form multivesicular endosomes (MVEs)
with packaging various bioactive molecules. Endosomal sorting
complex required for transport (ESCRT) is the key molecular
in MVE membrane shaping and scissing, and as a primary
driver, ESCRT enables cargo selection and ILV budding (55–57).
Mediated by Rab family and soluble N-ethyl-maleimide-sensitive
factor attachment protein receptor (SNARE) family, mature
exosomes are released by donor cells (58, 59). The Rab families
are small GTPases that control the transport and secretion of
intracellular secretory MVBs by moving the cytoskeleton and
positioning the vesicles in the cytoplasmic membrane (60, 61).
More than 70 subtypes have been found with the in-depth
study of Rab GTPases, which were located on different cell
membrane surfaces. MVE traffic regulated by Rab GTPases affects
physiology and disease. For example, Rab5 is an endosome

organizer to transfer dipeptidyl peptidase 4 (DPPIV) and bile
salt export pump (BSEP) to the bile canaliculi (62). SNARE
was originally discovered in bovine brain extract, which was
verified to be a key molecule in the release of neurotransmitters
(63). SNARE complex assembly was initiated by the docking of
GTPases and membrane (64). SNARE complex drives membrane
fusion through Sec3 interacting with Sso2 (target membrane
protein of SNARE) (65). Located on the surface of secretory
vesicles, activated RAL-1 recruits SYX-5 at the surface of plasma
membrane to promote fusion of MVBs, and further to promote
secretion of exosomes (66).

EXOSOME UPTAKE AND FUNCTION

Exosome uptake is a very complex biological process. Exosomes
containing bioactive molecules bind to acceptor cells directly
by cell membrane fusion, endocytosis, and cell-specific uptake
(67). Recipient cells identify and capture exosomes probably
depending on their size or surface biomolecules (67). Eguchi and
Yang have demonstrated that clathrin-mediated endocytosis and
macropinocytosis are effective means to promote exosomes to be
ingested by target cells (68, 69). Caveola-related endocytosis was
also detected in EB virus-infected cells (70). Lipid is the main
component of cell membrane. As microdomains interspersed
in cell membrane, lipid rafts play a key role in the passage
of molecules across cell membranes. It has been proven that
some lipid rafts exist in caveolin-1-mediated invaginations or
planar regions within cell membrane, and these regions are
rich in flotillin proteins (67, 71, 72). So, lipid rafts may be
involved in the process of internalizing exosomes through
flotillin-mediated endocytosis.

The function of exosomes is complex and worth exploring.
It is interesting to note that the target cell phenotype may
be changed by exosomes (73). Exosomal miR-21 triggered
phenotypic changes of hypoxic oral squamous cell carcinoma
to promote cancer metastasis in a hypoxia-inducible factor-
1-dependent manner (74). Melanoma-derived exosomes,
composed of tumor microenvironment oncoproteins, induced
bone marrow progenitor cells to a prometastatic phenotype (75).
In addition, exosomes have been emerging as ideal biomarkers
for containing active molecules of special significance. For
example, Zhu and colleagues found that exosome-transmitted
transfer ribonucleic acid (tRNA)-derived small RNAs, such
as tRNA-ValTAC-3 and tRNA-ValAAC-5, were dramatically
elevated in exosomes separated from the liver cancer patient’s
blood, which indicated that exosomal tsRNA could function
as a potential biomarker for cancer diagnosis (76). LncRNA
growth arrest-specific 5 (GAS5) mediated by exosomes was
also identified as a promising serum-based biomarker for early
non-small-cell lung cancer (NSCLC) diagnosis (77). It is widely
proven that some exosomal DNAs, RNAs, proteins, and other
bioactive molecules are emerging as critical and ideal non-
invasive biomarkers for various benign and malignant diseases
(78–82).

As mentioned before, exosomes can encapsulate bioactive
molecules and then intelligently identify the recipient cells to
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FIGURE 1 | Structure of exosome. Exosomes are small vesicles with a double-membrane structure. The phospholipid bilayer is embedded with many
transmembrane proteins, marker proteins, and receptors, such as heat chock proteins, lipid rafts, immune-regulatory molecules, cytoskeleton proteins, membrane
fusion proteins, etc. Exosomes consisted of DNA, RNAs, cytokines, enzymes, and other bioactive molecules, which are transmitted from original cells to target cells.

achieve information transmission. Exosomes loaded with special
drugs to treat diseases gradually attracted the attention of
scholars. The main advantages of exosomes in drug delivery are
the cell-targeted therapy, non-toxicity, and non-immunogenicity.
Zou and colleagues synthesized Apt-Exos, which combined the
natural delivery advantages of exosomes and superiority of
aptamers of molecular recognition to provide an ideal delivery
platform for cancer theranostics (83). It has been confirmed that
miRNA cargo in exosomes derived from administered cells has
therapeutic effects in brain repair and recovery after neurological
injury (84). As a novel therapeutic approach, drugs transmitted
by exosomes has entered the preclinical research phase (85). In
recent years, exosome-related nanovesicles have been used to the
precise treatment of diseases (86–88).

CHARACTERISTICS OF LncRNAs

Gene transcription in organisms is a complex and orderly
process. Most genome sequences are transcribed into coding
RNAs or non-coding RNAs (89). As a class of non-coding
RNAs, lncRNAs are recently identified as a group of long
RNA transcripts with no apparent protein-coding function (90),
which are divided into five categories, as follows: intronic, sense,
antisense, intergenic, and bidirectional. With the implementation
of the human genome project and the development of molecular

biology, lncRNAs have been increasingly discovered (91–93).
They are evolutionarily conservative and contain relatively
few exons (94). It has been demonstrated that lncRNAs are
by-products of RNA polymerase II transcription, which can
mediate chromosome remodeling and prevent the recruitment
of chromatin modifiers to affect gene expression (95–100). In
cytoplasm, lncRNAs are largely reported to sponge miRNAs
to regulate gene expression (101–105). For example, FOXF1
adjacent non-coding developmental regulatory RNA (FENDRR)
was identified as downregulated in lung cancer, and high
expression of which could suppress the progression of NSCLC
by regulating miRNA-761/TIM2 axis (106). CDKN2B antisense
RNA 1 (CDKN2B-AS1) was proven to be highly expressed in
NSCLC (107), which promoted cancer cell proliferation and
migration (108). LncRNAs also form complementary double
chains with transcripts of protein-coding genes and produce
endogenous siRNAs under the action of dicer enzyme to
regulate gene expression level (109). In addition, lncRNAs can
bind with proteins, regulate protein functions, and participate
in protein degradation (110–112). Peng and colleagues found
that lncRNA rhabdomyosarcoma 2-associated transcript (RMST)
increased the DNA methyltransferases (DNMT3B) stability by
promoting the interaction between RNA-binding protein HuR
and DNMT3B 3’ UTR (113). Recent studies have shown that
lncRNAs are also involved in autophagy regulation and m(6)A
methylation (111, 114–117). In general, lncRNAs are involved
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FIGURE 2 | Structure and function of lncRNAs. LncRNAs are by-products of RNA polymerase II transcription, which function as chromatin remodeling, regulating
gene transcription and translation, etc.

in all aspects of life for their complex functions of chromatin
modification, transcriptional regulation, pre-mRNA processing
and splicing, RNA stability modulation, etc (118–121). Figure 2
shows the structure and function of lncRNA. Furthermore, as
bioactive molecules, lncRNAs can be transmitted by exosomes to
target cells or organs to exhibit their biological functions (23, 24).

LUNG CANCER-RELATED EXOSOMAL
LncRNAs

Although the free exosome database (ExoCarta) was launched
in 2009, the first exosomal lncRNA in lung cancer was reported
by Wang and colleagues in 2016. Wang and colleagues verified
the new mechanisms that lung cancer cell-derived exosomes
could regulate mesenchymal stem cells by transmitting lncRNAs
(122). In recent years, some definite lncRNAs are discovered in
exosomes secreted from lung cancer cells, which affect tumor
progression, metastasis, and invasion. The latest researches
concerning exosomal lncRNAs and lung cancer are summarized
in Table 1.

EXOSOME-DERIVED LncRNAs IN LUNG
CANCER PROGRESS

Cargos carried by exosomes are involved in all stages of tumor
progression. In the process of tumor progression, the most

important molecular mechanism is that tumor cells adhere to
the stroma, further migrate to blood, reach premetastatic niches,
establish new tumor lesions, and achieve tumor metastasis. It
is reported that exosomal lncRNAs promote tumor progression
by facilitating tumor premetastatic niche formation (73, 123,
124). Furthermore, epithelial to mesenchymal transition (EMT)
is also an important mechanism of tumorigenesis. EMT promotes
tumor cells to escape from the original tumor site to form new
metastases (125). Several studies have shown that tumor-derived
exosomal lncRNAs play vital roles in regulating EMT (126–128).

The first lncRNA found to be involved in lung cancer
metastases was metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) (129), and subsequently, Zhang and
colleagues found that exosomal MALAT1 was highly expressed
in NSCLC patients’ serum, which accelerated tumor migration
and proliferation by suppressing cell apoptosis and shorting
cell cycle (25). These studies suggest that exosomal MALAT1
may act as a non-invasive biomarker for diagnosis of NSCLC
or be a promising therapeutic target for NSCLC. At the same
time, a similar mechanism of exosomal MALAT1 in many
other malignancies is also verified (130–132). As shown in
Table 1, several lncRNAs have been discovered in lung cancer,
which are involved in the progression, metastasis, invasion,
and proliferation of tumor. For example, GAS5 has been
proven to be a potential therapeutic target for lung cancer by
inhibiting angiogenesis (133). Lung cancer-derived exosomal
GAS5 regulates the apoptosis, proliferation, and tube formation
of human umbilical vein endothelial cells (HUVECs) (133).
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TABLE 1 | Exosomal lncRNAs in lung cancer.

LncRNAs Exosome function Origin of exosomes Sample collection Recipient cells References

H19 Promotes gefitinib/erlotinib
resistance

HCC827, HCC4006, A549 Blood, culture medium Non-small cell lung cancer (145, 146)

GAS5 Biomarker NSCLC cells Blood / (77)

GAS5 Promotes tumor angiogenesis Lung cancer cells Culture medium Human umbilical vein endothelial cells (133)

MALAT 1 Promotes cell proliferation and
migration

NSCLC cells Blood A549, H1299 (25)

RP11-838N2.4 Promotes erlotinib resistance NSCLC cells Blood HCC827, HCC4006 (147)

DLX6-AS1 Biomarker NSCLC cells Blood / (154)

/ Regulate silicosis Lung tissue of silica-exposed rats / / (155)

RP11-397D12.4,
AC007403.1, and
ERICH1-AS1

Biomarker NSCLC cells Blood / (156)

SOX2-OT Biomarker LUSC cells Blood / (157)

/ Changes microenvironment A549 cells Culture media Mesenchymal stem cells (122)

HOTAIR Promotes cell proliferation,
migration, and invasion

Lung cancer cells Blood A549 and H1299 (138)

MSTRG.292666.16 Promotes osimertinib
resistance

NSCLC cells, H1975 cells Blood H1975 cells (148)

MRPL23-AS1 Creates a premetastatic
microenvironment

SACC cells Culture medium HPMECs (139)

UCA1 Promotes gefitinib resistance NSCLC cells, HCC827, PC9 Blood, culture media HCC827, PC9 (149)

UFC1 Promotes cell proliferation,
migration, and invasion

NSCLC cells Blood, culture media A549, H1299 (158)

“/” represent not explicit or mentioned; NSCLC, non-small cell lung cancer; LUSC, lung squamous cell carcinoma; SACC, salivary adenoid cystic carcinoma;
HCC827/HCC4006/H1975/A549/H1299/PC9, lung cancer cell lines; HPMECs, human pulmonary microvascular endothelial cells.

Located on the cytogenetic band 12q13.13, homeobox transcript
antisense intergenic RNA (HOTAIR) gene has five transcripts,
which are all identified as lncRNAs. The expression level of
HOTAIR was significantly increased in patients with (chronic
obstructive pulmonary disease) COPD or lung cancer, especially
in patients with advanced stage of the tumor (134, 135). Exosomal
HOTAIR was first identified from serum of patients with
glioblastoma multiforme (136), and then it was found to be highly
expressed in bronchoalveolar lavage (BAL) of smokers, NSCLC,
and healthy patients (137). NSCLC cell-derived exosomal
HOTAIR promoted cancer cell proliferation, migration, and
invasion by sequestrating miRNA-203 (138). Unlike the above
lncRNAs, exosomal MRPL23 antisense RNA 1 (MRPL23-
AS1) derived from salivary adenoid cystic carcinoma (SACC),
which increased microvascular permeability and promoted the
metastasis of SACC to the lungs (139). Figure 3 shows that
exosomal lncRNAs secreted by lung cancer cells are transmitted
to target cells, which could regulate metastasis, immune response,
EMT, and cancer-associated fibroblasts.

EXOSOME-DERIVED LncRNAs IN LUNG
CANCER DRUG RESISTANCE

Despite a variety of new antitumor drugs appearing every
year, the cure rate and 5-year survival rate for lung cancer
patients are still far from ideal. One important reason
is that tumor cells quickly develop resistance once they
are repeatedly exposed to the drugs. The latest research

demonstrated that lncRNAs play an important role in lung cancer
drug resistance. Colon cancer-associated transcript-1 (CCAT1)
effectively sponged for miR-130a-3p and contributed to cisplatin
resistance in NSCLC cells by targeting sex-determining region
Y-box 4 (SOX4) (140). The deletion of lncRNA X inactivate-
specific transcript (XIST) increased cisplatin chemosensitivity of
NSCLC cells by inhibition of ATG7-mediated autophagy (141).
Nuclear paraspeckle assembly transcript 1 (NEAT1) promoted
paclitaxel resistance of NSCLC cells through enhancing caspase-3
expression and activating Akt/mTOR pathway (142).

The recent emerging exosome-derived lncRNAs are also
important reasons for tumor cells acquiring drug resistance.
Exosomal lncRNA activated in RCC with sunitinib resistance
(lncARSR) was delivered to renal cell carcinoma to promote
sunitinib resistance through sponging miR-34/miR-449, which
further enhanced AXL and c-MET expression (15). A similar
research was conducted that androgen-regulated transcript 1
(PART1) derived from exosomes facilitated gefitinib resistance
via increasing Bcl-2 expression by competitively binding to
miR-129 in ESCC cells (143). Exosomes separated from
temozolomide-resistant glioblastoma (GBM) cells were full of
SET-binding factor 2 (SBF2) antisense RNA1 (SBF2-AS1), which
was the key factor to lead sensitive GBM cells turning to
temozolomide (TMZ) resistance (144).

So far, four exosome-derived lncRNAs are confirmed to
mediate drug resistance in lung cancer. One study finds that
NSCLC cells exposed to gefitinib increases the expression
of H19, which is delivered to other cells through exosomes
secreted by primary tumor. Furthermore, exosomal H19
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FIGURE 3 | A schematic of the function of exosomal lncRNAs in lung cancer.

disseminates gefitinib resistance by targeting gefitinib-sensitive
tumor cells (145). A similar study shows that H19 facilitates
erlotinib resistance in NSCLC via miR-615-3p/ATG7 axis
(146). Another exosome-mediated lncRNA in lung cancer
is RP11-838N2.4, which facilitates erlotinib resistance in
NSCLC (147). A series of experiments proved that exosomal
RP11-838N2.4 is secreted from NSCLC cells of erlotinib
resistance, and then transmitted to sensitive cells to promote
erlotinib resistance. The third lung cancer-derived exosomal
lncRNA is MSTRG.292666.16, which contributes to the acquired
osimertinib resistance of lung cancer cells through regulating
expression levels of miR-21, miR-125b, TGFβ, and ARF6
(148). The fourth exosomal lncRNA associated with drug

resistance in lung cancer is urothelial carcinoma-associated 1
(UCA1), which facilitates gefitinib resistance in NSCLC by
repressing miRNA-143 expression (149). These findings verify
the mechanisms of exosome-derived lncRNAs regulating target
therapy resistance and providing new insights for us to study drug
resistance in lung cancer.

PROSPECTS OF EXOSOME-DERIVED
LncRNAs

Through the above literature review, we find that exosome-
derived lncRNAs combine the advantages of exosomes and
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lncRNA characteristics, enabling lncRNAs to target distant cells
or organs through the circulatory system. On the one hand,
although many exosomal lncRNAs have been proven to be
diagnostic markers for cancer, tumor-specific lncRNAs are still
to be explored at present. Especially in the field of lung cancer
research, the mechanism of exosome-derived lncRNAs in tumor
progression is still in its infancy. On the other hand, the
modification of exosomes and lncRNAs through biotechnology
provides new ideas and insights for accurate evaluation of
tumorigenesis and effective intervention in tumor progression.
In addition, current studies have shown that lncRNA functions
are far more complex than we know, and they may encode
proteins (150, 151). Ahadi and colleagues found that there were
miRNA seed sequences in lncRNAs, such as miR-18a, miR-
93, and miR-106b (152). These exosome-derived lncRNAs also
contained RNA and protein binding sites. This new finds may
verify that exosomal lncRNAs are involved in tumorigenesis. The
emerging exosome-wrapped lncRNAs would be the expectable
method to cure lung cancer or at least detect lung cancer at its
early stage to improve survival rate.

Considering the targeted delivery function of exosomes,
cell biology, pharmaceutical science, and nanotechnology are
attracted to the new era of human-derived nanovesicles.
Aptamer-mediated drug delivery system is considered to be
a prominent therapeutic for nanodelivery (87). For example,
after fusing with anti-epithelial cell adhesion molecule cancer
(EpCAM), aptamer could carry transferrin/aptamer across
blood–brain barrier to cure brain diseases (153). Aptamer-
targeted exosomal delivery is the embodiment of the combination
of nanomedicine and exosome, which provide a much more
optimized targeted drug delivery systems compared with
traditional nanoparticle-based systems. With the help of
nanoengineering technology, exosome-derived lncRNAs could
be modified to carry a specific sequence or molecule that inhibits
cancer cells, which will achieve a real sense of precision treatment
for lung cancer.

CONCLUSION

In this review, we briefly summarize the functional characteristics
of exosomes and lncRNAs, expound the role of exosome-
derived lncRNAs in tumors, especially in lung cancer, and look

forward to the advantages of the combination of exosome-
derived lncRNAs with nanomedicine in achieving targeted
drug delivery and tumor precision treatment. At present, there
are relatively few studies about exosome-derived lncRNAs in
lung cancer, but more studies that can give us an in-depth
understanding of their regulatory mechanism are under way.
Although the functions of exosome-derived lncRNAs in tumors
are similar, the tumorigenesis and progression of any cancer has
its own unique rules and mechanisms. Currently, the mainstream
research direction of exosome-derived lncRNAs is that they can
be used as non-invasive tumor markers to diagnose tumors
and as major gene targets for antitumor therapy. However,
the pathophysiological mechanism of exosomal lncRNA in
tumors still needs to be further studied. Meanwhile, under
the current technical conditions, exosomal lncRNAs are still
difficult to use as biomarkers due to their small number in body
fluids and heterogeneity, which may cause false negatives or
positives in cancer diagnosis. In future studies, more specific
exosomal lncRNAs in different cancer should be discovered. With
the combination of nanoengineering and molecular biology,
exosome-mediated lncRNAs for precision nanomedicine will
provide novel methods for cancer diagnosis and therapy.
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