
Citation: Gambardella, C.; Pinsino, A.

Nanomaterial Ecotoxicology in the

Terrestrial and Aquatic Environment:

A Systematic Review. Toxics 2022, 10,

393. https://doi.org/10.3390/

toxics10070393

Academic Editor: Farhan R. Khan

Received: 27 June 2022

Accepted: 12 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Review

Nanomaterial Ecotoxicology in the Terrestrial and Aquatic
Environment: A Systematic Review
Chiara Gambardella 1,* and Annalisa Pinsino 2,*

1 Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment, National Research
Council, 16149 Genova, Italy

2 Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
* Correspondence: chiara.gambardella@ias.cnr.it (C.G.); annalisa.pinsino@ift.cnr.it (A.P.)

Abstract: This systematic review analyzes the studies available on the ecotoxicity of nanomaterials
(NMs) in the environment to understand where future research should be addressed for achieving
Agenda 2030 goals on sustainable development and environmental safety. We discuss the status
of NMs ecotoxicological effects across different organisms that are representative of all natural
environments (land, air, water). A total of 1562 publications were retrieved from the Web of Science
(all databases) by using the search criteria “nanomaterials” and “ecotoxicology”; among them,
303 studies were included in the systematic review because they met any of the following criteria: (i)
focalize on both search criteria; (ii) deal with terrestrial, or aquatic environment; (iii) address models
(organisms, cells) for the nano environmental risk assessment and exposure. The knowledge gaps are
identified together with novel insights that need to be further investigated to better understand the
ecotoxicological environmental impacts of NMs.
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1. Introduction

Nanomaterials (NMs) are defined as “natural, incidental, or manufactured material
containing particles, in an unbound state or as an aggregate or as an agglomerate and
where, for 50% or more of the particles in the number size distribution, one or more external
dimensions is in the size range 1–100 nm” [1].

Due to their nanoscale size, NMs show unique chemical, biological and physical
properties as compared with larger particles of the same material, which make them
suitable for novel uses [2] in different fields, from medicine to food science, from drug
delivery to cosmetics [3–7]. The application of NMs in different nano-based technologies
has increased over the last few decades, thanks to the NMs properties, conveyed by their
size, surface area, charge, and shape, that facilitate their use compared with their bulk
or dissolved counterparts [8]. The wide application of NMs in our everyday life has
inevitably resulted in their release and deposition into the environment, including in the
soil, water, and air [9]. These different environmental compartments are strictly connected;
thus, for example, NMs and all of the contaminants in the air do not remain confined in
this matrix but can also be deposited in the soil and surface waters. Once in the different
environmental matrices, NMs may interact with organisms; thus, the ecotoxicology of NMs
in organisms belonging to different trophic levels has become an emerging and worldwide
issue. In this regard, NMs have a great potential to affect human health, since they can reach
humans directly or indirectly, through ingestion itself or along the food chain, adsorption,
or inhalation [10]. Several studies have been published so far on NMs ecotoxicology in key
species that characterize soil, water, and air, besides humans [11–14]. In the present review,
we examined the current knowledge on the ecotoxicological impact of NMs in key species
of all of the natural environments (e.g., soil, water, and air, including humans) and we
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identified the gaps concerning information on the impact of NMs along the trophic chain to
be filled to predict the real bioavailability and biological risk of NMs in the next few decades
(Agenda 2030). In this regard, NMs have a great potential to be employed in several daily
applications, but a sustainable development towards the environment should be taken
into consideration. Here we discuss the current knowledge on the ecotoxicological models
used for predicting the toxicity of NMs, focusing on the literature retrieved from the Web
of Science by the search criteria “nanomaterials” and “ecotoxicology”, and highlighting
the information on: (1) the most studied species in this field; (2) the most NMs used;
(3) the most analyzed environmental matrix; (4) the type of interconnection between
NMs exposure and responses at different levels of organization (e.g., gene, cell, tissue,
organism) and biomarkers; and (5) the limitation of the ecotoxicological information on
NMs. To better understand the current research on the risk assessments associated with
NMs and future trends, a network map was constructed through the systematic analysis
of existing and selected articles. This map helped to discuss and highlight the future
needs and suggestions in the NMs ecotoxicology field, considering the Agenda 2030
goals for sustainable development (e.g., ensure healthy lives and promote well-being for
all at all ages; conserve and sustainably use the oceans, sea, and marine resources for
sustainable development).

2. Materials and Methods

This review is based on a systematic search by using the Web of Science (WoS) citation
database, an online portal of the following, the Institute for Scientific Information (ISI;
currently Thomson Scientific, Philadelphia, PA, USA) citation databases: the Social Sciences
Citation Index, the Arts, and Humanities Citation Index and the Science Citation Index [15].
It is an extensive and multidisciplinary database, covering many scientific journals, books,
and proceedings in different fields, including natural sciences [16].

We queried “All databases” (including WoS Core Collection, BIOSIS Citation Index,
Current Contents Connect, Data Citation Index, Derwent Innovation Index, KCI-Korean
Journal Database, MEDLINE®, Russian Science Citation Index, SciELO Citation Index,
Zoological Records), covering the period 1900–2021 (up to December the 31st), in the English
language, by selecting different document types with the exclusion of “abstract”, “meeting”
and “review articles”. As eligibility criteria, we retrieved the keywords ‘nanomaterial’ and
‘ecotoxicology’. Based on both title and abstract, the results were evaluated according to
the following criteria:

Criteria 1-Does the search focus on both “nanomaterials” and “ecotoxicity”? (Yes/No);
Criteria 2-Does the result deal with terrestrial and aquatic environments? (Yes/No);
Criteria 3-Does the result address organisms as key targets? (Yes/No)
Only the results that fulfilled all of the criteria were included in the present review,

analyzed, and discussed. Specifically, the documents were downloaded in Portable Docu-
ment Format (PDF) for full-text assessment. The results were analyzed according to the
publication year and the different environments. The results derived from the first search
on the WoS database were refined by selecting only original articles (841 products), and
only original articles that fulfilled the three criteria (303) were then used to create maps
based on the network data of minimum occurrences of a term by using VOSviewer version
1.6.18 (Center for the Technology Studies of Leiden University). For this work, the counting
method used to create the maps was set at the “full counting choose method” and at the
threshold of “10 minimum number occurrences of a term” [17]. All of the terms were
grouped into different clusters by circle size (bigger circles indicate higher importance).
The closer the terms are located to each other, the stronger their relatedness [17,18]. The
strongest links between terms are also represented by lines.

3. Results

Based on the title, abstract, and full-text availability, the WoS database released
1562 products reduced to 841, including only the original articles, of which a total of
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303 papers, representing 19.4% of the total retrieved results, were found eligible for the
present review according to the criteria one, two, and three (Figure 1).
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Figure 1. Flowchart of the selection process in this review.

An overview of the eligible publications (303) focusing on the impact of NMs on the
terrestrial and aquatic environment from 2006 to 2021 is shown in Figure 2. Querying
the WoS database using the search criteria “nanomaterials” and “ecotoxicology” and
reporting only the eligible publications, we found that the interest in the topic has grown
a lot in the last ten years, and the maximum number of studies was published in 2020
(n = 38). Moreover, the studies combining models from different environmental matrices
(comparative studies) were addressed later, beginning in 2009 (Figure 2).
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The percentage of the retrieved studies categorized for each environment is reported in
Figure 3. The selected papers mainly focused on the ecotoxicological models for predicting
the toxicity of NMs dispersed in aquatic environments (63%, n = 191). The studies on the
terrestrial environment were fairly represented (34%, n = 102), whereas comparative studies
were representative at very low percentages (3%, n = 10).
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Figure 3. Percentage of selected studies categorized according to the terrestrial or aquatic environ-
ment. Comparative studies targeting both terrestrial and aquatic environments are also reported.

Besides reporting the main information on each of the 303 articles (e.g., article ti-
tle, name of the journal where the article was published, year of publication, digital
object identifier—DOI—number), the model organism and the NMs used were also added
(Supplementary Tables S1–S3).

3.1. Web of Science Analysis

Based on the collected data, the selected studies on the aquatic and terrestrial environ-
ment were organized according to their compartment. Specifically, the aquatic environment
was divided into three categories (freshwater, seawater, and comparative studies targeting
both terrestrial and aquatic environments), and the ecotoxicological models were analyzed
accordingly. The terrestrial environment was divided into four categories (air, soil, mam-
mals, and comparative studies). A brief description, divided for each environment, is
reported below.

• Aquatic environment

Water was the most representative environment in the selected papers (n = 191).
The studies on the aquatic environment were mainly focused on freshwater (FW) species
(77%, n = 141; Figure 4a), while those in the marine compartment only represented 21%
(n = 40). The remaining 2% were comparative studies, addressing both FW and seawater
(SW) species (n = 4).
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Although all of the main trophic levels (decomposers, primary producers, primary
and secondary consumers) were investigated, the retrieved studies focused mainly on
invertebrates (40%), followed by vertebrates (25%), and plants or algae (17%) (Figure 4b;
Table S1, Supplementary Materials). Among the invertebrates, a wide variety of organisms,
including mollusks, crustaceans, cnidarians, and rotifers were used as ecotoxicological
read-across models (for further details, see Supplementary Table S1). The studies on
protozoans and bacteria and comparisons among two or more organisms were similarly
represented with the lower percentage found (8% and 10%, respectively). The studies on
aquatic organisms focused on a wide range of NMs, including mainly silver (Ag), titanium
dioxide (TiO2) nanoparticles (NPs), carbon nanotubes (CNT), and fibers that exceeded 10%
of the total. The carbon-based nanomaterials, graphene and fullerene, zinc (Zn), copper
(Cu), and cerium (Ce)-based NPs were also well investigated, ranging from 4.7% to 8.89%
(Figure 4c).

The ecotoxicity of NMs in invertebrates was mainly studied in crustaceans exposed to
CNT, fullerene, graphene oxide, Ag, gold (Au), Cu, TiO2, ZnO, and CeO2 NPs, diamond,
and polystyrene, in which the survival, reproduction, molting rate (e.g., in the marine brine
shrimp and Daphnia magna), enzyme activities (e.g., cholinesterases, oxidative stress) and
gene expression were investigated. Within the vertebrates, zebrafish, goldfish, and other
species of commercial interest (e.g., tilapia, trout, carp, and sea bass) were used as models
to assess the ecotoxicological impact of NMs.

The acute and chronic toxicity of many NMs has been analyzed by using multi-
biomarker and multi-endpoint approaches. It was found that the NMs, including metal,
metal oxide, plastic NPs, CNTs, and graphene, can be responsible for altering viability, be-
havior (e.g., locomotor activity, feeding), morphology, development, physiology, hatching
rate, and feeding in vertebrates at adult and larval stages. Changes in the activity of several
enzymes (superoxide dismutase, catalase, malonaldehyde, glutathione-S-transferase, cata-
lase, reactive oxygen species—ROS, DNA damage) were also investigated in several tissues
(e.g., gill, liver, and intestine) of adult fish and in fish cell lines exposed to NMs [19,20].

NMs can also have toxic effects on primary consumers, by inhibiting the algal growth
rate, reducing chlorophyll content, and altering the fatty acid composition, ROS, and lipid
peroxidation (MDA) [21,22]. In addition, a direct action upon the algal membrane integrity
was found in microalgae exposed to metal oxide NPs, such as TiO2 and silicon dioxide
(SiO2) NPs [23].

Notably, the characteristics of the aquatic environment can influence the toxicity
of certain NMs. For instance, TiO2 NPs are influenced by the light that enhances the
toxicity of mussels and crustaceans [24,25]. Moreover, the major toxic impacts of CNT and
nanoplastics (e.g., polystyrene) on mussels, algae, and bacteria were found to be influenced
by salinity [26,27]. However, the salinity may facilitate NMs aggregation (mainly NPs),
resulting in a lower level of toxicity. The NMs aggregates can interact with aquatic (both FW
and SW) organisms of the same size of particles (e.g., algae), forming clusters [28,29]; the
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presence of large particle–algae agglomerates (e.g., TiO2, CNT) settle readily, dramatically
depleting the concentration of available food for aquatic organisms.

Overall, the ingestion, uptake, or bioaccumulation of nanomaterials in aquatic species
was investigated in 11.5% (n = 22) of all of the studies based on aquatic models
(Supplementary Table S1). It was found that exposure to or either ingestion or uptake of
NMs can cause acute and chronic toxicity in FW and SW organisms, by inducing responses
at different ecological levels, including organism (e.g., survival, reproduction, growth,
behavior, feeding), cellular, and molecular ones (e.g., gene expression, enzyme activity, and
biochemical responses).

• Terrestrial environment

A total of 102 studies targeting the toxicity of several NMs (e.g., polystyrene NPs,
Ag, CeO2, iron oxide—Fe3O4, ZnO, CuO, Tin oxide—SnO2, SiO2, TiO2 NPs, CNT; see
Supplementary Table S2) in the terrestrial environment fulfilled all of the criteria selected for
this systemic analysis. Among the terrestrial compartments, most of the studies targeted soil
model organisms (76%, n = 78; Figure 5a), followed by mammals and air-living organisms
(6%, n = 6). The remaining 12% (n = 12) focused on comparative studies targeting different
organisms (see comparative, Figure 5a) from the air and soil, including mammals.
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Figure 5. Overview of the selected papers targeting the ecotoxicity of nanomaterials in the terrestrial
environment, classified according to (a) the different compartments; (b) the main target organisms;
and (c) the selected nanomaterials.

Most of the studies focused on invertebrates (33%) and plants (27%), followed by bacteria
(20%), vertebrates (6%), and lichens (1%, Figure 6b). About 12% of the remaining studies
were comparative between two or more target organisms (e.g., plants–invertebrates, bacteria–
protozoans, and fungi–yeasts). Most of the studies focused on Ag and TiO2 NPs ecotoxicity,
representing 34.3% of the total articles (Figure 5c). The studies on carbon nanotubes, C-60,
ZnO, and Cu NPs, were also represented, although to a lower percentage (<8%).
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The ecotoxicity investigations of NMs towards soil organisms were the most repre-
sented. Among them, the terrestrial invertebrates (e.g., earthworms, oligochaetes) were
deeply investigated, pointing to the effects on survival, weight change, and reproduc-
tion, including changes in the biochemical activity, such as the increase in MDA, and the
reduction in glutathione content. The main NMs tested were the ZnO NPs, TiO2 NPs,
and CNT. About 13.72% of the retrieved studies showed an NMs uptake (e.g., mainly
cobalt—Co and Ag NPs) or an accumulation in soil organisms (mainly earthworms) that
are easily excreted [30]. In plants, the main NMs tested were iron and TiO2 NPs, and
the studies focused on the effects on growth, chlorophyll content seed germination, root
elongation, shoot length, and leaf length. The studies on plants highlighted the capacity of
certain NMs, such as CNT and fullerene, in the environment to enhance the bioavailability
and translocation pattern of coexisting organic contaminants or currently used pesticides
(e.g., carbamazepine, DDE, imidacloprid) in plants [31–33], or to absorb pesticides in edible
plants, such as spinach and cauliflower [34].

Regarding bacteria, most of the retrieved studies analyzed the effects of NMs
(e.g., TiO2, Ag, ZnO, Cu NPs) in terms of bacterial growth, enzyme activity, metabolism
(e.g., denitrification, nitrification, respiration), and gene expression [35,36]. The NMs may
act as vehicles to enhance or reduce the mobility of other elements of the soil or other
contaminants, including pharmaceutical compounds, modifying their mobility in a natural
soil–water environment. The NMs have little impact on soil microbiota, but their presence
may increase the toxicity of the other contaminants altering the soil microbial population [37].

The ecotoxicity studies of NMs on the air compartment, fulfilling all of the criteria
selected for this systemic analysis, focused mainly on CNT, fullerene, Ag, TiO2, zirconia—
ZrO2, Fe-0, Fe2O3, manganese Oxide—Mn2O3, hafnium Oxide—HfO2, SiO2, aluminum
oxide—Al2O3, CeO2 NPs, for a total of six studies. They targeted the ecotoxicity of NMs in
the air in terms of atmospheric pollution and antimicrobial activities by using ecotoxico-
logical models of bees, lichens, and bacteria (for further details, see Supplementary Table
S2). Overall, NMs can be internalized in lichens by inducing physiological changes, they
can reduce oxidative stress through the gene expression of antioxidative enzymes and
changes in the redox state of the cells in bees, or enhance the photodynamic inactivation
for Gram-negative bacteria under visible light irradiation [38].

The ecotoxicological effects of several NPs (e.g., Ag, Au, ZeO2, CeO2, TiO2, Al2O3,
ZnO, graphene, and fullerene C-60) and CNTs were poorly investigated in mammals (only
six studies), focusing on the cells, tissues, or whole organisms by using traditional and
novel approaches. Among them, a mechanism-based structure–activity relationship (SAR)
analysis to assess the human health hazard potential of NMs was reported [39].

• Comparative studies among models belonging to different environments

Ten studies targeting multiple compartments were found. They compared the eco-
toxicity of several NMs in organisms belonging to terrestrial and aquatic environments,
categorized according to the different targets (e.g., bacteria, invertebrates, and vertebrates;
Figure 6a). Most of the studies focused on ZnO and Ag NPs, representing 60% of the total
studies, while the remaining percentages focused on TiO2, iron NPs, porphyrin NMs, and
polyamidoamine (PAMAM)-coated Au NPs (Figure 6b).

Differences in the sensitivity among the model species targeting the different en-
vironmental compartments were found after exposure to (i) PAMAM-coated AuNPs in
mammalian cell lines, FW algae and marine bacteria [40]; (ii) ZnO NPs in plants, crus-
taceans, and insects [41–43]; (iii) Ag NPs in FW crustaceans, worms, and plants [44–46].
For example, while the Ag NPs are genotoxic for multiple species (e.g., mammals, plants,
and aquatic organisms), magnetite NPs do not cause any potential risk to the environment,
as indicated by a study that compares their effects in different models, such as human red
blood cells, macrophage cell lines, onion root tips, marine crustaceans, and FW fish embryo
(for further details, see Supplementary Table S3).

These studies recommend not only focusing on the inherent toxicity of NMs, but also
considering their possible interactions with existing environmental contaminants.
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3.2. VosViewer Analysis

A total of 841 of the 1562 results were refined by typing the two keywords ‘nanomaterial’
and ‘ecotoxicology’ and excluding abstract, meeting, review articles, books, data papers, and
editorial materials. The analysis of the main keywords found in the title and abstract of the
841 results was performed by VOSviewer software (1.6.18): 706 of 19,920 terms reached the
threshold set at 10. The network visualization of the selected terms grouped by clusters and
linked by lines is shown in Figure 7.
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The resulting 706 terms, which occurred at least 10 times in the title and the abstract
fields, are distributed into three well-defined clusters, characterized by different colors, and
focused on three main issues: effect, concentration, and study (red cluster); detection and
analysis (blue cluster); degradation, removal, and adsorption (green cluster).

Since the aim of this study was to evaluate the ecotoxicity of NMs focusing on eco-
toxicological models for predicting the toxicity of NMs dispersed in all of the natural
environments, the results were then analyzed according to the criteria described previously
in the 303 selected papers. A total of 260 of the 8222 terms reached the threshold set at 10.
The network visualization of the selected terms grouped by clusters and linked by lines is
shown in Figure 8.

The resulting 260 terms, which occurred at least 10 times in the title and the abstract
fields, are distributed into five interconnected clusters characterized by different colors,
from red to yellow. Each cluster focused on the three main issues: toxicity, impact, and
nanomaterial (red cluster); exposure, level, and response (green cluster); nanoparticle,
particle, and mechanism (light blue cluster); soil, effect, Ag NP (purple cluster); the smaller
cluster, identified in yellow, focused on the organism, ecotoxicity, and test, where some
target species (e.g., algae, aquatic invertebrates such as Daphnia magna) are reported.
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303 articles.

The map showing the toxicity of the NMs is related to the size, form, and concen-
trations (e.g., nano-size, ion, g/mL) of certain materials, including ZnO (red cluster). It
impacts and poses a risk to microalgae and animals, affecting the food chain and inducing
oxidative stress. The green cluster highlighted the interconnection among NMs exposure
and responses at different levels of organization (e.g., gene, cell, tissue, organism), and
biomarkers (e.g., GST, SOD, CAT). The light blue cluster highlighted the main MNs used
(e.g., TiO2, Ag, CeO2 NPs), while the purple and the yellow revealed the environmen-
tal matrix and the species most studied in the field: soil and earthworms, water, and
Daphnia magna, respectively.

4. Discussion

In this work, we presented an overview of the articles published so far on NMs
ecotoxicology, based on the results extracted from WoS. Overall, we found that few ecotoxi-
cological studies on NMs (<20% of the total results) fulfilled the selected criteria. A review
of the Environmental Legislation for the Regulatory Control of NMs [47] reported similar
results, highlighting the limitation of ecotoxicological information on NMs. In the last
15 years, a rapid growth in the number of studies on NMs ecotoxicity has started, with an
increase since 2011, likely due to the definition of NMs from the European Commission [1].
While the studies published in the first few years targeted both terrestrial and aquatic
environments, since 2012 the majority focused on the aquatic compartment. Although
the Water Framework Directive (WFD) was established in 2000 [48], aimed at reducing
and minimizing the concentrations of dangerous chemicals in EU waters, twelve years
later, the European Commission revised this legislation, by incorporating NMs among the
priority substances [49,50]. The inclusion of NMs under the WFD may explain the growing
interest in NMs’ ecotoxicology in the water environment in the last decade, rather than in
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the terrestrial environment. In this regard, future research on the ecotoxicity of NMs in the
terrestrial environment should be addressed in the next few years.

4.1. Significance of Invertebrates as Key Organisms to Assess NMs Ecotoxicity

Most of the selected studies focus on the ecotoxicity of NMs in terrestrial and aquatic
invertebrates. Invertebrates are more abundant than vertebrates [51]. Overall, invertebrates
are being used extensively in laboratory tests to evaluate the toxicity of chemicals, con-
taminants, or environmental matrices (e.g., water, sediment). The use of invertebrates in
ecotoxicological bioassays offers several advantages (e.g., easy maintenance and handling,
short life span, possibility to be obtained by cryptobiotic or dormant eggs—cysts, high
sensitivity to toxicants [52]) that may explain the extensive use of such organisms compared
to vertebrates for the ecotoxicological assessment of NMs.

The ecotoxicity of NMs in primary producers (plants, algae) and vertebrates were
represented in the terrestrial and aquatic environments, although at a smaller percentage
than that of invertebrates; conversely, the studies on NMs effects on humans/mammals
are still scarce. To elucidate the impact of human exposure to NMs, advances in in vitro
models (e.g., cell cultures) are a valid alternative [53], in line with the 3Rs (Replacement,
Refinement, and Reduction of animals in research) principle. The uptake and translocation
of certain NMs, such as NPs, have been successfully demonstrated in in vitro models [54];
despite that, only a few studies are available so far using this approach. The quality evaluation
of human nanotoxicity problems has been addressed by the European Union FP-7 project
GUIDEnano, which guided users to assess the nano risks of nanomaterial-enabled products
throughout their life cycle, based on the few existing human toxicological and ecotoxicological
studies [55]. Therefore, there is an urgent need to increase the number of studies aimed at
investigating NMs ecotoxicity towards both humans and, in general, mammals.

4.2. Nanoparticles Are the Most Studied NMs in the Environmental Compartments

New NMs are still being created for several applications [56]. To date, most of the
retrieved studies focus on the ecotoxicology of NPs rather than the other NMs. For in-
stance, Ag and TiO2 NPs were deeply investigated in terrestrial and aquatic organisms,
while only recently has a growing interest started in the scientific community towards the
ecotoxicological effects of CNT in biota [57]. Among the NPs, Ag NPs are emerging for use
in next-generation applications in numerous fields, including nanomedicine, besides hav-
ing been deeply investigated due to antibacterial properties and other favorable physical,
chemical, and biological characteristics [58,59]. Moreover, even metal oxide NPs, such as
TiO2 NPs, have been widely studied in both aquatic and terrestrial environments, due to
their use in water treatments. When Ag and TiO2 NPs are suspended in aquatic solutions,
they may transform from their pristine zerovalent state to surface-charge, ion-dissociated,
and aggregated forms that may exert negative effects on the ecological systems, releasing
toxic ions and ROS [60]. In the soil, TiO2 and Ag NPs are used in water treatment; they
can be indirectly discharged into agricultural soils through irrigation or sewage–sludge
applications, and directly as nano fertilizer [61,62], affecting the soil community.

Besides CNT, Ag, and TiO2 dioxide NPs, many other of the NMs (e.g., metal NMs,
metal oxide NMs, fullerene, nanoplastics) have been extensively used in several applica-
tions, but they have not yet been investigated in the aquatic and terrestrial environment.
Among these, the metal oxide NMs are in high demand for several reliable advanced
technological applications (e.g., sensors, fuel cells, batteries, actuators, optical devices) due
to their flexible mechanical, electronic, optical, electrical, catalytic, magnetic, and photo-
chemical properties [63]. As an example, among the sensing NMs, CuO, SnO, ZnO, and
NiO present high sensitivity, reproducibility, and stability, fast response/recovery time, and
cheap and rapid fabrication processes. To fill this gap, we recommend that future studies
should be addressed towards clarifying the ecotoxicity of the other NMs.
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4.3. The Main Limitations of the Studies Come from the Past

Overall, proving the toxicity of NMs seems to have been the main concern among the
retrieved studies. In this regard, most of the scientific articles test very high concentrations
of NMs on organisms, targeting terrestrial and aquatic environments or both of them in or-
der to find an ecotoxicological effect (e.g., 50% mortality—LC50; immobilization or growth
inhibition—EC50 [21,41,64–66]). To date, most of the studies have used environmentally
unrealistic concentrations to assess the NMs ecotoxicity. To meet the targets posed by
the UN Sustainable Goal for the terrestrial and aquatic environments (e.g., SDG, Life on
Land, Life below water, Good Health and Well-being), actions to prevent, monitor, and
report on environmental pollution are urgently needed [67]. In this light, future studies
should address more realistic NMs exposure scenarios (e.g., environmental concentrations
measured in the terrestrial and aquatic environment) to clarify the ecotoxicological effects
of NMs in biological models, and therefore either demonstrate NMs’ safety or predict the
ecosystem impacts for a risk assessment [68]. Computational modeling, using a probabilis-
tic approach, was suggested as a way of estimating the NMs environmental concentrations.
However, these models inadequately consider the NMs’ fate in the environment. In addi-
tion, the absence of a selective analytical method in the complex matrixes makes difficult to
determine if an increasing production of NMs leads to an increased NMs concentration
in the environment.

4.4. NMs Behavior Can Be Transformed in the Environment

NMs can be transformed once in the environment, due to the interaction with natural
parameters in the terrestrial and aquatic ecosystems (e.g., salinity, pH, temperature, or-
ganic matter) and to the presence of other contaminants (e.g., metals, chemicals, emerging
compounds). The NMs can be a sink for organic and inorganic co-contaminants that may
modify NMs’ physicochemical properties and behavior over time [60]; the interaction
between NMs and other co-contaminants can impact NMs fate, distribution, and ecotoxi-
city, inducing additive, synergistic, or antagonistic responses [69,70]. On the other hand,
NMs interact with a biological counterpart that forms a biological surface, coating the
NMs. The bio-molecular coating or “bio-corona” is a highly dynamic structure and its
composition changes over time, based on the absorption of organic matters (lipids, sug-
ars, nucleic acids, metabolites, and particularly proteins) dispersed in the environment.
The organic matters mask the NMs properties and develop a new biological identity that
controls the interface with the environment, changing the behavior and fate of the NMs
themselves. Consequently, the NMs in the environment undergo a transformation process
(aging), including chemical transformation, aggregation, agglomeration, disaggregation,
and deagglomeration. The interplay between all of these processes will determine the
ecotoxicological potential of the NMs [8].

In this regard, most of the studies report on the ecotoxicological effects of organisms
due to single NMs, rather than focusing on the co-exposure of NMs and other compounds,
that may increase or decrease the potential toxicity of NMs towards aquatic or terrestrial
organisms. We, therefore, encourage studies characterizing the use of multiple stressors
to better understand the NMs behavior—in terms of toxicity—in organisms belonging to
aquatic and terrestrial organisms.

4.5. Need to Use a Multidisciplinary Approach to Evaluate NMs Ecotoxicity as a Whole

Multi-stressor studies typically involve a set of organisms to baseline levels of all of
the stressors based on environmental concentrations or simulating future conditions. They
can be performed on single or multiple species, although the latter are potentially more
complete, realistic, and sensitive than single-species-based ecotoxicological tests. Most
of the retrieved studies of this review focus on bioassays on single rather than multiple
species (namely comparative) to detect NMs ecotoxicity. The ecotoxicological batteries
include the use of several species belonging to different taxonomic and trophic levels
in the exposure experiments, allowing for quantifying acute biological effects [71]. The
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European legislative framework supports a multidisciplinary strategy of environmental
monitoring, because the environment is a complex system of abiotic and biotic interac-
tions [72]. Thanks to a multidisciplinary weight of evidence (WOE) approach, it is possible
to integrate information from different Lines of Evidence (LOEs), assigning a different
weight to each LOE, thus improving the ability to interpret alterations of environmental
conditions and assess the probability of hazards [73]. By considering chemical analyses
and ecotoxicological bioassays as different LOEs through a quantitative integration, it will
be possible to convert complex scientific information into simple hazard indexes, easily
understandable by policymakers and environmental managers, that can facilitate and
orientate the more appropriate decisions on environmental NMs management. In our
era, it is necessary to point to a rational science-based approach to minimize the risk for
health, focusing on developing strategies for sustainable (safe) nano-production, promoting
health policies, and embracing actions at an individual and social level. Since NMs should
be as safe as possible for the environment and human health, the nanotechnology world
must focus on a “safer-by-design” approach, based on three major challenges: (1) identify
and develop less hazardous NMs (safer products by design); (2) evaluate the risks during
consumer usage (safer use of products); (3) minimize waste (safer industrial production
discharge) [74]. Thus, this approach focuses on designing NMs, promoting knowledge and
learning, and minimizing risks at all of the stages, from manufacture to usage to the release
on the environment.

5. Conclusions

This review identified the knowledge gaps that need to be further investigated in
light of the Agenda 2030 goals. We found out that: (i) NPs are the most studied NMs in
the environmental compartments, probably since these NMs satisfy several industrial and
domestic purposes; (ii) aquatic organisms are the most investigated, probably because
the aquatic environments are the most basic ways to deal with the contaminants; (iii)
invertebrates are the most ecotoxicological models used for predicting the toxicity of NMs,
probably because are easy to manipulate and do not present ethical issues; (iv) the whole
organism is the major focus, probably because the approach is easy and fast.

What should we do? Future research needs to:
(1) address the ecotoxicity of NMs in the terrestrial environment, as well as on mammals;
(2) clarify the ecotoxicity of metal and metal oxide NMs, fullerenes, nanoplastics, and

other carbon-based NMs;
(3) test environmentally realistic concentrations;
(4) use a multidisciplinary approach to evaluate NMs ecotoxicity as a whole, by taking

into account the multifactorial and changing behavior of NMs.
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