
ORIGINAL RESEARCH
published: 22 March 2022

doi: 10.3389/fsurg.2022.836080

Frontiers in Surgery | www.frontiersin.org 1 March 2022 | Volume 9 | Article 836080

Edited by:

Bianca Galateanu,

University of Bucharest, Romania

Reviewed by:

Xinwei Han,

Zhengzhou University, China

Hui Wang,

The Sixth Affiliated Hospital of Sun

Yat-sen University, China

*Correspondence:

Feng Qi

qf20111@126.com

Specialty section:

This article was submitted to

Surgical Oncology,

a section of the journal

Frontiers in Surgery

Received: 15 December 2021

Accepted: 10 February 2022

Published: 22 March 2022

Citation:

Cai D, Zhao Z, Hu J, Dai X, Zhong G,

Gong J and Qi F (2022) Identification

of the Tumor Immune

Microenvironment and Therapeutic

Biomarkers by a Novel Molecular

Subtype Based on Aging-Related

Genes in Hepatocellular Carcinoma.

Front. Surg. 9:836080.

doi: 10.3389/fsurg.2022.836080

Identification of the Tumor Immune
Microenvironment and Therapeutic
Biomarkers by a Novel Molecular
Subtype Based on Aging-Related
Genes in Hepatocellular Carcinoma
Dong Cai, Zhibo Zhao, Jiejun Hu, Xin Dai, Guochao Zhong, Jianping Gong and Feng Qi*

Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent malignant

tumors with poor prognosis. Increasing evidence has revealed that immune cells and

checkpoints in the tumor microenvironment (TME) and aging are associated with the

prognosis of HCC. However, the association between aging and the tumor immune

microenvironment (TIME) in HCC is still unclear.

Methods: RNA expression profiles and clinical data concerning HCC were downloaded

from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

databases. Based on differentially expressed aging-related genes (DEAGs), unsupervised

clustering was used to identify a novel molecular subtype in HCC. The features of immune

cell infiltration and checkpoints were further explored through CIBERSORTx. Enrichment

analysis and both univariate and multivariate Cox analyses were conducted to construct

a 3-gene model for predicting prognosis and chemosensitivity. Finally, the mRNA and

protein expression levels of the 3 genes were verified in HCC and other cancers through

database searches and experiments.

Results: Eleven differentially expressed AGs (GHR, APOC3, FOXM1, PON1, TOP2A,

FEN1, HELLS, BUB1B, PPARGC1A, PRKDC, and H2AFX) correlated with the prognosis

of HCC were used to divide HCC into two subtypes in which the prognosis was different.

In cluster 2, which had a poorer prognosis, the infiltration of naive B cells and monocytes

was lower in the TCGA and GEO cohorts, while the infiltration of M0 macrophages was

higher. In addition, the TCGA cohort indicated that the microenvironment of cluster 2 had

more immunosuppression through immune checkpoints. Enrichment analysis suggested

that the MYC and E2F targets were positively associated with cluster 2 in the TCGA and

GEO cohorts. Additionally, 3 genes (HMGCS2, SLC22A1, and G6PD) were screened to

construct the prognostic model through univariate/multivariate Cox analysis. Then, the

model was validated through the TCGA validation set and GEO dataset (GSE54236).

Cox analysis indicated that the risk score was an independent prognostic factor and

that patients in the high-risk group were sensitive to multiple targeted drugs (sorafenib,

gemcitabine, rapamycin, etc.). Finally, significantly differential expression of the 3 genes

was detected across cancers.
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Conclusion: We systematically described the immune differences in the TME between

the molecular subtypes based on AGs and constructed a novel three-gene signature to

predict prognosis and chemosensitivity in patients with HCC.

Keywords: hepatocellular carcinoma (HCC), immune cells, immune checkpoints, tumor immunemicroenvironment

(TIME), aging, therapeutic biomarkers

INTRODUCTION

The morbidity of hepatocellular carcinoma (HCC) ranks sixth
among all cancers, and the mortality of HCC ranks second
(1). Currently, HCC therapies include hepatic resection, liver
transplantation, transarterial chemoembolization, ablation, and
targeted therapies (2). Unfortunately, these therapies are not
always satisfactory due to the high malignancy or heterogeneity
of HCC in some patients (3, 4). Thus, there is an urgent need to
screen new biomarkers of HCC to identify patients with high risk,
poor prognosis, and high mortality.

Aging is an essentially universal characteristic of living
organisms and is associated with the development of tumors,
including HCC (5–8). Cellular senescence plays a dual role
in the development of tumors, and its mechanisms in tumors
are extremely complex. The senescence-associated secretory
phenotype (SASP) contributes to this phenomenon, whichmeans
that senescent cells can secrete a variety of cytokines, chemokines,
growth factors, and proteases to promote or inhibit tumor
growth by enforcing arrest or regulating immune clearance
(9). For example, oncogene activation in mammalian cells
results in proliferative stress and senescence induction that
limits tumor growth, which is also called oncogene-induced
senescence (OIS) (10). Braig et al. found that the overexpression
of RAS without additional oncogenes and tumor suppressors
works as a barrier to block tumor growth in vivo (11).
Interestingly, some senescent cells can secrete factors that
create an immunosuppressive environment to promote tumor
growth, and Toso et al. found that SASP factors produced
by senescent prostate cells were immune-suppressive cytokines,
such as CXCL2 and GMCSF, which are typically activated by
signal transducer and activator of transcription 3 (STAT3) (12).
In addition, the tumor microenvironment (TME) is one of the
crucial factors of tumor growth, which establishes a niche for
cancer cells, multiple stromal cells (endothelial cells, immune
cells, etc.), and extracellular components (extracellular matrix,
cytokines, growth factors, etc.) (13). Indeed, some studies have
shown that the SASP of senescent cells contributes to the TME by
cytokines (IL-6, CCL2, CCL5, etc.) (14–16). Kang et al. found that
senescent cells stimulated the strong response of CD4+ T cells
in the liver of mice with activated Ras expression (17). Aging-
related genes (AGs) can regulate cellular senescence and play
a key role in tumor malignancy (7, 18). Due to the dual role
of cellular senescence and tumor heterogeneity, it is necessary
to explore new biomarkers and molecular mechanisms of aging
to better assess prognosis in different HCC patients. Moreover,
there is still a lack of effective prognostic models based on AGs
to systematically explore the intrinsic molecular differences and
TME in HCC.

Thus, the present study divided HCC patients into different
subtypes based on survival-associated AGs. Subsequently, we
systematically described the differences in clinical characteristics,
immune cells in the TME, immune checkpoints, gene expression,
and their potential biological functions between different
subtypes. Then, we identified 3 survival-associated genes
(HMGCS2, SLC22A1, and G6PD) between subtypes to construct
a new prognostic model in HCC. Finally, we explored the
correlation between the 3 genes and immune cells in the TME
and their expression in HCC and multiple cancers. Our study
systematically described the differences between subtypes based
on AGs and revealed underlying implications as biomarkers for
predicting the clinical prognosis of HCC patients.

MATERIALS AND METHODS

Data Downloading and Preprocessing
RNA sequencing data [count and fragments per kilobase
million (FPKM) data] and clinical follow-up information for
liver hepatocellular carcinoma (LIHC) were obtained from The
Cancer Genome Atlas (TCGA) database. The GSE14520 and
GSE54236 chip datasets containing survival time information
were downloaded from the Gene Expression Omnibus (GEO)
database. AGs were acquired from the human aging genome
resource dataset [http://genomics.senescence.info/genes/ (19)].

The TCGA-LIHC RNA sequencing and GEO data were
preprocessed as follows: (1) the samples with no clinical features
[including sex, age, and tumor node metastasis (TNM) staging]
information were removed; (2) the samples with no survival
time information were removed; and (3) the samples with no
status information were removed. We ultimately obtained 341
TCGA-LIHC patients and 219 (GSE14520) and 81 (GSE54236)
HCC patients.

Then, we used R to randomly divide TCGA-LIHC patients (n
= 340) into the training set (n = 170), and the validation set (n
= 170) according to the training set-to-validation set ratio of 1:1.
Then, the FPKM value from TCGA was converted into the TPM
value through R for subsequent analysis.

Identification of Differentially Expressed
Genes
The differentially expressed genes (DEGs) between tumor and
non-tumor samples were calculated by using the limma package
in R and filtered according to the threshold | log2 [fold change
(FC)] | ≥ 1 and adjusted p < 0.05. Then, an online Venn
diagram website (http://bioinformatics.psb.ugent.be/webtools/
Venn/) was used to determine the intersecting genes.
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Identification of Molecular Subtypes
The expression levels of 34 differentially expressed AGs and
clinical information were extracted from the TCGA training
set and GEO (GSE14520) dataset. Univariate Cox analysis was
used to identify the survival-associated AGs in the TCGA
training set and the GEO (GSE14520) dataset according to the
standard of p < 0.05. Then, 11 genes were obtained by the
intersection of the TCGA training set and GEO (GSE14520)
dataset. The ConsensusClusterPlus package of R was used to
cluster the samples consistently according to the above 11
genes (parameters: reps = 50, pItem = 0.8, pFeature = 1,
distance= Pearson).

Estimating the Compositions of Immune
Cells
CIBERSORT employs a deconvolution algorithm based on the
principle of linear support vector regression used to describe
the infiltration of immune cells in the sample (20). LM22 is
composed of 547 genes that accurately distinguish 22 human
hematopoietic cell phenotypes, such as seven T cell types, naive
and memory B cells, plasma cells, natural killer (NK) cells, and
myeloid subsets (20). CIBERSORT is a popular algorithm that
was extensively utilized inmedical studies (21–24). CIBERSORTx
was used to estimate the compositions of 22 human immune cell
types in the TCGA training set and GEO (GSE14520) dataset. For
each sample, the sum of all estimated immune cell type scores was
equal to 1.

Enrichment Analyses and Construction of
the Protein–Protein Interactions Network
The results of the gene set enrichment analysis (GSEA) were
obtained through GSEA software (V4.1.0). The results of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional enrichment analyses were acquired through
the DAVID database (V6.8).

We employed the search tool for recurring instances of
neighbouring genes (STRING) database (V11.5) with validated
and conjectural protein–protein interactions (PPIs) to obtain
the corresponding PPI network. Subsequently, the MCODE
clustering algorithm in Cytoscape (V3.7) was used for subnet
screening (K-core ≥ 7, node score cutoff = 0.2, degree cutoff =

2, and max depth= 100) (25–27).

Construction and Verification of the
Prognostic Risk Model
Univariate and multivariate Cox proportional hazard regression
analyses were carried out using SPSS (V20) to identify the
final signatures for the risk model, and p < 0.05 was selected
as the threshold value. A multigene prognostic risk score was
established based on a combination of regression coefficients
from the multivariate Cox regression model (β) multiplied by
their mRNA expression levels. Risk score = β x expression
of G6PD + β x expression of HMGCS2 + β x expression of
SLC22A1. The median was used as a cutoff value to divide
HCC patients into high- and low-risk groups. The Kaplan–Meier

(KM) survival curves and time-dependent receiver operating
characteristic (ROC) curve analyses were performed to assess the
predictive capacity of the model.

Gene Expression Validation in HCC and
Pancancer
We compared the mRNA or protein expression levels of the
two genes in HCC and normal tissues via Gene Expression
Profiling Interactive Analysis (GEPIA) and the Human Protein
Atlas (HPA), respectively. Then, we performed western blotting
to further verify the protein expression of 3 genes with
anti-G6PD (ab210702), anti-HMGCS2 (ab137043), and anti-
SLA22A1 (ab181022) antibodies (Abcam). Finally, we obtained
themRNA expression levels of the 3 genes across cancers through
the GEPIA database.

RESULTS

Construction of Molecular Subtyping
Based on AGs and Comparison of Clinical
Features Between Subtypes
We drew a methodology flow chart to make the research easier
for readers to understand (Figure 1); the clinical information
for the all datasets is presented in Table 1. First, we identified
6,787 and 1,096 DEGs based on TCGA (training set) and
GEO (GSE14520) databases, respectively. Then, we identified 34
differentially expressed aging-related genes (DEAGs) through the
intersection of 6,781 DEGs from TCGA (the training set), 1096
DEGs (GSE14520) from GEO, and 307 AGs (Figures 2A–C). By
performing univariate Cox analysis of the TCGA (the training
set) and GEO (GSE14520) datasets, we ultimately identified 11
DEAGs (GHR, FOXM1, PON1, TOP2A, FEN1, HELLS, BUB1B,
PPARGC1A, PRKDC, andH2AFX) correlated with the prognosis
of patients with HCC (P < 0.05) for subsequent determination of
the molecular subtypes of HCC (Supplementary Table 1).

Consistent cluster analysis was performed and indicated
that the samples of the TCGA training set and GEO
(GSE14520) dataset could be clustered at k = 2 based on
the expression profiles of the above 11 DEAGs (Figures 2D,E,
Supplementary Figure 1). KM curves indicated that patients in
C2 (cluster 1) had a worse prognosis than patients in C1 (cluster
2) for the TCGA training set (p = 0.0031, Figure 2F). Moreover,
patients in C2 (cluster 2) had a worse prognosis than patients in
C1 (cluster 1) for the GEO dataset (p= 0.0084, Figure 2G).

Furthermore, we compared the distributions of different
clinical features between the C1 and C2 subtypes and found that
there was no significant difference in age or sex between the
C1 and C2 subtypes for the TCGA training and GEO datasets
(Figures 2H–J). Notably, we found that there were significantly
more patients with stage III–IV disease in the C2 subtype
(p = 0.002) for the GEO dataset and a similar trend in the
TCGA training set, although the difference was not statistically
significant (Figure 2K). These results showed that patients in
the C2 subtype of the TCGA training set and GEO dataset had
worse prognoses.
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FIGURE 1 | Flowchart of the overall study.

Comparison of Immune Cell Infiltration and
Immune Checkpoints Between Subtypes in
the TME
To further explain the differences in prognoses between subtypes,
we explored the compositions of immune cells and the expression
of immune checkpoints in the TME between subtypes. First, we
used CIBERSORTx to obtain the compositions of 22 immune
cell types in the TME (Supplementary Figures 2A,B). Then,
we found that the compositions of naive B cells, monocytes,
resting NK cells, M0 macrophages, and M1 macrophages were
significantly different between the two subtypes in the TCGA
training set (Figure 3A). Similarly, the compositions of naive

B cells, monocytes, naive CD4+ T cells, gamma delta T cells,
M0 macrophages, and resting and activated mast cells were
significantly different between the two subtypes in the GEO
dataset (Figure 3B).

To determine underlying molecular hallmarks leading to poor

prognosis in the TCGA training set and GEO data set. Firstly, the

median was used as the cutoff value and KManalysis of 3 immune

cell types (naive B cells, monocytes, and M0 macrophages)

indicated that naive B cells and M0 macrophages played the

more important roles in the prognosis of HCC (Figures 3C,D,

Supplementary Figures 2C,D). Furthermore, the expression of
immune checkpoints was compared between the two subtypes.
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TABLE 1 | Clinical information of HCC patients.

Clinical

features

TCGA GSE14520

(n = 219)

GSE54236

(n = 81)
The training set

(n = 170)

The validation set

(n = 170)

Gender

Male 117 (0.69) 116 (0.68) 189 (0.86) 64 (0.79)

Female 53 (0.31) 54 (0.32) 30 (0.14) 17 (0.21)

Age

≥65 67 (0.39) 65 (0.38) 24 (0.11) –

<65 103 (0.61) 105 (0.62) 195 (0.89) –

TNM stage

I 87 (0.51) 82 (0.48) 93 (0.43) –

II 44 (0.26) 40 (0.24) 77 (0.35) –

III 37 (0.22) 46 (0.27) 49 (0.22) –

IV 2 (0.01) 2 (0.01) 0 (0) –

Status

Alive 112 (0.66) 113 (0.66) 135 (0.62) 0 (0)

Dead 58 (0.34) 57 (0.34) 84 (0.38) 81 (1)

The results indicated that the expression levels of PD-1, CTLA-
4, LAG-3, and TIM-3 were all markedly higher (p < 0.05)
in the C2 subtype in the TCGA training set. For the GEO
dataset, the expression levels of PD-1 were higher (p < 0.05)
in the C1 subtype, while there was no difference in the
expression of CTLA-4 and LAG-3 between the two subtypes
(Supplementary Figure 2E). Unfortunately, no expression of
TIGIT or TIM-3 was detected in GSE14520.

In addition, the GSEA indicated that E2F and MYC targets
were positively associated with poor prognostic subtypes in the
TCGA training set. Similarly, we obtained the same results in
the GSE14520 cohort (Figures 3E,F). More detailed GSEA results
can be found in Supplementary Figure 3. Taken together, these
results suggested that subtypes with poor prognoses in the TCGA
training set and GEO dataset had similar malignant hallmarks.

Identification of DEGs and Screening and
Functional Analysis of Hub Genes Between
Subtypes
To further explore the molecular differences between subtypes,
we used the limma package in R to identify the DEGs between the
C1 and C2 subtypes of the TCGA training set and GEO dataset.
Next, we obtained 199 DEGs for the subsequent enrichment
analysis through intersection of DEGs of the TCGA training set
and DEGs of the GEO dataset (Figure 4A). Interestingly, we also
found similar expression levels of these 199 DEGs in subtypes
with poor prognoses, and we showed the top 30 DEGs in the
TCGA training set and GEO dataset (Figures 4B,C).

Then, we constructed a PPI network through the STRING
database; the network had 198 nodes, 1,562 edges, and an
average node degree of 15.8 (Figure 4D). Furthermore, we
identified 3 subnets (Figure 4E, Supplementary Figure 4A)
of the PPI network through the MCODE clustering
algorithm and performed KEGG analysis on the four subnets

(Supplementary Figure 4B). Notably, the KEGG pathway
analysis results showed that the genes of subnet 3 were
significantly enriched in metabolic pathways, bile secretion,
retinol metabolism, the PPAR signaling pathway, and chemical
carcinogenesis (Figure 4F). Thus, we chose genes in subnet 3
as the hub genes. In addition, the top 5 results of GO analysis
(biological processes, cellular components, and molecular
functions) are presented in Figure 4G.

Construction and Verification of the Risk
Model
The univariate Cox proportional hazard regression model
method was used to evaluate the hub genes, and 7 genes
(HMGCS2, KNG1, SLC22A1, NR1I2, APOC3, HPX,
and G6PD) were found to be associated with prognosis
(Supplementary Figure 5A). Then, a multivariate Cox
proportional hazard regression model was performed
to further narrow the range of variables. Finally, we
identified the three genes (HMGCS2, SLC22A1, and G6PD)
associated with prognosis to construct the risk model
(Supplementary Figure 5B).

The final 3-gene signature formula was as follows: Risk score
= (−0.426) x HMGCS2 + (−0.314) × SLC22A1 + 0.413 ×

G6PD. Risk scores were further converted into Z scores. Patients
with scores > 0 were divided into the high-risk group, and
patients with scores < 0 were divided into the low-risk group in
the TCGA training set. The KM curves revealed that the patients
in the high-risk group had a poorer prognosis (p < 0.001) than
those in the low-risk group in the TCGA training set. The areas
under the time-dependent ROC curve (AUCs) of the TCGA
training set at 1, 2, 3, 4, and 5 years were 0.79, 0.74, 0.75, 0.70,
and 0.70, respectively (Figure 5A). Similarly, we did the same for
the GEO dataset and obtained a similar result (p < 0.0001). The
areas under the AUC of the GEO dataset at 1, 2, 3, 4 and 5 years
were 0.66, 0.67, 0.69, 0.67, and 0.64, respectively (Figure 5B).

The robustness of the model was verified by the internal
dataset (the TCGA validation set) and external dataset
(GSE54236 dataset). In all the datasets, the same model
and coefficients as those used with the TCGA training set were
used. The risk score of each patient was calculated according to
gene expression, and the distributions of the risk scores were
plotted in the TCGA internal validation set. The results showed
significant differences (p < 0.01) between the high- and low-risk
groups in the TCGA validation set. The areas under the AUC of
the TCGA validation set at 1, 2, 3, 4, and 5 years were 0.65, 0.64,
0.65, 0.69, and 0.72, respectively (Figure 5C).

Similarly, we divided patients with scores > 0 into the high-
risk group and patients with scores< 0 into the low-risk group in
the GEO external data set. KM curves showed that the patients in
the high-risk group had a poorer prognosis (p < 0.01) than those
in the low-risk group in the GEO external dataset. Interestingly,
the areas of AUC at 1, 2, and 3 years in the GEO external dataset
were 0.80, 0.73, and 0.67, respectively (Figure 5D). Although we
could not obtain an accurate AUC value at 4 and 5 years due
to the limitations of the GEO external data set, all of the above
results indicate that the model has a certain degree of robustness.
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FIGURE 2 | Screening of differentially expressed aging-related genes (DEAGs), consistent clustering analysis, and comparison of molecular subtypes. (A) Venn

diagram of DEGs from the The Cancer Genome Atlas (TCGA) training set, DEGs from GSE14520 and AGs. (B,C) Heatmaps of 34 DEAGs. (D,E) Cluster heatmaps of

samples with consistent clusters of k = 2. (F,G) Kaplan–Meier (KM) curve analysis of overall survival between C1 and C2. (H,I) Comparison of age between C1 and

C2. (J) Comparison of sex between C1 and C2. (K) Comparison of TNM stage between C1 and C2.

Independent Prognostic and Therapeutic
Value of the Risk Score and Comparison
Among HCC Prognostic Models
Univariate and multivariate Cox regression analyses were
performed to assess independent predictive values for the risk
score in HCC patients. In the TCGA training set and GSE14520

dataset, univariate and multivariate Cox regression analyses

suggested that the risk score (p < 0.001) and TNM staging (p =

0.003 and 0.005) had prognostic value, although age and sex were

not associated with prognosis (Figures 6A–D). Furthermore,

in the TCGA validation set, univariate and multivariate Cox

regression analyses also showed that the risk score and
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FIGURE 3 | Analysis of immune features and gene set enrichment analysis (GSEA) between subtypes. (A) Comparison of immune cells in the tumor

microenvironment (TME) between C1 and C2 in the TCGA training set. (B) Comparison of immune cells in the TME between C1 and C2 in the Gene Expression

Omnibus (GEO) dataset. (C) KM curve analysis of overall survival between high and low compositions of immune cells (naive B cells and M0 macrophages) in the

TCGA training set. (D) KM curve analysis of overall survival between high and low compositions of immune cells (naive B cells and M0 macrophages) in the

GSE14520. (E) GSEA analysis in the TCGA training set. (F) GSEA analysis in the GSE14520. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 4 | Screening of DEGs and hub genes between subtypes and functional enrichment analysis. (A) Venn diagram of DEGs between subtypes from the TCGA

training set and DEGs from GSE14520. (B) Heatmaps of the top 30 DEGs between C1 and C2 in the TCGA training set. (C) Heatmaps of the top 30 DEGs between

C1 and C2 in GSE14520. (D) Protein–protein interaction (PPI) network based on the 199 DEGs, constructed via STRING. (E) The PPI network of subnet 3 (hub

genes) through MCODE. (F) The results (p < 0.05) of KEGG analysis based on hub genes. (G) The top 5 results of GO analysis (BP, biological processes; CC, cellular

components; and MF, molecular functions) based on hub genes.

TNM staging were independent prognostic values (p < 0.05;
Figures 6E,F). In addition, we utilized the pRRophetic package
to calculate the IC50 value between the high- and low-risk groups.
In the high-risk group, sorafenib, AKT inhibitor VIII, paclitaxel,
gemcitabine, and rapamycin had lower IC50 values, while

erlotinib had higher IC50 values (Supplementary Figures 6A–F).
No significant difference in chemosensitivity for axitinib between
the two risk groups was observed (Supplementary Figure 6G).

Moreover, we chose several current prognostic models in
HCC (28–33) and compared them with our model. Obviously,
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FIGURE 5 | Construction and validation of the 3-gene prognostic model. (A) KM curve analysis, distributions of high- and low-risk scores, and time-dependent ROC

curve analyses of the TCGA training set. (B) KM curve analysis, distributions of high- and low-risk scores, and time-dependent ROC curve analyses in GSE14520.

(C) KM curve analysis, distributions of high- and low-risk scores, and time-dependent ROC curve analyses of the TCGA validation set. (D) KM curve analysis,

distributions of high- and low-risk scores, and time-dependent ROC curve analyses in GSE54236.
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FIGURE 6 | Univariate and multivariate Cox regression analysis. (A,B) Univariate and multivariate Cox analyses of the TCGA training set. (C,D) Univariate and

multivariate Cox analyses of GSE14520. (E,F) Univariate and multivariate Cox analyses of the TCGA validation set.

our 3-gene signature is better than the others. Furthermore,
we validated the robustness of our model by using internal
and external datasets. We have concluded the results of the
comparison in Table 2.

Correlations of the 3 Genes With Immune
Cell Infiltration and Their Expression
Across Cancers
We performed the Spearman’s correlation analysis to explore
the relationship between the 3 genes (HMGCS2, SLC22A1, and
G6PD) and the infiltration of 22 immune cells. The results
showed that the expression of the 3 genes was significantly
correlated with the compositions of naive B cells and M0
macrophages in the TCGA training set and GEO dataset
(Figures 7A,B). This finding may indicate that these 3 genes play
important roles in regulating naive B cells and M0 macrophages.
Furthermore, our results indicated that G6PD may have the
opposite effect on HMGCS2 and SLC22A1, which is consistent
with the Cox analysis results.

We then found that themRNA expression values of G6PD and
SLC22A1 were higher or lower in HCC samples than in normal
samples by GEPIA, respectively. However, the mRNA expression

value of HMGCS2 was not significantly different between HCC
and normal samples according to GEPIA, which matches the
TCGA normal and GTEx data (Figure 7C). Furthermore, we
performed western blotting to validate the protein expression
of the 3 genes in 5 HCC and paired tissues. We found
that the expression levels of HMGCS2 and SLC22A1 were
higher in tumor-adjacent tissues; while the expression levels of
G6PD were higher in HCC tissues (Figure 7D). Then, we used
immunohistochemical staining in the HPA database to further
verify the western blot results (Figure 7E).

In addition, we used GEPIA to show the expression of the
3 genes in 33 cancers compared with corresponding normal
samples. Obviously, the expression of G6PD was significantly
higher in colon adenocarcinoma (COAD), LIHC, pancreatic
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), skin
cutaneous melanoma (SKCM), and stomach adenocarcinoma
(STAD) but was lower in acute myeloid leukemia (LAML), and
testicular germ cell tumors (TGCT). The expression of SLC22A1
was lower in LIHC than in normal samples. In the normal
samples, the expression of HMGCS2was higher in breast invasive
carcinoma (BRCA), head and neck squamous cell carcinoma
(HNSCC), kidney chromophobe (KICH), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
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TABLE 2 | Comparison among HCC prognostic models.

Study Our study Zhang et al.

(28)

Chen et al.

(29)

Yang et al.

(30)

Hong et al.

(31)

Liu et al.

(33)

Liang et al.

(32)

Signature 3-Gene 14-Gene 7-Gene 4-Gene 11-Gene 6-Gene 10-Gene

TCGA

Training set n = 170 n = 312 n = 371 n = 351 n = 171 n = 172 n = 365

AUC (1, 3, 5 y) 0.79, 0.75, 0.70 0.71, 0.74, 0.64 0.78, 0.76, 0.73 0.80, 0.75, 0.72 0.71, 0.72, 0.81 0.83, 0.85, 0.77 0.80, 0.69, 0.67

Validation set n = 170 – – – n = 171 n = 171 –

AUC (1, 3, 5 y) 0.65, 0.65, 0.72 – – – 0.75, 0.73, 0.61 0.71, 0.59, 0.60 –

GEO

Validation set GSE14520

(n = 219)

GSE14520

(n = 225)

– GSE14520

(n = 221)

GSE15654

(n = 216)

– –

AUC (1, 3, 5 y) 0.66, 0.69, 0.64 0.64, 0.59, 0.65 – 0.65, 0.61, 0.63 0.71, 0.58, 0.62 – –

– GSE76427

(n = 114)

– – – – –

AUC (1, 3, 5 y) - 0.60, 0.64, 0.60

GSE54236

(n = 81)

AUC (1, 2, 3 y) 0.80, 0.73, 0.67 0.60, 0.64, 0.60 – – – – –

ICGC

Validation set – – n = 260 – n = 212 – n = 231

AUC (1, 2, 3 y) – – 0.66, 0.72, 0.71 – 0.73, 0.71, 0.70 – 0.68, 0.69, 0.72

SKCM and TGCTs (Figure 7F). More detailed expression of the
3 genes in 33 cancers can be found in Supplementary Figure 7

and Supplementary Table 2.

DISCUSSION

Immune cells, which constitute an important part of the TME,
have a crucial effect on the progression of tumors (34). Activated
B cells can secrete IL-10 and attenuate antitumor immune
responses by regulating T cell responses (35). Macrophages in
the TME, as a plastic and heterogeneous cell population, are
usually divided intoM1-like macrophages (proinflammatory and
antitumor) and M2-like macrophages (anti-inflammatory and
protumor) (36, 37). Moreover, tumors can alter the functional
order of normal macrophages in favor of their own growth,
and macrophages are more likely to be M2-like polarized
in the TME (38). Indeed, we found that there were more
naive B cells in the subtype with the better prognosis, which
may contribute to shaping the antitumor TME. In addition,
we also found that more M0 macrophages infiltrated the
TME, which is beneficial for shaping the immunosuppressive
microenvironment. Remarkably, differences in the compositions
of naive B cells and M0 macrophages between subtypes were
found in both TCGA and GEO databases, which indicated that
these cells, but not other cells (CD8+ T cells, NK cells, etc.), may
play dominant roles in the HCC subtype based on AGs.

Recently, immune checkpoint blockers have become a popular
research topic in tumor-targeted therapy, and increasing number
of antibodies (nivolumab, atezolizumab, etc.) is used in clinical
antitumor therapies (39). Nivolumab is the first FDA-approved
anti-PD1 inhibitor for HCC, and a phase 3 randomized trial

(NCT02576509) indicated that, as a first-line treatment for
advanced HCC, nivolumab treatment was promising compared
with sorafenib (40). A clinical trial from Duffy et al. also found
that tremelimumab (ancti-CTLA4) combined with ablation is
a potential treatment for advanced HCC and leads to the
accumulation of CD8+ T cells (41). It is with hope that an
increased number of immune checkpoints (such as CTLA-4,
PD-1, LAG-3, TIM-3, and TIGIT) be documented, although
some tumor patients show immunotherapy tolerance (42–44).
LAG-3 (CD223), as a checkpoint to prevent overt activation
of T cells, is associated with the exhaustion of dysfunctional
CD8+ T cells (45). TIM-3 (CD366 or HAVCR2) is expressed
on highly dysfunctional T cells, and TIM-3-associated drug
resistance has been observed in HNSCC and non-small-cell lung
cancer (NSCLC) (46, 47). Tan et al. found that the expression
of TIM-3 on liver-resident NK (LrNK) cells hampered the
function of LrNK cells through PI3K/mTORC1 interference to
enhance HCC growth (48). Accumulating evidence has also
revealed that TIGIT is highly expressed on T cells, NK cells
and M2 macrophages and impairs their antitumor cytotoxicity
(49). Consistently, our study also indicated that these immune
checkpoints were highly expressed in the TME in the HCC
subtype with poor prognosis, which was validated by both TCGA
and GEO databases. We hypothesized that the high expression
of these immune checkpoints was associated with the differences
in the compositions of the above 2 immune cell types (especially
naive B cells) in the TME. In summary, our study indicated that
the TME in the subtype with poor prognosis was more likely
to be immunosuppressive, which may be fundamental to the
underlying microenvironment in aging-related tumors.

E2F transcription factors can bind multiple target genes
to regulate their expression and are well-known for their
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FIGURE 7 | Correlation analysis and expression analysis of the 3 genes. (A,B) Correlation of the 3 genes and 22 immune cells. (C) mRNA expression levels of the 3

genes in HCC according to GEPIA. (D) Protein expression levels of the 3 genes in HCC and tumor-adjacent tissues according to western blotting.

(E) Immunohistochemical staining of the 3 genes in HPA. (F) Comparison of the expression of the 3 genes in different tumors according to GEPIA. The colors

represent statistical significance. The red color represents high expression in cancer, and the green color represents low expression in cancer. *p < 0.05; **p < 0.01.
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function in cell cycle progression and transition into S phase,
DNA synthesis, and cellular proliferation (50). Increasing
evidence shows that E2F mediates tumor growth and metastasis
(51). In our study, the GSEA results suggested that genes
involved in the E2F targets may be mainly expressed in
the subtype with the worst prognosis. Thus, E2F may be
a key point in the molecular mechanisms between the two
subtypes based on AGs. Furthermore, the 3 genes may
play crucial roles in the HCC subtype based on AGs. In
fact, Lu et al. found that, through activation of the STAT3
pathway, elevated expression of G6PD enhanced the migration
and invasion of HCC cells (52). HMGCS2 can promote
ketone production, which can promote the proliferation of
HCC by targeting c-Myc (53). Notably, our GSEA results
showed that MYC targets are positively associated with
poor prognostic subtypes in HCC, which supported our
points that HMGCS2 might play an important role in the
development of HCC. Similarly, downregulating SLC22A1
affects the prognosis and response to sorafenib in HCC
patients (54, 55).

The most significant advantage of the present work is the
construction and validation of a novel three-gene signature
model based on AGs in HCC, and we systematically described
the immune features in the TME between subtypes. In fact,
Chen et al. identified 7 AGs (POLA1, CDK1, SOCS2, HDAC1,
MAPT, RAE1, and EEF1E1) and constructed a prognostic
model via the TCGA and ICGC (international cancer genome
consortium) databases (29). However, we not only classified
HCC based on AGs, but also explored the immune features
of the TME. Moreover, our model had a better AUC value
and robustness. Our work is the first to explore aging from
the perspective of molecular typing of HCC and to associate
it with the TME. In addition, there is a limitation that we
need to acknowledge in our study: we lacked prospective
clinical data to validate the prognostic significance of the
three-gene signature.

Collectively, we classified HCC based on AGs and
systematically described the immune features in the TME
between subtypes. Then, we constructed and validated a new
prognostic model according to the new molecular subtyping.
Our work might provide novel insights into the aging and
immunity of the TME in HCC.
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