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Abstract

Background: The consensus emerging from the study of microbiomes is that they are far more complex than
previously thought, requiring better assemblies and increasingly deeper sequencing. However, current
metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the
sequence information generated for many microbiomes, negating this effort. This can especially bias the
information gathered and the perceived importance of the minor taxa in a microbiome.

Results: We propose a simple but effective approach, implemented in Python, to address this problem. Based on
an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the
sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large
datasets, by assembling random subsets of the whole in a “divide and conquer” manner.

Conclusions: We demonstrate the accuracy of Spherical using simulated data based on completely sequenced
genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published
metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in
the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical
workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed.
Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and
documentation is hosted publically at: https://github.com/thh32/Spherical.
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Background
Over the last 10 years, researchers have utilised high-
throughput sequencing to investigate the structure and
function of microbial communities from diverse environ-
ments across the globe [1–3]. While these studies have
provided unique and novel insights into the workings of
these microbiomes, there is a growing consensus that the
tools available are not describing the full functional or
taxonomic diversity that the data represents [4]. There is a
need for assemblers and workflows to be developed to
capture “lost” information and allow the generation of as-
semblies that represent the entire metagenome sampled.
Mathematically, de novo assembly of a genome falls

within the class of problems for which no efficient

algorithm is known (NP-hard) [5], leading to the pro-
posal of a variety of heuristic solutions [6–9]. These have
ranged from simple overlap layout consensus approaches
(where sequencing reads with overlapping regions are
joined together into contigs [5] to more complex ap-
proaches such as de Bruijn graphs [10]. Generally, these
assemblers have been designed assuming a single gen-
ome within the data. However, as sequencing approaches
for sampling the genomic information of entire micro-
bial communities (metagenomics) began to emerge [11],
it was clear that new approaches may be necessary [12].
By far the biggest issue with metagenomic sequencing

datasets is the resulting uneven coverage of the taxa
from the microbiome arising from the complexity and
uneven distribution of species in natural microbial com-
munities [4]. This leads to over-sequencing of dominant
species in the community and heavily fragmented as-
semblies of the genomes of minority species, if they can
be assembled at all [13].
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Promising solutions to dealing with this problem util-
ise a ‘divide and conquer’ approach to partition the data
into more easily manageable pieces [13]. For example,
the data from environmental samples can be split into
“bins” representing different taxa from the community
[14]. Sequence reads can be sorted into bins based on
properties such as kmer-frequency or the percentage of
Guanine and Cytosines (GC) they contain [15]. This has
the potential to increase the assembly rate of low abun-
dance species, however it depends heavily on accurate
partitioning of the data [16]. Indeed, bins of metage-
nomic data produced in this manner may represent a
single species or an entire phylum depending on the com-
plexity of the community [16]. SLICEMBLER [8] also im-
plements a ‘divide and conquer’ approach by generating
pre-determined “slices” of the metagenome based on
coverage. Each slice is then assembled separately and fre-
quently occurring strings are identified and used to merge
contigs. This works well for deeply sequenced genomic
datasets where coverage is known, however in metage-
nomics datasets from uncharacterised microbial communi-
ties, coverage is generally an unknown variable [17].
Previous attempts at utilising iterative binning for assembly
have been developed but are not publically available [18].
Digital normalization is another commonly utilized ap-

proach for tackling complex datasets. This method, im-
plemented in the Khmer package [19], uses kmers to
identify and reduce the occurrence of highly duplicated
portions of the data. This has the effect of reducing
coverage of over-represented taxa, and normalising the
coverage to make it more even [19]. However, while this
pre-processing step allows for reduction of the datasets
size, it does not reduce the complexity of the data [19]
leaving subsequent assemblies prone to the problem of
under-representing sections of the community.
We propose a simple but effective heuristic to address

this problem that can be used in conjunction with any of
the above-mentioned assembly approaches. Based on an
iterative approach, our workflow (called Spherical) identi-
fies the reads not accounted for in an assembly, and uses
them as input for successive rounds of assemblies. Spher-
ical also provides the option to minimize the resources re-
quired by assembling random subsets of the whole in a
“divide and conquer” manner. The inherent downside to
this approach is that by running multiple iterations of as-
sembly, the time requirements are also increased.

Methods
Implementation
Spherical workflow
Spherical uses an iterative workflow that identifies the
raw data not represented in an initial assembly. This is
then used as input for a subsequent assembly. This
process is repeated until a pre-defined cut-off is reached,

or until all the data is incorporated. The workflow is
summarised in Fig. 1.
The Spherical workflow is composed of 5 steps:

Step 1: Sub-sample selection
The first step in Spherical is the optional initial sub-
sampling of the sequencing data (Fig. 1.2). This can be
advantageous when working with very large datasets
as it reduces the complexity of the assembly, reducing
memory and time requirements. In this process a ran-
dom sub-sample (defined by the option ‘-R’) is taken
from the input sequencing data. Using a sub-sample
size of ‘1’ selects the entire input dataset instead. If
only one value is given to ‘-R’, then Spherical will apply
this sub-sample fraction at every iteration, however
the user also has the option of providing multiple
different values to be used at each iteration.

Step 2: Assembly
The sub-sample is then assembled using the assembler
of choice (Fig. 1.3). By default, Spherical uses either
Velvet [6] or ABySS [20] for assembly, it is easy to
extend Spherical to utilise other assemblers also.

Step 3: Alignment
When the assembly is completed, Spherical uses Bowtie
2 [21] to align all reads previously unaligned (in iteration
1, this is all the reads) to the contigs resulting from the
assembly. All reads that do not align to the assembly
produced at this iteration are saved for subsequent
rounds. If a read aligns to the assembly at this point, it is
considered utilised and hence excluded from the subse-
quent iterations. Specific commands can be passed to
Bowtie2 using the ‘-u’ command followed by the
commands, for example -u “-N 3 –k 2” would pass the
commands to Bowtie2 to set the maximum number of
mismatches in the seed to 3 and to look for at most 2
distinct valid alignments for each read.

Step 4: Assessment
The user can define two parameters to be used by
Spherical to determine the completeness of the assem-
bly. The first is based on the number of iterations
completed (‘-iter’). When Spherical has completed all
iterations defined by this value, it will halt and move
to Step 5. The second option is based on the propor-
tion of reads utilised by the total assembly (‘-align 0–
100’). This is calculated as the number of reads cur-
rently unaligned, divided by the total number of reads
initially provided, multiplied by 100. When Spherical
determines that the predetermined alignment rate has
been reached, it will halt carrying out iterations and
move to Step 5. The default options are 5 iterations or
an alignment rate of 70%. If neither criteria has been
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met, Spherical will pass all unaligned reads to step 1
for another iteration of assembly.

Step 5: Final output
Once any of the user-defined criteria for halting have
been met, Spherical will combine the assembly from
each iteration into a single file. Assembly statistics such
as N50, lengths of longest and shortest contigs, the
standard deviation of the lengths and the alignment rate
are calculated for each iteration and for the combined
assembly file. Using the ‘-m’ option merges the contig
files produced by each iteration into a single file for ease
of use. A final assembly which attempts to combine all
the contigs created, can be carried out by specifying the
‘-f ’ option.
To illustrate the outputs of the Spherical workflow, we car-

ried out assemblies of both simulated and real metagenomics
datasets. These are presented in the following sections.

Simulated metagenome
The simulated metagenome examined came from a
previous study [22]. This consisted of 400 species (1
genome per species) with abundances varying from
0.66% to 0.22%. This dataset was originally produced to
study the effect of sequencing technologies on the as-
sembly of metagenomic datasets. The Spherical assembly

of this dataset used Velvet with a kmer of 31 and sub-
sample size of 1 (the entire dataset).

Real metagenomic datasets
We also present the results from the application of
Spherical to three published metagenomic datasets:
chicken caecum [23]; human oral cavity [24] and
groundwater from the Yucatan peninsula (Table 1). All
three metagenomic datasets were obtained from MG-
RAST [25]. The Chicken cecum dataset was selected
due to having a low sequencing depth and therefore
allowing comparison of assembly methods on a small
dataset [23]. The human oral cavity dataset was selected
due to being a complex microbiome and providing mod-
erate sequencing depth [24]. The Yucatan groundwater
dataset was selected due to containing a complex micro-
biome and providing a high level of sequencing depth.

Table 1 Information on each metagenomics dataset tested
using Spherical

Environment Dataset size (Gbp) MGRAST project ID

Chicken Caecum [22] 0.06 101

Human oral cavity [23] 0.63 128

Yucatan groundwater 29.00 5969

For each metagenomic dataset the table states the source environment, the
datasets size in Giga base pairs (Gbp) and its MGRAST project ID

Fig. 1 A flow-chart of the steps used by Spherical. The blue circle encompasses all processes that are carried out in an iterative manner until the
results meet the ‘user defined criteria’. The ‘user defined criteria’ is defined as any user option which indicates a point at which Spherical should
stop iterating. The arrows width indicates the possible decrease in file size depending on user sub-sample selection. 1; User input data (usually
quality controlled sequencing files). 2; Spherical takes a random subset of the input sequencing data. The size of the subset is determined by user.
3; An assembly of the subset is generated. 4; The number of reads aligning to the combined assembly are determined. 5; If the number of reads
aligning meets the user criteria Spherical will move to step 7, otherwise Spherical will continue to step 6. 6; Reads that do not align to the
combined assembly are used as input for the next round. 7; Spherical exits and combines the individual iterations assemblies into a single file
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Methods of assembly
To ensure consistency, Velvet was used to assemble each
of the above datasets. Initially, an optimal kmer size was
determined for each datasets by carrying out multiple
initial assemblies using the entire dataset with kmer sizes
of 21,31,41 and 51. Alignments of the raw reads to each
of these initial assemblies was then carried out using
Bowtie2 (with options: -N 1) and the number of reads
aligning determined. For each dataset, the kmer size that
resulted in the largest fraction of reads aligning was used
as the optimal kmer for all further assemblies of that
dataset (Additional file 1: Table S1).
Following determination of the optimal kmer size,

each of the datasets were assembled using three ap-
proaches: 1) An assembly using only velvet; (basic as-
sembly); 2) Initial digital normalization of the reads
using Khmer, followed by an assembly with Velvet (Nor-
malized assembly); and 3) Assembly with the Spherical
workflow, using Velvet as the assembler (Spherical As-
sembly). These were conducted with the entire dataset
(sub-set = 1).
The settings used with Velvet were the same for all

three approaches using the kmer sizes determined earlier
and the ‘-exp_cov auto’ option to allow Velvet to calcu-
late the expected coverage. Meta-Velvet is a metage-
nomic assembler, which acts as a final step in standard
Velvet assembly and so was initially investigated using the
‘meta-velvetg’ command on the output from Velvet. The
options for running Spherical on each dataset are shown
in Additional file 1 Table S5. Each assembly ran for 5 iter-
ations apart from the chicken caecum dataset for which
an optimal assembly was achieved following iteration 2.

Digital normalisation was included as a comparative ap-
proach due to its ability to reduce the size of a dataset by
removal of reads consisting of redundant kmers, while
keeping the datasets original complexity by retaining reads
including unique kmers [19]. Digital normalization was
applied using the “normalize-by-median.py” script of
Khmer, with a kmer of 20, 4 hash tables of size 32e9 and
an ideal median of 20, as suggested by the Khmer manual.
The amount of RAM necessary to carry out an assembly

is a limiting factor for many large metagenomics assem-
blies, requiring workarounds, such as kmer normalization.
For this reason the amount of RAM utilised during each
assembly was monitored (Table 2).

Assembly quality
We used a simulated metagenomic dataset generated
from 400 genomes [22] to assess the quality of the de
novo assemblies. Contig scores [22] were calculated by
identifying the highest scoring (bitscore) match to each
contig in the 400 genomes using BLASTN [26]. The for-
mula: coverage percentage

100 � percentage identity was used to
calculate the contig score ranging from 0 to 100. A con-
tig score of 100 indicates the entire contig precisely
matches a region from the original genome and 0 means
there was no matching region [22].
Contig scores cannot be calculated for real metage-

nomic assemblies due to requirement for a having an as-
sembled genomes for comparison. Instead, for these
datasets standard assembly statistics were calculated to
provide insight in the quality of each assembly; align-
ment rate (defined as the percentage of sequenced reads

Table 2 Assembly statistics comparing dataset assemblies for each method

Dataset Method RAM usage (Gb) Alignment (%) False bases (%) Longest contig Number of contigs

Cecum Normalised 119 29.5 0.01 831 103,618

Base assembly 1 29.5 0.01 831 103,618

Metavelvet 2 29.1 0.07 831 103,618

Spherical (1) 2 30.9 0.04 831 138,995

Oral Normalised 14 8.1 0.01 3337 1,825,177

Base assembly 25 13.0 0.02 4548 1,178,611

Metavelvet 15 13.0 0.07 4548 1,178,611

Spherical (1) 5 24.6 0.19 2380 1,053,802

Ground water Normalised 361 52.8 3.86 117,274 5,721,819

Base assembly 376 52.0 3.84 117,274 5,772,465

Metavelvet 376 52.0 4.04 117,274 5,772,461

Spherical (1) 377 59.7 2.89 117,274 13,312,643

Spherical (0.25) 129 51.5 3.50 104,353 7,851,021

Spherical (0.033) 107 49.8 3.78 53,836 7,145,998

The first column indicates the dataset utilized whilst the second column identified the assembly methodology. To identify the different subsampling amounts
during each Spherical assembly the subsample size is stated in brackets in the method column. The final 5 columns provide information on the computational
needs for each assembly (RAM usage) as well as statistics about the produced assemblies e.g. number of contigs and alignment (%)
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which align to the assembly), N50 (defined as the contig
length where 50% of the entire assembly is contained in
contigs of equal or longer length the N50 value) and
“false base rate” (defined as the percentage of bases in
the assembly to which no read aligns). To calculate the
“false base rate” the raw data from each dataset was
aligned to each of its subsequent assemblies using Bow-
tie2 [21] with the option “-n 1”, which allows for a single
mismatch in the seed region.

Taxonomic identification
For all assemblies the best taxonomic matches for each
contig was identified from the Bacterial and Archaeal
subsets of the UNIPROT database (downloaded 10/
2014) using RAPsearch (with settings: bitscore > = 40)
[27, 28]. All hits found in the database were converted
into a general feature format (GFF) file using the
“blast2gff” command in MGKIT (http://mgkit.readthe-
docs.io/en/latest/) and subsequently filtered for the top
non-overlapping hits with the “filter-gff” command (set-
tings; −s 100) from MGKIT. This has the effect of result-
ing in a single best taxonomic match for each contig.
The HTSeq-count (settings; −m intersection-nonempty)
command from the HTSeq package [29] was used to
identify the number of reads assigned to phyla within
each assembly.

Sub-sampling data with Spherical
Spherical allows a user to specify a subset of data to be
used for each round of assembly. This is useful for the
analysis of very large metagenomic datasets when RAM
usage or length of time of the analysis can become is-
sues. To demonstrate this we carried out 3 different as-
semblies with different sub-sampling sizes on the largest
metagenomic dataset analysed (from the Yucatan Penin-
sula). 1) Using all the reads (sub-sample size = 1), 2) A
random subsample of a quarter of all the reads (sub-
sample size = 0.25) and 3) A random subsample of one
thirtieth of the reads (set-sample size = 0.033). Each as-
sembly was allowed to run for five iterations (where the
same subsample size was utilised in each iteration) with
the following settings: –k 41 –align 99 –iter 5. These as-
semblies were compared using their alignment rate,
RAM usage, N50, false base rate and longest contig size.

Effect of multiple iterations of assembly
The biodiversity within each iteration of assembly was
identified and assessed for the caecum, oral and Yucatan
groundwater datasets. To test if each iteration from a
single dataset returned similar taxonomic profiles, a
Chi-square test for homogeneity was conducted. A Z-
test was then conducted between iterations which exhib-
ited significant changes in their taxonomic profiles in
order to identify which specific taxonomic groups

altered in abundance. The p-values were then corrected
using the Benjamani-Hochberg method.

Results
Quality analysis of resulting assemblies
We used a simulated metagenomic dataset [22] created
from 400 species of varying abundance to investigate the
accuracy of contigs produced by the Spherical workflow.
For each assembled contig, within each iteration, a ‘con-
tig score’ [22] was calculated which represents the accur-
acy of the reconstruction. We found that over 90% of
the contigs reconstructed by Spherical had a contig
score > = 95, representing that they were 95% identical
to the original genome from which the reads were pro-
duced. Furthermore, fewer than 1% of the contigs had a
score less than 50 (see Additional file 1: Table S3). The
secondary iterations carried out also allowed alignment
of an additional 5.25% of the raw reads compared to the
base assembly. The proportion (%) of reads assigned to
each genome within the dataset, base assembly and
Spherical assembly are provided in Additional file 1:
Table S4.

Capture of additional information
The smallest of the microbiome datasets analysed
(0.06Gbp from the Chicken Caecum) resulted in 29.5%,
29.5%, 30.9% alignment rate for the base, normalized
and Spherical assembly respectively (Table 2). While
alignment rates were very similar for the three assembly
approaches used Spherical utilised 1.4% more of the raw
reads than the other approaches but at the cost of
slightly lowering the N50 (from 109 to 104) and increas-
ing the false base rate (from 0.01% to 0.04%).
The medium-sized human oral cavity dataset (0.63

Gbp), resulted in greater variability in how the different
assembly approaches performed. Spherical increased the
alignment rate (from 13% to 24.6%) and N50 (from 190 to
234) compared to the next best approach (base assembly)
(Table 2). However, the false base rate also increased
slightly (from 0.02% to 0.19%) indicating the Spherical as-
sembly was including a small number of bases without
evidence supporting their inclusion from the raw reads.
Finally, for the largest datasets analysed (29 Gbp from

Yucatan groundwater), Spherical resulted in an
increased alignment rate (from 52.8% to 59.7%) and a
decreased false base rate (from 3.86% to 2.89%). How-
ever, the N50 was reduced (from 330 to 211) in com-
parison to the normalised assembly. Within these
datasets Meta-velvet continually produces assemblies
with an increased number of false bases and was unable
to outperform the base assembly, therefore meta-velvet
was not investigated further.
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Sub-sampling the sequencing data
The effect of altering the sub-sample size was tested on
the largest of the metagenomics datasets (Yucatan
groundwater). As shown in Additional file 1: Table S5, the

change in sub-sample size caused a small reduction in the
quality of the resulting assembly; decreasing the false base
rate from 3.86% to 3.78%, reducing the N50 from 330 to
189 and slightly reducing the alignment rate from 52.8%

a

b
c c c

a

b

c

d e

a

b

c

Fig. 2 Taxonomic breakdown of each iteration for the chicken ceacum (a), human oral cavity (b) and Yucatan groundwater Spherical (sub-sample
size = 1) (c) assemblies at the class level. Each bar represents the number of reads that could be assigned to a taxonomic Class within the
assembly from each iteration. The colours represent different taxonomic Classes identified in the legend on the right. The letters represent the
results of the significance tests where bars with the same letter are not significantly different according to the Chi2 test for homogeneity
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to 49.8% when compared to the base assembly. However,
the taxonomic profile estimated from the resulting assem-
blies remained unchanged (Additional file 1: Figure S1).
The effect of random sampling of reads for each iteration
was investigated by assembling the Oral dataset 5 times
with the same options (5 iterations, kmer = 31, subset size
= 5). The alignment rate of both the final assemblies and
individual iterations showed no variation (±0.0%) across
the 5 runs.

Multiple iterations of assembly
The secondary iterations in Spherical utilise previously
unaligned sequencing information to assemble new gen-
omic regions, creating more contigs for analysis (Fig. 2).
The Spherical assemblies also had an increased number of
reads aligning to annotated genes (11%, 109% and 43% in
the chicken caecum, human oral and Yucatan ground-
water dataset respectively (Additional file 1: Table S6)).
Whilst the taxonomic profile for the chicken caecum

was consistent between iterations (Fig. 2a), we observed
a significant change in between iterations both in the
human oral (Fig. 2b) and Yucatan groundwater datasets
(P < 0.05, Chi2 test for homogeneity) (Fig. 2c). The taxo-
nomic profiles of each iteration of assembly for the
Yucatan groundwater dataset was unique (Fig. 2c), sug-
gesting novel genomic regions were being included
within each iteration, increasing the accuracy of the final
taxonomic composition. A two-proportion Z-test (Benja-
mini-Hochberg corrected) was then used to identify
which taxonomic groups showed a change in abundance
in the secondary iterations compared to the base assem-
bly. The inclusion of the additional genomic regions
Spherical assembled in the secondary iterations caused a
significant change in the taxonomic profile of each data-
set compared to both the base assembly and Digital nor-
malisation (Additional file 1: Figure S1).

Discussion
We investigated the quality of the assemblies from
Spherical using a simulated metagenome and confirmed
accurate assembly of genomic regions without a de-
crease in quality (Additional file 1: Table S3). Further-
more with real metagenomic datasets the secondary
iterations resulted in up to 109% more reads aligning
to annotated genes compared to the base assembly
(Additional file 1: Table S6). This resulted in signifi-
cant changes in the overall taxonomic profile pre-
dicted for both the human oral cavity (P < 0.05) and
Yucatan groundwater metagenomes (P < 0.05). Unsur-
prisingly, the contigs from the subsequent iterations
of assembly were more fragmented, resulting in a
lower N50, however they represented information that
would otherwise have been missed if a single round
of de novo assembly had been used.

The sub-sampling option of Spherical results in a re-
duction of up to 70% in the RAM required to assemble
the metagenomes with only a small reduction in align-
ment rate compared to the base assembly (Table 2). This
will be attractive to research groups who lack access to
sufficient computational facilities to carry out assemblies
of complex metagenomes in single step. The inherent
downside to this approach is that by running multiple it-
erations of assembly, the time requirements are also
increased.

Conclusion
Spherical is a workflow that allows the capture and use
of data that might otherwise be missed in a metagenomics
dataset assembly. It allows the construction of high quality
assemblies of metagenomics datasets without restricting
users to particular tools or assembly approaches. Imple-
mented in Python it is simple to use and freely available to
the scientific community under an MIT license. If applied
to novel or previously published datasets it provides the
opportunity to reveal novel biological information that
may otherwise have been missed.

Additional file

Additional file 1: Table S1. Effect of kmer size on assembly. For each
dataset (column 1) the alignment rate (%) (column 3) of raw data
aligning back to assembly produced using different kmers (column 2)
was assessed. Table S2. Effect of kmer size across iterations of assembly
using the simulated dataset. The percentage of raw data aligning to each
iterations assembly was identified and iterations stopped once the
alignment rate was under 0.1%. Table S3. Analysis of the quality of
contigs produced in each iteration of assembling the simulated dataset
using contig scores. The contig score identifies the percentage accuracy
of a contig compared to the genomes used to create the simulated
metagenome. We present the percentage of contigs from each iterations
assembly with contig scores gereater than 95 or less than 50. Table
S4. Percentage of reads assigned to each of the 400 genomes within the
simulated dataset, base assembly and Spherical assembly of the
simulated dataset. Table S5. Assembly statistics comparing dataset
assemblies for each method. The first column indicates the dataset
utilized whilst the second column identified the assembly methodology.
Due to Spherical having a sub-sampling option the size of the sample
utilized by Spherical was stated for each assembly in column 5. The final
6 columns provide information on the computational needs for each
assembly (RAM usage) as well as statistics about the produced assemblies
e.g. number of contigs and alignment (%). Table S6. The number of
reads aligning to genes within the Spherical iterations assembling each
dataset. Figure S1. The taxonomic variations at the phylum level
between each experimental assembly method for each dataset. Each bar
represents the number of reads that could be assigned to a taxonomic
Phyla within each assembly method for the datasets. The legend identifies
which Phyla is represented by each colour. (ZIP 562 kb)
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