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Abstract

Birdsong provides a unique model for understanding the behavioral and neural bases underlying complex sequential
behaviors. However, birdsong analyses require laborious effort to make the data quantitatively analyzable. The previous
attempts had succeeded to provide some reduction of human efforts involved in birdsong segment classification. The
present study was aimed to further reduce human efforts while increasing classification performance. In the current
proposal, a linear-kernel support vector machine was employed to minimize the amount of human-generated label samples
for reliable element classification in birdsong, and to enable the classifier to handle highly-dimensional acoustic features
while avoiding the over-fitting problem. Bengalese finch’s songs in which distinct elements (i.e., syllables) were aligned in a
complex sequential pattern were used as a representative test case in the neuroscientific research field. Three evaluations
were performed to test (1) algorithm validity and accuracy with exploring appropriate classifier settings, (2) capability to
provide accuracy with reducing amount of instruction dataset, and (3) capability in classifying large dataset with minimized
manual labeling. The results from the evaluation (1) showed that the algorithm is 99.5% reliable in song syllables
classification. This accuracy was indeed maintained in evaluation (2), even when the instruction data classified by human
were reduced to one-minute excerpt (corresponding to 300–400 syllables) for classifying two-minute excerpt. The reliability
remained comparable, 98.7% accuracy, when a large target dataset of whole day recordings (,30,000 syllables) was used.
Use of a linear-kernel support vector machine showed sufficient accuracies with minimized manually generated instruction
data in bird song element classification. The methodology proposed would help reducing laborious processes in birdsong
analysis without sacrificing reliability, and therefore can help accelerating behavior and studies using songbirds.
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Introduction

Birdsong provides a powerful model for understanding the

behavioral and neural bases underlying complex sequential

behaviors. Songs of the Bengalese finch (Lonchura striata var.

domestica) consist of successive strings of brief vocalized elements

(i.e., syllables) ordered according to complex sequential rules [1].

Therefore, a sequencing system for its song may serve as a unique

model for studying systems that generate sequential behaviors,

such as human speech. In neuroscientific studies, birdsong analysis

usually requires parsing and classifying syllables in continuously

recorded data (see Fig. 1A) to explore causal relationships between

neural activities and song structures. This processing is highly

laborious because the finches vocalize tens of thousands of syllables

per day. Moreover, the syllables in finch song exhibit rendition-to-

rendition variability, even those appear to have an identical

syllable type, on various acoustical features including duration,

amplitude, fundamental frequency, and spectral entropy [2]. This

study proposes an efficient classification procedure for song

analysis using a combination of expert supervision and an

automatic classification algorithm.

Several methods have been proposed to replace such laborious

processing with an automatic classification system. A template-

matching algorithm has been developed that scans over an entire

sound recording to identify target elements [3],[4],[5]. An earlier

study used dynamic time warping to nullify temporal variation

(dilation/compression) within song syllables [3]. That algorithm

achieved an accurate classification rate of 97–98% for zebra finch

songs using spectrogram templates. Later studies extended the

method to utilize a hidden Markov model in which the hidden

states represented temporal transitions between acoustical features

within a syllable [4],[5]. This extension yielded a higher

classification rate of 98–99%. These methods successfully nullified

the temporal variation of each element but they did not explicitly

handle variation in other acoustical features. The vocalized

elements in Bengalese finch songs rarely overlap and should be

easily separable in time. Thus, one can employ another approach

that uses a simple classification based on multidimensional

acoustical features of previously segmented sound units.

We propose a semi-automatic classification procedure using an

efficient classifier, the support vector machine (SVM) as one of the

supervised learning algorithms. Through this procedure, users

perform manual classification on a small population of song

elements to generate an instruction dataset by traditional means,

such as visual inspection of waveforms and spectrograms. Then,

the instruction dataset is used to train a machine classifier that
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processes the full dataset (see Fig. 1B). To minimize human effort

the instruction dataset should be as small as possible, and it is

desirable to increase feature dimensions while considering the high

dimensionality of acoustical variation in the syllables. In general, a

restricted dataset with higher dimensionality increases the risk of

over-fitting, which reduces the generalization performance of

classifiers. SVM is an effective algorithm that can avoid this

problem [6]. For example, the SVM have been widely used to

classify songbird species according to their songs in the context of

acoustical assessment of ecological environment (e.g. see [7],[8]).

In the neuroscientific studies on songbird, successful application of

SVM to syllable classification was partially reported in the

methods section of Hamaguchi and Mooney (2012) [9]; however,

the authors did not fully investigate the capacity of an SVM-based

system for song element labeling.

In the present article, we performed two types of validation test.

First, we tested the accuracy of classification using segmented

syllables of varying size and acoustical features in the training

dataset to determine how many samples and what type of feature

space were desirable for generating a successful classifier. The first

test was performed in an ideal situation, where occurrence rates

among syllable types were equalized and highly variable syllables

(i.e., introductory syllables) were excluded from the test. Then, we

conducted a second test to verify that the proposed method could

applied in a real-world situation where nonstationary syllables

were included at actual occurrence rates among all syllable types

as seen in the original song. Finally, we applied the classification

procedure to a large dataset and estimated the classification

accuracy to simulate performance under actual usage conditions.

Materials and Methods

Recording
Songs of male Bengalese finches (.120 post-hatch day) were

recorded using a microphone (Audio-Technica PRO35) suspend-

ed above a birdcage inside a soundproof chamber. Each bird was

isolated during the recording, and thus all songs were not directed

to females. A spatial distance between microphone and bird’s head

was about 20 cm. The microphone output was amplified using a

mixer (Mackie 402-VLZ3) and digitized through an audio

interface (Roland UA-1010/UA-55) at 16-bits with a sampling

rate of 44.1 kHz. The recordings lasted around 13 hours. The

recorded data were down-sampled to 32 kHz. Singing parts in the

recordings were automatically detected a succession of eight or

more sound elements with gaps lasting less than 300 ms. All birds

were derived from an aviary in our laboratory at the University of

Tokyo, Japan. The temperature and relative humidity of the

aviary were maintained at approximately 25uC and 60%,

respectively. The light/dark cycle was 13/11 h.

Syllable segmentation
Syllables were segmented from continuous song recordings by

the following procedure. First, the audio waveform was band-pass

filtered at 1–8 kHz, and its amplitude envelope was extracted by

full-wave rectification and low-pass filtering at 200 Hz. The

amplitude envelope was transformed to a logarithmic scale to

obtain the relative sound level. Then, periods containing sounds

were detected by setting a sound threshold at the mean

background noise level +4 standard deviations (SD). The mean

background noise level was detected as a peak in the sound level

histogram. The SD was estimated from the full-width-half

maximum value of the histogram. This algorithm requires the

background noise level to be constant throughout a recording,

though the requirement would be satisfied when the recording was

performed on each isolated bird in the soundproof chamber, as

usual setup for established model animals in neuroscience

researches, such as Bengalese finches and zebra finches. Finally,

syllables with durations less than 20 ms and gaps with durations

less than 3–10 ms were eliminated. A suitable gap threshold was

chosen for each bird by visual inspection of the spectrograms.

Acoustical features
This study tried to utilize high dimensional feature space to

cover multidimensional variation in acoustical properties of song

syllables. A total of 532 acoustical features were calculated from

each sample syllable (Table 1). Spectra, cepstra, and their

temporal transitions were included in the feature vector with

some additional acoustical features. First, the original waveform of

each syllable sample was preprocessed through a high-pass filter

(differential filter) to remove baseline biases and to slightly

emphasize the higher frequency region. Short-term Fourier

transform with a hanning window (FFT size: 256, step: 64) was

applied to the waveform generating the spectrogram. The mean

spectrum was obtained by averaging the spectrogram across each

syllable. The 0-th coefficient of the spectrum (DC component) was

not included in the feature vector. The temporal transition of the

spectrogram (delta-spectrogram) was calculated by 5-point regres-

sion on each frequency band. The absolute values of the delta

spectrogram were averaged across each syllable to obtain the

mean delta-spectrum (Dspectrum). The set of mean spectrum and

Figure 1. Example of syllable labeling and schematic drawing of the semi-automated labeling procedure. (A) Waveform and
spectrogram of a typical Bengalese finch song. Label examples are shown above the waveform panel. Boundaries of syllables and gaps are indicated
as dotted vertical lines. (B) Proposed procedure for semi-automated labeling. Stages in gray boxes are automatically processed, and a white box
indicates manual processing stage.
doi:10.1371/journal.pone.0092584.g001
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Dspectrum is termed ‘Spec’ in this study. Similarly, the cepstrum

coefficients and Dcepstrum were calculated for each syllable.

Fourier transform and temporal averaging of the spectrogram

were performed to obtain the mean cepstrum. The 0th coefficient

of cepstrum was also excluded from the feature vector. The

temporal transition of cepstrum was calculated for making the

Dcepstrum by the same way as the Dspectrum. The set of the

mean cepstrum and Dcepstrum features was termed ‘Ceps’.

Additionally, a set of twenty acoustical features, called ‘AF’, was

prepared as follows. The first two features were duration and zero-

cross. The zero-cross feature was calculated as the number of zero-

crossing (from positive to negative) within entire syllable divided by

the duration. The feature vector also included nine features that

were derived from non-linear transformations of the spectrum and

cepstrum: four indices of spectral shape (centroid, standard

deviation, skewness, and kurtosis), spectral entropy (or flatness),

spectral slope, peak quefrency (or fundamental frequency), size of

peak quefrency (or pitch goodness), and amplitude. These features

were selected because they could be extracted relatively easily by

simple calculation and have been well used in the field of audio

feature description [10] (see also [11] for calculation); similar

features have been utilized in a well-known song analysis software

‘Sound Analysis Pro’ [12]. Temporal transitions (i.e., delta

parameters) of these nine features were also obtained by 5-point

regression.

Classifier setting
A linear SVM that determines classification boundaries by

maximizing margins between nearest samples and the boundary

hyperplane [6] was used for syllable classification. This study

utilized efficient SVM algorithms implemented in a program

library written for the MATLAB language (LIBLINEAR ver. 1.93)

[13]. The program provided a multiclass classifier consisting of

multiple combinations of binary soft-margin SVMs with linear

kernel. To test for differences among training algorithms the three

types of optimization functions, which were implemented in the

program library, were used; L2-regulated L2-loss, L2-regulated

L1-loss, and L1-regulated L2-loss functions (termed 2R-2L, 2R-

1L, and 1R-2L, respectively). In this study focus was not placed on

the theoretical details of these optimization functions (see [13] for

the mathematical definitions). The cost parameter of the soft

margin (‘c value’) was fixed at 1 after exploring the most suitable

value within a range of 2215 to 215. This parameter exploration

was performed on the dataset 1 with L = 7, N = 20, ALL condition

(see Section 2.5 for dataset description). The classification

performance was highest and stable with c value from 1022 to 104.

Evaluation 1: Exploration of classifier conditions in an
ideal situation

In the first evaluation, we tested various classifier parameters to

determine the most efficient conditions in an ideal situation where

all syllable types had the same occurrence rates. The dataset for

the first evaluation (dataset 1) consisted of 64 examples per syllable

type for each of eight birds. Syllable types were manually classified

by an expert researcher to generate the dataset for classifier

evaluation. The 64 samples were randomly selected from the

entire set of one-day recordings. Highly variable syllables (i.e.,

introductory syllables and several noisy syllables) were excluded

from the dataset. The number of syllable types ranged from 7 to

11 among the eight birds selected.

The accuracy of the classifier was assessed by cross-validation

testing where the training and testing data were chosen from

dataset 1 with no overlap. The number of training samples (N) for

one syllable label was systematically varied: N = 5, 10, 15, 20, 25,

30, 40, and 50 (8 conditions). The number of test samples was

fixed at 10 for each label. The number of label classes (L) was

chosen from L = 4, 5, 6, or 7. A set of training and test for each

condition (8 sample conditions 6 4 label conditions = 32

conditions) was performed repeatedly on randomly selected labels

and samples to eliminate selection biases. For example, when the

condition was N = 20, L = 5 for a bird with a maximum of 10

syllable types, 5 syllable types were randomly selected from the

possible 10 types. Then, 20 training and 10 test samples were

randomly extracted from the pooled dataset of 64 samples. The

random selection of labels and samples was repeated 30 and 20

times, respectively. Therefore, the validation was performed 600

times for each condition for each bird. The classification

performance was defined as the percentage of correctly classified

syllables. Syllable that chance levels differed between conditions

with different numbers of labels and can be calculated simply as

the inverse of the number of labels (1/L).

Furthermore, we prepared seven different conditions regarding

the feature space to explore the influences of feature types on the

classification. In the first three conditions, each feature type (Spec,

Ceps, or AF) was used separately. Additional three conditions were

combinations of the three feature types: Spec+Ceps, Spec+AF, and

Ceps+AF. In the last condition all features were used simulta-

neously (ALL condition). Each acoustical feature in the training

data was scaled by z-standardization, which involves subtracting

its mean and dividing by its SD. Such scaling was also applied to

the testing data using the same scaling factors (mean and SD) as

the training data. For the spectrum, Dspectrum, cepstrum, and

Dcepstrum features the z-standardization was performed for

pooled coefficients but not for each respective coefficient to avoid

destroying potential covariance relationships among these coeffi-

cients. Additionally, an effect of dimensional reduction on the

classification performance was tested by performing the principal

component analysis (PCA) on the whole features (ALL condition).

The features of training data were z-standardized and underwent

PCA. The principal components of test data were calculated using

a weight matrix derived for training data. The number of the

principal components was varied among 10, 20, 40, 80, 160 and

320.

Table 1. Compounded feature set for classification.

feature dimension

Spec spectrum 128

delta spectrum 128

Ceps cepstrum 128

delta cepstrum 128

AF duration 1

zero cross 1

feature set *1 9

delta feature set *2 9

total 532

*1.derived by non-linear transformations of spectrum and cepstrum: spectral
centroid, spectral standard deviation, spectral skewness, spectral kurtosis,
spectral entropy, spectral slope, peak quefrency, pitch goodness, and
amplitude.
*2.time derivatives of the nine features (*1).
doi:10.1371/journal.pone.0092584.t001
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Evaluation 2: Application in a realistic situation
The second evaluation was performed in more realistic

condition than the first one to verify the applicability of the

proposed classification procedure in an actual situation where the

syllable occurrence rate was the same as in the original song

including highly variable syllables (i.e., introductory syllables and

noisy syllables). The dataset consisted of 600,800 syllables

corresponding to 120-seconds of a recorded file for each of the

13 birds (dataset 2, Table 2; see File S1 and S2 for segmentation

example, and File S3 and S4 for entire feature matrices). The

dataset was generated by randomly collecting song bouts

throughout an entire recording while keeping original song

sequences in the bouts to preserve the actual occurrence rates.

All syllables were inspected and labeled by an expert.

Validation was performed as follows. To approximate the total

duration of recording data that should be used as the instruction

data (labeled manually by the user) to obtain a reliable classifier,

the amount of data used for training was varied between 15, 30,

90, and 120 seconds of recording duration. In the 120-s condition

10 samples (corresponding to around 1-second of recording) were

used for test and remaining samples were used for training. The

actual numbers of syllables used for training are shown in Table 2.

Training data were randomly selected from an entire two-minute

data, and the remaining samples were used as the test data. The

random selection of training data and validation tests were

repeated 600 times. Classification performance was evaluated

using two indices: correct rates (CR) and Cohen’s kappa (K). CR

was simply calculated as correctly classified rates. Cohen’s kappa is

an unbiased correct rate normalized by the chance level [14] and

is defined by the following expression: K = (CR2c)/(12c); where c

is the chance level. The chance level was defined as the inverse of

the number of syllable types for each bird.

In Evaluation 2, all acoustical features were used as the feature

space (ALL condition), and the optimization function was fixed at

the 2R–2L optimization according to the result from Evaluation 1.

Z-standardization of feature vectors was performed in the same

way as the previous evaluation but the scaling factors (means and

SDs) were calculated from all syllables of pooled data from all birds

before starting this evaluation.

Evaluation 3: Classification of large dataset
The classification procedure was applied to a large dataset to

simulate the performance under actual usage conditions. The one-

minute data (half of dataset 2) were first used to train the classifier.

Then, the trained classifier processed one-whole-day data of 13

birds (dataset 3). The classifier parameters, feature space, and

scaling factors were the same as in Evaluation 2. Manual labeling

by an expert was performed on a subset of dataset 3 instead of the

entire dataset because it included too many syllables (see Table 2).

The correct rate for the entire dataset was estimated from the

correct rate of the subset. Syllable selection for the subset and the

estimation of correct rate were achieved as follows.

First, the classifier was trained using the one-minute instruction

dataset. Then, all syllable samples in dataset 3 were labeled by the

classifier. Feature vectors of all samples were projected onto

evaluation axes; each axis corresponded to a label class, and the

projected value represented the likelihood of each sample

belonging to each class. Through such projection each sample

value was transformed into a normalized space where the class

boundary, the margin toward inside of the class, and another side

margin were expressed as 0, 1, and -1, respectively. The

normalized score can be derived for each label class, and the

SVM classifier algorithm used in this experiment judges a data

sample as belonging to the class corresponding to the evaluation

axis on which the sample shows the highest value (maximum).

Here, we defined the evaluation score of each sample as the

maximum value among all evaluation axes. The evaluation score

should be correlated to the correct rate because a lower score

indicates the data sample has a low likelihood of belonging to any

label class. Therefore, we extracted the subset data from dataset 3

for each bird at several locations on the evaluation axis within

values corresponding to bilateral margins: 20.8, 20.6, 20.4,

Table 2. Number of labels and syllables of dataset 2 and 3.

ID # labels Dataset 2, # samples for training Dataset 3 # syllables

120 s 90 s 60 s 30 s 15 s

b01 14 690 507 326 137 46 8610

b06 8 724 548 358 163 70 10750

b09 9 885 637 430 215 112 13129

b10 10 796 604 399 207 101 18767

b11 7 851 648 434 219 105 11580

b13 10 799 607 402 203 99 64825

b14 8 821 620 406 191 84 40836

b16 7 798 598 399 200 100 28633

b17 8 779 592 393 203 107 49013

b18 8 763 578 383 186 91 17399

b19 5 764 580 387 192 97 28893

b20 9 636 498 327 157 74 8581

b21 9 774 594 393 181 80 37709

mean 8.6 773.1 585.5 387.5 188.8 89.7 26055.8

SD 2.1 61.4 44.8 33.1 24.0 18.4 17672.3

Mean syllables/label - 89.7 68.0 45.0 21.9 10.4 3024.3

doi:10.1371/journal.pone.0092584.t002
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20.2, 0, 0.2, 0.4, 0.6, and 0.8. At each location, a maximum of

fifty of the nearest samples was chosen within a range of 60.1

around the location value. Correct rates were calculated for each

location and were fitted by a logistic curve as a function of the

evaluation score, called the correct rate function. Then, an

occurrence probability curve of the evaluation score was derived

by averaging proportional occurrence histograms of all birds.

Multiplication of the correct rate function and the occurrence

probability density provided an estimate of the probability density

of correct label. Then, the overall correct rate was estimated by

accumulation (or an integral) of the correct label probability

density.

Ethics statement
The experimental procedure and housing conditions were

approved by the Institutional Animal Care and Use Committee of

the University of Tokyo.

Results

Evaluation 1
The correct classification rates generally increased with the

number of training samples although the rate appeared to plateau

at more than 15 samples per label, as evident from the results of

the ALL condition using the classifier with 2R–2L optimization

(Fig. 2A). The correct classification rates gradually decreased as

the number of labels increased from 4 to 7. A training dataset with

20 samples for each label was sufficient to achieve a correct rate

around 99.5%. Repeated two-way ANOVA revealed significant

main effects for two factors, number of labels (F(3,224) = 4.94,

p,0.01) and number of samples (F(7,224) = 22.30, p,0.01), but no

interaction of them (F(21,224) = 0.11, n.s.).

Correct rates for different feature spaces were inspected under

L = 7, N = 20 condition (shown as a black arrow in Fig. 2A), and

we found highest correct rates in ALL, Spec+Ceps and Spec+AF

conditions (Fig. 2B). Repeated one-way ANOVA showed a

significant main effect of feature vector (F(6,42) = 6.10, p,0.01).

Additionally, ad hoc multiple comparison between the feature

conditions revealed that the correct rates in ALL, Spec+Ceps and

Spec+AF conditions were significantly higher than in the Spec and

AF conditions (Tukey-Kramer HSD, p,0.05). Three types of

SVM optimization functions achieved similar correct rates

(Fig. 2C) that were not significantly different in one of the highest

dimensionality conditions (ALL condition). In addition, the

dimensional reduction of ALL features by the principal compo-

nent analysis before SVM classification (under L = 7, N = 20

condition) did not improve the classification performance but

gradually reduced it with fewer dimensions: 95.4, 98. 6, 99.3, 99.4,

99.5, 99.5 and 99.5% correct classifications obtained for 10, 20,

40, 80, 160 and 320 component conditions, respectively.

Evaluation 2
The results of partial cross validation on dataset 2 showed that

both the correct rate and Cohen’s K had maximal scores in the 60,

90, and 120 conditions (Fig. 3). The 60-s condition produced

sufficiently high performance of 99.5% (60.33% in SD). Repeated

one-way ANOVA demonstrated a significant main effect of the

data reducing conditions (correct rate: F(4,48) = 16.8, p,0.01;

Cohen’s K: F(4,48) = 17.6, p,0.01), and ad hoc multiple compar-

ison between conditions showed that scores for both the correct

rates and Cohen’s K were significantly lower in the 15-s condition

than other conditions (Tukey-Kramer HSD, p,0.05).

Evaluation 3
The evaluation scores of the large one-day dataset were

distributed more broadly in the negative direction (low likelihood)

compared to the dataset used for classifier training (Fig. 4A). The

subset extracted from lower score locations such as 20.6 or 20.8

contained fewer than fifty samples for some birds. Therefore, we

pooled samples from all birds for each location to avoid possible

bias from differing sample sizes and performed logistic fitting on

the pooled data (Fig. 4B). Then, the correct rate function was

multiplied by the occurrence possibility to obtain the occurrence

possibility of correct and incorrect classifications (Fig. 4C). Finally,

we estimated the overall correct rate for the largest dataset (dataset

3) by accumulating the occurrence possibility of correct labels

(Fig. 4D). The estimated correct rate was 98.7%.

Figure 2. Cross validation performances of classification in ideal dataset situation (Evaluation 1). The correct rates (%) were derived with
systematically varying number of labels (L), number of samples per label (N), feature conditions, and optimization algorithms. (A) Correct rates of each
of label number conditions (differentiated by line colors) as a function of sample number conditions for ALL-feature and 2R–2L-optimization situation.
(B) Correct rates at L = 7, N = 20 location (shown as a black arrow in the leftmost panel) as a function of feature conditions using 2R–2L optimization.
(C) Correct rates L = 7, N = 20 location from different optimization functions. Error bars indicate standard error (n = 8 birds). *p,0.05 (Tukey-Kramer
HSD).
doi:10.1371/journal.pone.0092584.g002
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Discussions

Classification performance
The present study proposed using a linear SVM for semi-

automated classification of birdsong syllables, and explored the

appropriate size and dimensionality of the instruction dataset and

other classifier parameters to design an accurate classifier.

Applicability to a large dataset was tested by estimating

classification accuracy using a one-day recorded dataset. Cross-

validation tests (Evaluation 1) showed that an instruction dataset

containing twenty samples per label achieved high accurate

classification rates around 99.5%. High classification accuracy

using a relatively small instruction dataset in the ALL condition

demonstrates the advantages of a linear SVM classifier that

generates appropriate discriminant boundaries while avoiding the

risk of over-learning with a higher dimensionality feature vector.

The results from Evaluation 2 suggest that the data subset

corresponding to a one-minute recording could provide sufficient

information to cover larger datasets (corresponding to two-minute

recordings at least) in a more realistic situation where the

Figure 3. Cross validation performances of two-minute dataset
(Evaluation 2). (A) Correct rate percentage for each of instruction data
size conditions. (B) Cohen’s kappa representing degree of agreement
with taking the chance levels into account are calculated for each of
instruction data size conditions. Error bars indicate standard error
(n = 13 birds). *p,0.05 (Tukey-Kramer HSD).
doi:10.1371/journal.pone.0092584.g003

Figure 4. Estimated classification performance for a large dataset (Evaluation 3). (A) Occurrence frequency of evaluation scores (black
dots) derived from each bird and a fitted probability density curve (red line) in one-day recording data. Light blue line indicates distribution of
evaluation scores of training data (one-minute recording). The evaluation score is an index representing likelihood of its belongingness to any label
class, which is normalized as to be 61 for the classification margins (shown as arrowheads above panel). (B) Correct rate distribution on the
evaluation score axis. The correct rates from all birds (black dots) were pooled and averaged (open square), and fitted by a logistic function (red line).
(C) Probability density of correct (blue zone) and incorrect (red) were calculated by multiplying the occurrence probability (red line in A; red broken
line in C) and the correct and incorrect rates, respectively. (D) Accumulated probabilities of correct (blue area) and incorrect (red area) classifications.
The accumulation, or integral, was performed from plus to minus (left to right in figure) on evaluation score axis. Green line indicates an estimated
correct rate curve that finally converges to 98.7% (shown as an arrowhead right side of the panel).
doi:10.1371/journal.pone.0092584.g004
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occurrence frequency of syllables in the dataset is preserved from

the original songs. The final test (Evaluation 3) showed that the

estimated performance remained high (98.7%) for the largest

dataset (one-day recording). These results suggest that our

approach is as efficient as previously proposed methods

[3],[4],[5]; however, those methods did not have a mechanism

for estimating an optimal training dataset [4]. As previous studies

have suggested, using more exemplars in the instruction dataset

did not guarantee better performance and sometimes led to more

errors [4]. This finding suggests that such methods may require

careful selection of training exemplars by trial-and-error. Our

experiment quantitatively showed the relationship between

classification accuracy and the number of instruction exemplars

randomly selected from the larger dataset, which could help

minimize the laborious manual labeling process compared to

previous methods.

Reasonable settings for accurate classification
The results from the first evaluation demonstrated that

Spec+AF, Ceps+AF, and ALL conditions achieved the highest

performance in the cross-validation test. We aimed to include

many features to cover the multidimensional variability in song

syllables, and the results suggest that higher dimensionality feature

space does not impair classification performance. Therefore we

concluded that the ALL condition was a reasonable setting.

Indeed, for Evaluation 2 performance in the ALL condition

(99.5560.33%) was not significantly lower than the Spec+AF or

Ceps+AF condition (99.2860.49%, 99.5460.37%) for the 60-s

dataset (not shown in figure).

The optimal number of samples requiring manual labeling for

an instruction dataset corresponded to approximately one-minute

recordings (,400 syllables) of bouts randomly selected from the

entire recording data. Our results suggested that a one-minute

dataset contained enough variation to yield correct classification

boundaries for larger datasets (two-minute dataset).

Although classification performance did not differ between

optimization functions, in practice, there were several reasons to

select 2R–2L optimization. In our computational environment

(2.8-GHz CPU, 8-GB RAM, Windows 7–64 bit), the times

required to train the classifier using the one-minute dataset in the

ALL feature space were 61.9616.4, 61.5618.7, and

182.4655.4 ms for the 2R–2L, 2R–1L, and 1R–2L optimizations,

respectively (not shown in figure). As demonstrated, 2R–2L and

2R–1L optimizations were faster than 1R–2L. Of course,

processing speed depends on the programing language (MATLAB

R2012a in our case) and the program library for SVM algorithms.

In our environment we opted for 2R–2L (default setting in the

program library) as the representative algorithm.

Remaining misclassification
The correct classification rate for the large dataset was

estimated at 98.7%, indicating that 1.3% of syllables would be

misclassified. To investigate the main reasons for such classifica-

tion errors we analyzed where lower evaluation scores tended to

occur within bout, and found that evaluation scores decreased and

tended to be negative at the beginning and end of bouts (Fig. 5).

These low scores appeared to be caused by acoustical unclearness

in the first several introductory syllables of a bout, and

Figure 5. Unstableness of beginning and end of song bout and their evaluation scores. (A) Three spectrograms of beginning (left panels)
and ending parts (right) of bouts. Several syllables in beginning parts (shown as arrow heads) of introductory syllables (labeled ‘i’) are often weak and
unstable. Last syllables located at the terminated part of bout are sometimes shortened and unclear (shown as arrow heads). (B) Percent occurrence
rates of evaluation scores that have negative values, at various syllable locations in beginning (left) and ending parts (right). N indicates the location
of terminating syllable. Error bars show standard error (n = 13).
doi:10.1371/journal.pone.0092584.g005
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deformations of the final syllables. The initial few introductory

syllables have been reported to have relatively weaker amplitude

and higher spectral entropy (or more noise) in other finch’s songs

[15], which is consistent with our result showing acoustical

instability of those syllables in the Bengalese finch. This finding

suggests that classifier performance might improve after eliminat-

ing the initial and final syllables prior to classification. Moreover, it

is possible to exclude unreliable syllables from classification by

thresholding on the evaluation score axis, and label rejected

syllables as ‘unknown’. For example, if the rejecting threshold was

0.5, then approximately 94% of all syllables would be labeled with

a correct rate of more than 99%, as shown by the estimated result

in Fig. 4. Note that the present study regarded the human labeling

as correct tutor information without assuming intervention of

human errors. Further improvements of song classification could

be also introduced with additional error correcting procedure in

future studies.

In summary, the present study proposed using a linear SVM

classifier for labeling birdsong syllables, in particular, songs of the

Bengalese finch as a representative target of neuroethologycal

studies. The results showed that an instruction dataset of one-

minute recording excerpt (including 387.5633.1 syllables) could

provide sufficient information to classify a larger dataset of one-

day long recording (26055.8617672.3 syllables) with a 98.7%

correct rate, indicating that the proposed procedure is suitable for

classifying syllables vocalized by one animal model that is generally

used in the neuroscientific research field.
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