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Self-sustained neural activity maintained through local recurrent connections is of funda-
mental importance to cortical function. Converging theoretical and experimental evidence
indicates that cortical circuits generating self-sustained dynamics operate in an inhibition-
stabilized regime. Theoretical work has established that four sets of weights (WE E,
WE I,WI E, andWI I) must obey specific relationships to produce inhibition-stabilized
dynamics, but it is not known how the brain can appropriately set the values of all four
weight classes in an unsupervised manner to be in the inhibition-stabilized regime. We
prove that standard homeostatic plasticity rules are generally unable to generate
inhibition-stabilized dynamics and that their instability is caused by a signature property
of inhibition-stabilized networks: the paradoxical effect. In contrast, we show that a family
of “cross-homeostatic” rules overcome the paradoxical effect and robustly lead to the emer-
gence of stable dynamics. This work provides a model of how—beginning from a silent
network—self-sustained inhibition-stabilized dynamics can emerge from learning rules
governing all four synaptic weight classes in an orchestrated manner.

inhibition-stabilized networks j paradoxical effect j homeostatic plasticity

Self-sustained patterns of neural activity maintained by local recurrent excitation underlie
many cortical computations and dynamic regimes, including the persistent activity associ-
ated with working memory (1–3), motor control (4, 5), asynchronous states associated with
the default cortical dynamic regime (6–10), and up-states (8, 11). Recurrent excitation also
has the potential to drive pathological and epileptiform regimes (12, 13). Converging theo-
retical and experimental evidence indicates that cortical circuits that generate self-sustained
dynamics operate in an inhibition-stabilized regime, in which positive feedback is held in
check by recurrent inhibition (7, 14–20). There is also evidence that inhibition-stabilized
regimes may comprise the default awake cortical dynamic regime (8, 9, 20).
At the computational level inhibition-stabilized networks are often modeled as a simpli-

fied circuit composed of interconnected excitatory (E) and inhibitory (I) neural populations
with four classes of synaptic weights: WE E, WE I, WI E, and WI I. In the inhibition-
stabilized regime, recurrent excitation produces positive feedback, which is held in check
by rapid inhibition. The dynamics settles into a stable fixed-point attractor and instantiates
an inhibition-stabilized network. A signature of the inhibition-stabilized regime is the pres-
ence of the paradoxical effect, in which an increase in excitatory drive to inhibitory neurons
produces a net decrease in the firing rate of those same inhibitory neurons (14–16, 18), a
phenomenon that has been observed in the awake resting cortex (Fig. 1A) (20). Analytical
and numerical studies have demonstrated that in order to support inhibition-stabilized
dynamics, the four weight classes must obey certain “balanced” relationships; for example,
if excitation is too strong, runaway (or saturated) excitation occurs, whereas if inhibition is
too strong the activity falls into a quiescent fixed point (6, 7, 14–16, 19). However, in
most computational models the set of four weights is determined analytically or through
numerical searches—or in a few cases by allowing one or two weights to be plastic while
appropriately hardwiring the others. In contrast, experimental studies both in vitro and
in vivo have shown that self-sustained activity emerges autonomously during development
(21–26), indicating that synaptic plasticity rules are in place to orchestrate the unsupervised
emergence of inhibition-stabilized dynamics. Additionally, because the four weight classes
have been observed to undergo synaptic plasticity in experimental studies (27–32), here we
ask how inhibition-stabilized dynamics might emerge in a self-organizing manner.
One possibility is that standard homeostatic forms of plasticity underlie the emer-

gence of inhibition-stabilized dynamics. Homeostatic plasticity rules generally assume
that excitatory weights are regulated in a manner proportional to the difference
between some ontogenetically determined setpoint and average neural activity (for both
excitatory and inhibitory neurons)—and conversely that inhibitory weights onto excit-
atory neurons are regulated in the opposite direction (33–38). However, it remains an
open question whether homeostatic rules can lead to the self-organized emergence of
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inhibition-stabilized networks. Here we use computational
models and analytical methods to explore families of homeo-
static plasticity rules that operate in parallel in all four synapse
classes and lead to inhibition-stabilized dynamics. We show
that when driving the network toward inhibition-stabilized
regimes, standard forms of homeostatic plasticity are stable only
in a narrow region of parameter space. Here we prove that this
instability arises from the paradoxical effect. Indeed, it can be
seen that like increasing external input to an inhibitory neuron,
increasing the excitatory weights onto an inhibitory neuron
firing below its setpoint produces a paradoxical (and anti-
homeostatic) decrease in inhibitory activity (Fig. 1 B and C).
While inhibition-stabilized regimes can operate in the presence
or absence of external input, here we focus primarily on “fully
self-sustained” activity in the absence of any external tonic
input; however, we show that our results also apply when exter-
nal inputs are present.
We conclude that homeostatic manipulations in the inhibi-

tory population lead to paradoxical outcomes, making the rules
unstable in this context. Therefore, homeostatic plasticity rules
that aim to bring the network to the relevant dynamic regime
of the cerebral cortex must work in paradoxical conditions. We
developed a family of homeostatic plasticity rules that include
“cross-homeostatic” influences and lead to the unsupervised
emergence of fully self-sustained dynamics in the inhibition-
stabilized regime in a robust manner. These rules are consistent
with experimental data and generate explicit predictions regard-
ing the effects of manipulations of excitatory and inhibitory
neurons on synaptic plasticity.

Results

Standard Homeostatic Plasticity Rules Cannot Account for
the Emergence of Stable Self-Sustained Activity. We first ask,
when starting from a network in a silent regime similar to corti-
cal circuits early in development, whether standard homeostatic
rules can drive networks to stable self-sustained dynamics in the
absence of any external input. Based on experimental studies
we assume that both excitatory and inhibitory neurons exhibit
ontogenetically programmed firing rate setpoints (38–42) and
ask whether homeostatic plasticity of excitatory and inhibitory
weights can drive neurons to these setpoints. Homeostatic plas-
ticity rules are traditionally defined by changes in synaptic
weights that are proportional to an “error term” defined by the
difference between the setpoint and the neurons’ average activ-
ity levels (34–37, 39, 43, 44), for example, ΔWE E ∝ Eset �
Eavg, where any departure of the excitatory activity Eavg from
the setpoint Eset would lead to a compensatory correction in
the value of the weight WE E.

We first examined whether stable self-sustained dynamics
can emerge in the standard two-population model (Fig. 1B)
(19) through homeostatic mechanisms. We initialized the four
weights (WE E, WE I, WI E, and WI I) of the model to
small values and applied a standard family of homeostatic plas-
ticity rules to all four weight classes (Fig. 2A). It is well estab-
lished that PV+-inhibitory neurons have higher firing rates
than pyramidal neurons during periods of self-sustained activity
(45, 46); thus, based on previous data using intracellular
recordings, we set the setpoints for the E and I populations to
5 and 14 Hz, respectively (46). We first asked whether the fam-
ily of four standard homeostatic plasticity rules can lead to a
stable self-sustained dynamic regime in response to a brief
external input. Since in the absence of external input (or intrin-
sic spontaneous activity) networks capable of self-sustained
activity have a trivial stable silent (down-state) regime, at the
beginning of each trial we administered a brief external input
to engage the network (low levels of noise were used to avoid
fluctuation-induced transitions). Although the rules are homeo-
static in nature (e.g., if I is below Iset, an increase in WI E and
a decrease in WI I would be induced), in the example shown
in Fig. 2 B and C the network failed to converge to a stable
self-sustained regime (Fig. 2 B and C). Initially (trial 1) an
external input to the excitatory population does not engage
recurrent activity because WE E is too weak. By trial 200 the
weights have evolved and the brief external input triggers self-
sustained activity, but activities E and I do not match the corre-
sponding setpoints; the network is in a nonbiologically
observed regime in which E > I, so the weights keep evolving.
By trial 600 E = Eset but I < Iset, and rather than converging to
Iset, the network returns to a regime without self-sustained
activity by trial 1,000. At that point both setpoint error terms
have increased, leading to continued weight changes (Fig. 2C).
Results across 100 simulations with different weight initializa-
tions (SI Appendix, Supplementary Methods) further indicate
that the standard homeostatic rules are ineffective at driving E
and I toward their respective setpoints and generating stable
self-sustained dynamics (Fig. 2D).

To gain insights into why a family of homeostatic plasticity
rules that might intuitively converge fails to do so, we can con-
sider the case in which a network is initialized to a set of
weights that already match Eset and Iset (Fig. 2E). Although the
neural subsystem alone is stable at this condition (trial 1), small
fluctuations in E and I cause the homeostatic rules to drive the
weight values and the average activity of the network away
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Fig. 1. The paradoxical effect in cortical circuits and its implications for
plasticity. (A) Average inhibitory (red) and excitatory (green) firing rates in
the visual cortex of awake mice in the absence of explicit external sen-
sory stimulation. When inhibitory neurons are optogenetically activated,
the firing rates of the inhibitory neurons show a paradoxical decrease in
activity during the stimulation, indicative of an inhibition-stabilized net-
work. Adapted from Sanzeni et al. (20). (B) Two-population firing rate
model of self-sustained cortical activity. The dynamics of the excitatory
(green) and inhibitory (red) populations are governed by four synaptic
weights, WE E, WE I, WI E, and WI I. Similar to the experimental case
shown in A, the model shows the paradoxical effect when the inhibitory
population is excited via an external current Iext = 7. Weights were initial-
ized to WEE = 5, WEI = 1.52, WIE = 10, and WII = 2.25. (C) As in B, if an inhib-
itory population is firing below its homeostatic setpoint, and one were to
increase its excitatory weights according to standard homeostatic rules,
the increase in excitatory weights would produce a paradoxical and anti-
homeostatic decrease in inhibitory neuron firing. Weights were initialized
to WEE = 5, WEI = 1.52, WIE = 10, and WII = 2.25, with a later increase of
WIE = 12.
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from the setpoints (trial 500). It is possible to understand this
instability by performing an analytical stability analysis. Specifi-
cally, a two-population network in which the weights undergo
plasticity can be characterized as a dynamic system composed
of two subsystems: the neural subsystem, composed of the two
differential equations that define E and I dynamics, and the
synaptic homeostatic plasticity rule subsystem, defined by the
four plasticity rules (SI Appendix, Section 2.1). We use the two
very different time scales of the neural (fast) and plasticity rule
(slow) subsystems to perform a quasi-steady-state approxima-
tion of the neural subsystem; then we compute the eigenvalues
of the four-dimensional plasticity rule subsystem and finally get
an analytical expression for the stability condition of the plastic-
ity rules (SI Appendix, Section 2.3). For the entire system to be
stable, both the neural and plasticity rule subsystems have to be
stable. For the results presented in Fig. 2 B–E we assumed the
learning rates driving plasticity onto the excitatory (αE) and
inhibitory neurons (αI) to be equal. Under these conditions,
the standard homeostatic rules are mostly unstable for biologi-
cally meaningful parameter values in which the neural system is
stable. The regions of stability can be seen in Fig. 2F. Critically,
Fig. 2F shows that the stability region of the neural subsystem,
that is, an inhibition-stabilized network (15, 19), is almost
entirely within the region where the homeostatic plasticity rule
system is unstable. The only region where a stable self-
sustained dynamics can exist is the small triangle where the
neural and synaptic stability regions overlap (SI Appendix,

Fig. S1). Only when plasticity onto the excitatory neuron is sig-
nificantly faster (αE ≫ αI, resulting in very slow convergence to
the inhibitory setpoints) is there a substantial region of overlap
between the stability of the neural and plasticity rule subsys-
tems (Fig. 2G; SI Appendix, Section 1.1).

Because inhibitory neurons seem to undergo homeostatic
plasticity as quickly as or more quickly than excitatory neurons
(40–42, 47, 48) we conclude that standard homeostatic rules
by themselves do not account for the emergence of stable self-
sustained and inhibition-stabilized dynamics. Similarly, a com-
bination of analytical and numerical methods also indicates
that variants of these homeostatic rules, such as synaptic scal-
ing, are also stable only in a narrow region of parameter space
(SI Appendix, Section 1.5). We next show that the inherent
instability of standard homeostatic plasticity rules is related to
the paradoxical effect.

The Paradoxical Effect Hampers the Ability of Homeostatic
Rules to Lead to Self-Sustained Activity. The inability of the
homeostatic plasticity rules to generate stable self-sustained
activity is in part a consequence of the paradoxical effect, a
counterintuitive yet well described property of two-population
models of inhibition-stabilized networks (14, 15). Specifically,
if during self-sustained activity one increases the excitatory
drive to the inhibitory population, the net result is a decrease
in the firing rate of the inhibitory units. This paradoxical effect
can be understood in terms of the I!E!I loop: The increased
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Fig. 2. Standard homeostatic rules are stable only in a narrow parameter regime. (A) Schematic (Top) of the population rate model in which the four
weights are governed by a family of homeostatic plasticity rules (Bottom). (B) Example simulation of the network over the course of simulated development.
Each plot shows the firing rate of the excitatory and inhibitory populations over the course of a trial in response to a brief external input (Iext = 7, Idur =
10 ms). Note that the pulse is applied on every trial at t = 0. Eset = 5 and Iset = 14 represent the target homeostatic setpoints. Weights were initialized to
WEE = 2.1, WEI = 3, WIE = 4, and WII = 2. The learning rate was set to αE = αI = 1e�4. Note that while the network supports self-sustained activity in trial 200,
the firing rates do not converge to their setpoints, and by trial 500 the self-sustained dynamics are no longer observed. (C) Average rate across trials (Top)
for the excitatory and inhibitory populations for the data shown in B. Weight dynamics (Bottom) produced by the homeostatic rules across trials for the data
shown in B. (D) Average final rate for 100 independent simulations with different weight initializations. Data represent mean ± SEM. (E) Simulation of a net-
work starting with the weights sets that generate self-sustained activity at the target setpoints (Eset = 5 and Iset = 14 Hz; trial 1, Top). After 500 trials the net-
work has diverged from its setpoints, indicating the synaptic plasticity rules are unstable. Weights were initialized to WEE = 5, WEI = 1.09, WIE = 10, and WII =
1.54. (F) Analytical stability regions of the neural and plasticity rule subsystems as a function of the free weights WEE and WIE. (Note that once WEE and
WIE are set to generate self-sustained activity with specific Eset and Iset values, WEI and WII are fully determined by WEE and WIE, respectively). Here the stability
plot is obtained by considering equal learning rates for all four plasticity rules (as used for panels B–E). Blue asterisk corresponds to the initial conditions
shown in E (Top). (G) Similar to F but with αE ≫ αI. (H) Similar to F but with but with αE ≪ αI. To the right of the blue line, the network is in a paradoxical
regime (defined by the condition WEE*gE � 1 > 0). (I) Condition of stability of the neural system and plasticity rule system when the learning rate on the inhib-
itory neuron dominates and an external excitatory current is applied to the excitatory neuron. The current produces an enlargement of the stability region
of the neural subsystem. Right of blue line shows the area where the network is in a paradoxical regime.
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inhibitory drive leads to a lower steady-state rate for E, but this
new steady-state value requires a decrease in the I firing rate to
maintain an appropriate E/I balance (in effect, the decrease
in E decreases the drive to I by more than the external
increase to I). This paradoxical effect has profound consequen-
ces for plasticity rules that attempt to drive excitatory and
inhibitory weights to an activity setpoint.
The relationship of the paradoxical effect and the homeostatic

rule performance is presented in Fig. 2H. The region of stability
for the homeostatic plasticity rules is shown in a parameter regime
where inhibitory plasticity is much faster (αE ≪ αI). Contrary to
when excitatory plasticity dominates, the region of stability is
small, and there is no overlap with the region of stability of the
neural subsystem. Crucially, the boundary of the stability region
of the plasticity rule coincides with the condition for the paradoxi-
cal effect to be present (right of the blue line in Fig. 2H, SI
Appendix, Sections 2.2.4 and 2.3.6). Under these conditions, the
rules can be stable only when the network is not in an inhibition-
stabilized regime. If a network regime with nonzero E is forced to
exist in that region (e.g., via a tonic external current, Fig. 2I), it
would be stable only in the nonparadoxical region with the plas-
ticity rules in place (SI Appendix, Section 2.5). Note that in the
absence of a sufficiently strong external input it is not possible to
have stable self-sustained activity that is not inhibition stabilized.
To understand the impact of the paradoxical effect on homeo-

static plasticity rules, consider a network state in which the I rate
falls significantly below its setpoint and the E rate is close to its set-
point (Fig. 3A). In order to reach the I setpoint, homeostatic plas-
ticity in the inhibitory neuron would intuitively result in an
increase of WI E. However, because of the paradoxical effect, an
increase in WI E actually makes I decrease (Fig. 3B), thus increas-
ing the error term Iset � I. To increase the steady-state inhibitory
rate, we can “anti-homeostatically” decrease the excitatory weight
onto the inhibitory neurons (Fig. 3C). (Note that the converse is
true for the WI I weight.) This simple example shows the com-
plexity of designing a coherent set of rules in a strongly coupled
system (an analysis of the paradoxical effect is in SI Appendix,
Section 2.2.4). This analysis also explains why homeostatic plastic-
ity rules can lead to self-sustained activity at the appropriate set-
points when αE ≫ αI. Essentially, by allowing plasticity onto the
E population to be faster, one overcomes the counterproductive
homeostatic plasticity associated with the paradoxical effect.
The interaction between the paradoxical effect and homeostatic

plasticity in inhibitory neurons leads to the question of whether
anti-homeostatic plasticity rules may be more effective that stan-
dard homeostatic rules; for example, ΔWI E ∝ �(Iset � Iavg).
Thus, we also examined a number of hybrid families of plasticity
rules with different combinations of homeostatic and anti-
homeostatic rules. Indeed, some hybrid families exhibited large
degrees of overlap between the stable regions of the network and
plasticity rule subsystems. However, numerical simulations
revealed that these rules were mostly ineffective in driving net-
works to self-sustained activity at the target setpoints (SI Appendix,
Section 1.2 and Fig. S2). These two results are not inconsistent
because the stability analysis speaks to cases when the network is
initialized to weights that satisfy Eset and Iset, not whether the rules
will drive network activity into these stable areas from any initial
state, including an early developmental state. Thus, we interpret
these results as meaning that while anti-homeostatic plasticity can
contribute to stability of this dual dynamic system, anti-
homeostatic plasticity is ineffective at driving the dynamics toward
setpoints (in other words, that anti-homeostatic plasticity might
allow for stable inhibition-stabilized dynamics but does not neces-
sarily generate sizable basins of attraction around the fixed point).

Cross-Homeostatic Rule Robustly Leads to the Emergence of
Self-Sustained Dynamics. Given that a standard family of
homeostatic plasticity rules did not robustly lead to stable
dynamics, we explored alternative learning rules. By defining a
loss function based on the sum of the excitatory and inhibitory
errors, we analytically derived a set of learning rules using gradi-
ent descent (SI Appendix, Section 3). This approach led to
mathematically complex and biologically implausible rules;
however, approximations and simulations inspired a simple
class of learning rules that we will refer to as cross-homeostatic
(see Methods). The main characteristic of this set of rules is that
the homeostatic setpoints are “crossed” (Fig. 4A). Specifically,
the weights onto the excitatory neuron (WE E and WE I) are
updated to minimize the inhibitory error, while weights into
the inhibitory neuron (WI E and WI I) change to minimize
the excitatory error. Although apparently nonlocal, from the
perspective of an excitatory neuron these rules can be inter-
preted as cells having a setpoint for the total inhibitory input
current onto the cell. Such inputs could be read by a cell as the
activation of metabotropic receptors (e.g., gamma-
aminobutyric acid B [GABAB] and metabotropic glutamate; see
Discussion). Indeed, a similar cross-homeostatic rule has been
recently derived for WI E weights (49).

An example of the performance of the cross-homeostatic
rules is shown in Fig. 4 B and C. After an initial phase with no
self-sustained firing (trial 1), recurrent activity reaches stable
self-sustained dynamics (trial 20), whose average rate continues
to converge toward its defined setpoints (trial 100) until the
learning rule system reaches steady state (trial 500). The average
E and I rates of the network evolve asymptotically toward the
defined setpoints, as the weights evolve and converge (Fig. 4C).
Across different weight initializations the rules proved effective
in driving the mean activity of the network to the target E and
I setpoints and led to balanced, inhibition-stabilized dynamics
(Fig. 4 D and E). The weight trajectory from its initial value to
its final one is shown for 100 different simulations (Fig. 4D).
Each line corresponds to individual experiments with different
initializations (for visualization purposes weights were initial-
ized around the final stable weights; SI Appendix, Fig. S3
includes broader initialization conditions). Circles indicate the
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final values of the weights. Independently of the initial condi-
tions, the weights converge to a line attractor (actually a two-
dimensional plane attractor in four-dimensional weight space;
SI Appendix, Section 2.1). Note that this attractor refers to the
sets of weights that generate self-sustained dynamics where E
and I activity matches Eset and Iset, respectively. That is, for a
given pair of setpoints (Eset, Iset) the final values of the weights
WE I and WI I are linear functions of the “free” weights
WE E and WI E, respectively. This is a direct consequence of
the steady-state conditions for the nontrivial fixed-point of the
two-population model (14, 15), where the slope of the line is
defined by the setpoints Eset/Iset (see Methods). For example, to
satisfy dE/dt = 0 at the neural activity fixed point, the net exci-
tation and inhibition must obey a specific balance, meaning
that once WE E or WE I is determined, the other weight is
analytically constrained for a given set of setpoints and parame-
ters. Once the weights reach this specific relationship, the E
and I rates reach their corresponding Eset and Iset values (Fig.
4E). Numerical simulations confirm that the cross-homeostatic
rule robustly guides self-sustained activity to different Eset and

Iset setpoints (Fig. 4F), whose ratios define the slopes of the
final relationship between the weights (Fig. 4G). The above
implementations were trial-based, that is, the weights were
updated at the end of every trial. An “online” implementation,
in which weights were continuously updated, also led to con-
vergence to the setpoints (SI Appendix, Fig. S4).

To further validate the effectiveness and stability of the
cross-homeostatic rule, we again used analytic methods to
determine the eigenvalues of the four-dimensional dynamic sys-
tem describing the family of four cross-homeostatic rules. As
above, stability is determined by the sign of the real part of the
eigenvalues of the system. It can be shown (SI Appendix,
Section 1.3) that these learning rules are stable for any set of
parameter values, provided that the stability conditions of the
neural subsystem are satisfied (Fig. 4H). Importantly, these
results demonstrate that cross-homeostatic rules work in both
paradoxical and nonparadoxical conditions. Furthermore, the
stability of the rules is independent of the absence or presence
of external input (SI Appendix, Section 2.5). Therefore, it is
possible to formally establish that cross-homeostatic learning

Eset

Trial 20 Trial 500

Iset

0

10

20

10

20

-0.2 0 0.2 0.4 0.6 -0.2 0 0.2 0.4 0.6

Trial 1 Trial 100

20

W
IE

(rules
stable)

WEE

5

10

15

2 6 10

(network
stable)

0

Time (sec)

Ra
te

 E
/I

 (
H

z)

Time (sec)

0

10

20

0

2.5

5.0

0
100 200 300 400 500

WEE
WEI
WIE
WII

M
ea

n  
E/

I 
(H

z)
W

ei
gh

ts

Trials

A BCross-Homeostatic Rules

E I
WIEWEE WII

WEI

C D E

F H

10

20

30

0
E Rate I Rate

Fi
na

l R
at

e 
(H

z)

WIE

2

1

34

1

2

0

3

WEE

W
EI

W
II

W
II

W
EI

Slope =
Eset

Iset

2

1

2

1

8 10 124 5 6 7

1.5

0.5

1.5

0.5

2.5

1 2 3

4 6 8 5 10 15

6

2

4

0

G

ΔWEE = + αE E (ISet - I)
ΔWEI = - αE I (ISet - I)
ΔWIE = - αI E (ESet - E)
ΔWII = + αI I (ESet - E)

Α

αx

15

10

5

0

Fi
na

l R
at

e 
(H

z)

E Rate I Rate

Eset

Iset

Eset

Iset

WIEWEE

Fig. 4. A family of cross-homeostatic rules robustly lead to inhibition-stabilized dynamics at Eset and Iset. (A) Schematic of the network model and the family
of cross-homeostatic plasticity rules. (B) Example network dynamics across simulated development. The network is initialized with weights that do not lead
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rules are inherently stable and can robustly account for the
emergence and maintenance of self-sustained, inhibition-
stabilized dynamics in the two-population model.

Cross-Homeostatic Rules Drive Average Activity to Setpoints
in a Multiunit Model. The previous results demonstrate the
robustness of the cross-homeostatic family of rules in driving a
two-subpopulation rate model to a stable self-sustained, inhibi-
tion-stabilized regime. We next examined whether these rules
are also effective for a multiunit model in which there are many
excitatory and inhibitory units. The firing-rate model was com-
posed of 80 excitatory and 20 inhibitory recurrently connected
neurons (Fig. 5A). In this case, individual neurons adjust their
weights to minimize the average error of their presynaptic
partners (SI Appendix, Supplementary Methods). Starting with
normally distributed weights, the network reaches stable self-
sustained dynamics (Fig. 5 B and C). However, individual units
converge to different final rate values, satisfying the defined set-
points only as an average (green and red thick lines of Fig. 5B).
This is a result of the nature of the cross-homeostatic rules:
Neurons adjust their weights to minimize the error of the mean
activity of its presynaptic partners. For this reason, although
the network is globally balanced, single units do not converge
to the same balanced E–I line attractor (Fig. 5 D and E). After
cross-homeostatic plasticity, some differential structure is visible
among the various weight classes (Fig. 5F). Simulations across
400 different initialization conditions demonstrate that the
rules lead the average excitatory and inhibitory population
activity to Eset and Iset, respectively (Fig. 5 G and H). The
cross-homeostatic rules are thus capable of driving a multiunit
model to a stable self-sustained regime, but they do not guide
individual units to local setpoints. Similar results are obtained
when the network weights are initialized with log-normal distri-
butions (SI Appendix, Fig. S5).

Learning Rule with Cross-Homeostatic and Homeostatic
Terms Leads to Local Convergence to Setpoints. The above
results demonstrate a potential limitation of the cross-
homeostatic family of rules: The target setpoints are reached
only at the population level. An additional and potentially
more serious limitation is that cross-homeostatic rules predict
that artificially altering the activity of a small number of excit-
atory neurons within a large network would not directly pro-
duce homeostatic plasticity in these neurons but would directly
produce plasticity in their postsynaptic inhibitory neurons.
This prediction seems to conflict with homeostatic plasticity
experiments that have targeted specific cell types rather than
globally altered activity through pharmacological means (50,
51). We therefore assessed the scenario in which both cross-
homeostatic and homeostatic rules operate in parallel, resulting
in a two-term cross-homeostatic family of rules. Interestingly,
this family of rules can be obtained from an approximation of a
gradient descent derivation on a loss function that includes the
difference between E and I and their respective setpoints (SI
Appendix, Section 3). In a two-population model, we first con-
firmed that this two-term cross-homeostatic family is stable,
assuming that the learning rate of the homeostatic term does
not dominate (SI Appendix, Section 1.4).
Simulations with the same multiunit model as in Fig. 5

show that with the two-term cross-homeostatic rule all individ-
ual units converge to their respective Eset and Iset (Fig. 6 A–C).
Importantly, in contrast to the single-term cross-homeostatic
rule, the total excitatory and inhibitory weight of each individ-
ual unit converged to the E–I balance of the line attractor

predicted by the network equations (Fig. 6 D and E), while
some structure in the different weight classes is also observed in
the connectivity matrices (Fig. 6F). The convergence to the set-
points was stable across a wide range of initial states (Fig. 6 G
and H). Thus, a hybrid family of plasticity rules that includes
both cross-homeostatic and homeostatic forces provides global
network stability while also locally driving each unit to their
setpoint and a balanced E–I regime.

Spiking Neural Network Model with Sparse Connectivity
Converges to an Inhibition-Stabilized Regime at the Setpoints.
The previous results demonstrate the ability of the two-term
cross-homeostatic plasticity rule to guide firing-rate-based models
to inhibition-stabilized regimes at the target setpoints. We next
examined the effectiveness of this family of learning rules in a
sparsely connected spiking neural network (Fig. 7A). In a sparsely
connected network, the cross-homeostatic component of the
learning rule can be implemented globally (e.g., excitatory plastic-
ity onto an excitatory unit is based on the mean error of the
entire population of inhibitory units) or locally (e.g., excitatory
plasticity onto an excitatory neuron is based on the mean error of
its presynaptic inhibitory partners). Here we used a local imple-
mentation, in which, for example, an excitatory neuron has a set-
point interpreted as a target for the total amount of GABAB

receptor activation it should receive (see Discussion).
Starting from a developmental scenario with weak weights

(i.e., that do not support any self-sustaining activity), the rules
successfully drive the network to stable self-sustained and asyn-
chronous spiking activity near the setpoints (Fig. 7 B–E;
CVISI∼1). As seen in the firing rate multiunit model, the
weights self-organize from an unstructured initial condition
(Fig. 7 F and G) to a state where a balance of excitation and
inhibition emerges (Fig. 7 H–K). After training, the firing rates
of the excitatory and inhibitory neurons distribute around their
setpoints (Fig. 7H). As expected, the emergent network dynam-
ics exhibits the paradoxical effect; specifically, when inhibitory
neurons are transiently activated with an external current, a net
decrease in the mean firing rate is observed (Fig. 7I). Finally,
convergence holds across networks initialized with different
weights (Fig. 7L). These results demonstrate that the theoretical
and computational results in rate networks translate to more
complex and biologically realistic scenarios.

Discussion

Elucidating the learning rules that govern the connectivity
within neural circuits is a fundamental goal in neuroscience, in
part because learning rules establish unifying principles that
span molecular, cellular, systems, and computational levels of
analyses. Elucidation of Hebbian associative synaptic learning,
for example, linked simple computations at the level of single
proteins (the N-methyl-D-aspartate receptor) with higher-order
computations at the system and computational levels (52–56).
However, it remains the case that because most studies have
focused on learning rules at one or two synapse classes, little is
known about the learning rules that give rise to complex neural
dynamic regimes. Here we have taken steps toward exploring
families of learning rules that operate in parallel at four differ-
ent synapse classes, and starting from a silent state, capture the
experimentally observed emergence of self-sustained, inhibi-
tion-stabilized dynamics in cortical networks.

We first explored whether standard formulations of homeostatic
plasticity can account for the unsupervised emergence of self-
sustained, inhibition-stabilized regimes. Based on experimental
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Fig. 5. Cross-homeostatic rules drive a multiunit firing rate model to a global network balance. (A) Schematic (Left) of the multiunit rate model. The network
is composed of 80 excitatory and 20 inhibitory units recurrently connected. The four weight classes are governed by cross-homeostatic plasticity rules
(Right). SI Appendix, Supplementary Methods includes a detailed explanation of the implementation. (B) Evolution of the average rate across trials of 20 excit-
atory and inhibitory units in an example simulation. The network is initialized with random weights (SI Appendix, Supplementary Methods), and so neurons
present diverse initial rates. Eset = 5 and Iset = 14 represent the target homeostatic setpoints. Red and green lines represent the individual (thin lines) and
average (thick lines) firing rate of inhibitory and excitatory population, respectively. The learning rate was set to α = 2e�5. (C) Example of the firing rates of
two excitatory and two inhibitory units at different points in B. The evolution of the firing rates of the excitatory and inhibitory populations within a trial in
response to a brief external input is shown in every plot. Individual units converge to stable self-sustained dynamics but not to the defined setpoint. (D) E–I
weight relationships at the beginning of the simulation. Every dot represents the total presynaptic weight onto a single unit. Left, excitatory neurons; Right,
inhibitory neurons. (E) Same plot as in D at the end of the simulation. (F) Weight matrix for the multiunit model at the beginning (Left) and end (Right) of the
simulation. Inhibitory weights are shown in blue, excitatory weights in red. (G) Average firing rate of the units of the multiunit model and for different initiali-
zations of weights (n = 400). The network converges to the setpoints in average. Data represent mean ± SEM. (H) Same data as in G but showing the average
initial rate of the network for the multiple initializations (blue dots) and the average rate at the end (black). Target rates are shown in dotted lines (green,
Eset = 5, red Iset = 14).
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data we assumed that both excitatory and inhibitory neurons
have an ontogenetically programmed activity setpoint during
self-sustained activity and that plasticity in the four weight classes
is driven by standard formulations of homeostatic plasticity.

Numerical simulations and analytical stability analyses revealed
that while some initial conditions and parameter regimes led to
self-sustained dynamics, they occupied a narrow region of parame-
ter space, when the rate of synaptic plasticity onto inhibitory
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Fig. 7. Two-term cross-homeostatic learning rules guide a sparse spiking network model to an inhibition-stabilized regime at the target setpoints. (A) Sche-
matic of the network. Two thousand leaky adaptive integrate-and-fire units (1,600 excitatory and 400 inhibitory) were connected with a 25% probability.
(B) Spike rasters, population PSTHs (peristimulus time histograms), and sample voltage traces for excitatory (green) and inhibitory (red) units, across four
stages over the course of training. (C) Population average firing rates over the course of training (moving average with a width of five trials). (D) Mean
weights for each synaptic class over the course of training. Weights were initialized in an early developmental regime reflecting a silent network. WEE =
80 pA, WIE = 100 pA, WEI = 350 pA, WII = 225 pA. (E) Weight matrix at the end of training. Due to the size of the network, only a 10% subset of the full weight
matrix is shown. (F) Initial E/I balance onto excitatory units, visualized as a scatterplot of the sum of incoming excitatory synaptic weights versus the sum of
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I balance onto inhibitory units. (L) Robustness of convergence to weight initialization for nine networks initialized with different mean weights, we show the
initial and final MSE of the unit FRs with respect to their homeostatic setpoints after a 6,000-trial training session.
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neurons is much lower than that onto excitatory neurons (Fig. 2G
and SI Appendix). When the rates of inhibitory and excitatory
plasticity are comparable, analytical stability analyses confirmed
that the region of stability of the network dynamics overlapped
only in a narrow region. Such a narrow stability area seems
incompatible with the robustness necessary in biological systems
and with experimental data showing that inhibitory neurons
exhibit homeostatic plasticity as fast as or faster than excitatory
neurons (40–42, 47, 48). We thus conclude that a family of stan-
dard homeostatic plasticity rules operating in all four synapse clas-
ses is not sufficient to account for the experimentally observed
emergence of self-sustained dynamics in cortical circuits.

Cross-Homeostatic Plasticity. Analyses of approximations of a
gradient-descent-derived learning rule suggested, somewhat
counterintuitively, that adjusting the E population based on the
error of the I population (and vice versa) may prove to be an
effective family of learning rules. Indeed, numerical simulations
and analytical stability analyses revealed that this cross-
homeostatic rule was robustly stable (Fig. 4). However, the
convergence to the excitatory and inhibitory setpoints in a mul-
tiunit network occurred only at the population level, not at the
level of individual units. This observation is not inconsistent
with experimental data, which show that in vivo neurons do
exhibit a wide range of variability in their apparent setpoints
(57, 58). However, a significant concern with this single-term
cross-homeostatic rule is that it predicts that selectively increas-
ing activity in a subpopulation of excitatory neurons would first
induce plasticity in inhibitory neurons (WI E and WI I),
which could in turn lead to plasticity in the manipulated excit-
atory neurons (WE E and WE I). Most homeostatic plasticity
studies do not speak to this prediction because they have used
pharmacological manipulations of both excitatory and inhibi-
tory neurons. However, some studies have used cell-specific
manipulations—such as cell-specific overexpression of potas-
sium channels (50, 51)—that strongly support the notion that
synaptic plasticity is guided at least in part by their own devia-
tion from setpoint.
In our opinion, and although we have explored alternative rules

(SI Appendix, Section 1.6), the most biologically plausible set of
plasticity rules that lead to stable self-sustained dynamics com-
prises a hybrid rule that includes both standard homeostatic and
cross-homeostatic terms. Such a two-term cross-homeostatic rule
robustly led to a self-sustained, inhibition-stabilized network, with
all units converging to their setpoints, and is directly consistent
with current experimental data.

Biological Plausibility of Cross-Homeostatic Plasticity. While
the neural mechanisms underlying homeostatic plasticity remain
to be elucidated, it is generally assumed that an individual neuron
can maintain a running average of their firing rate over the course
of hours as a result of Ca2+-activated sensors. Based on the devia-
tion of this value from an ontogenetically determined setpoint,
neurons up- or down-regulate the density of postsynaptic recep-
tors accordingly (38, 58–60). Two-term cross-homeostatic plastic-
ity would require additional, and apparently nonlocal information
about the error in a given neuron’s presynaptic partners. Impor-
tantly however, this rule can be implemented locally because any
postsynaptic neuron has access to the mean activity of its presyn-
aptic partners simply as a result of its postsynaptic receptor activa-
tion. Indeed, a plasticity rule for WI E weights with a similar
cross-homeostatic error term has also been recently proposed
and implemented based on the mean activation of postsynaptic
receptors—more specifically the net postsynaptic currents, which

provide a coupled measure of average presynaptic firing and syn-
aptic weights (49).

Here we propose that cross-homeostatic plasticity could be
implemented through postsynaptic metabotropic receptors
(e.g., mGlu and GABAB). Such receptors would provide a mecha-
nism for postsynaptic neurons to maintain a running average of
the activity of its presynaptic partners that is decoupled from the
synaptic weights. Metabotropic receptors are G protein coupled
receptors that provide a low-pass filtered measure of presynaptic
activity and are involved in a large number of incompletely under-
stood neuromodulatory roles (61, 62). Since metabotropic recep-
tors appear to undergo less homeostatic and associative plasticity,
they provide a measure of presynaptic activity that is naturally
decoupled from the ionotropic receptors (e.g., AMPA and
GABAA) that are being up- and down-regulated.

Further support for the notion that individual neurons have
access to global network activity emerges from studies suggest-
ing that neurons might not homeostatically regulate activity at
the individual neuron level but rather at the global population
level (63). Such a global-level homeostasis could be achieved by
nonsynaptic paracrine transmission. Indeed, retrograde messen-
ger systems are ideally suited for this role, as they have already
been implicated in signaling mean activity levels to local
capillaries, driving the activity-dependent vasodilation that
underlies functional MRI (64).

Paradoxical Effect and Standard Homeostatic Rules. The para-
doxical effect is one of the defining features of inhibition-
stabilized networks, and a growing body of evidence suggests that
the cortex operates in this particular dynamic regime (20, 65–67).
As recent work has begun to hint (68), here we formally prove
that the paradoxical effect applies important constraints to the
potential learning rules that lead to the emergence of inhibition-
stabilized networks. In the simplified case in which there is only
homeostatic plasticity onto the inhibitory neurons, we can imme-
diately see why the paradoxical effect renders standard homeostatic
rules ineffective. If the I population is below its setpoint, standard
homeostatic rules would increase WI E, which paradoxically
would further decrease I (Fig. 3), thus further increasing the error
instead of decreasing it (Fig. 3). This reasoning is related to why,
when using the standard family of homeostatic rules, the rate of
plasticity onto the inhibitory neurons has to be much smaller—in
effect making the “paradoxical homeostatic plasticity effect” much
slower. Furthermore, our analytical stability analyses show that in
the limit of vanishingly small excitatory learning rates (αEE,EI ≪
αIE,II) the stability region of the weight subsystem is bounded by
the paradoxical condition. This means that the only allowed stable
states with nonzero E activity will occur in the nonparadoxical
regime, if any, and they will not be proper inhibition-stabilized,
self-sustained regimes.

Future Directions and Experimental Predictions. While we
have taken the approach of implementing homeostatic plasticity
rules at all four synapse classes in our model, it is important to
stress that we have omitted other well-characterized forms of
synaptic plasticity. In particular, we did not include associative
long-term potentiation or spike-timing dependent plasticity.
These forms of plasticity are generally considered to capture the
correlation structure in networks that are driven by structured
inputs. Arguably, because there is evidence that self-sustained
forms of activity such as up-states develop in the absence of any
structured external input (23, 25, 26) and because all excitatory
and inhibitory neurons synchronously shift between quiescent
and active states, associative forms of plasticity may not
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contribute significantly to these regimes. Nevertheless, we envi-
sion the cross-homeostatic rules we propose working hand in
hand with associative forms of plasticity that impose high-
dimensional structure on the top of the inhibition-stabilized
dynamics. In fact, preliminary observations reveal that cross-
homeostatic rules are capable of stabilizing recurrent networks
while preserving imposed Hebbian-like structure in the weight
matrix (SI Appendix, Fig. S6). Future work should explore the
computational advantage of cross-homeostatic plasticity in
models performing complex computational tasks, such as work-
ing memory, sensory timing, or motor control (5, 69–72).
An important implication of our results is that neuronal and

network properties can operate in fundamentally different modes.
That is, while homeostatic plasticity can lead to single neurons to
reach their target setpoints in simple feedforward circuits, those
same rules can be highly unstable when the neurons are placed
even in the simplest of recurrent excitatory/inhibitory circuits with
emergent dynamics. Furthermore, because emergent neural
dynamic regimes are highly nonlinear, and in particular that stable
self-sustained dynamic regimes exhibit a paradoxical effect, it is
likely that the brain exhibits paradoxical or counterintuitive learn-
ing rules to generate self-sustained dynamic regimes.

Methods

Computational Model. A two-population firing-rate model was implemented
based on a previous inhibition-stabilized network model (19). The firing rate of
the excitatory (E) and inhibitory (I) population obeyed Wilson and Cowan
dynamics (73).

τE
dE
dt

= �EðtÞ + fE
�
WEEEðtÞ � WEIIðtÞ + ηEðtÞ

�
, [1]

τI
dI
dt
= �IðtÞ + fI

�
WIEEðtÞ � WIIIðtÞ + ηIðtÞ

�
, [2]

where WXY represents the weight between the presynaptic unit Y and postsynap-
tic unit X. The parameters sX and ηX represent a time constant and an indepen-
dent noise term, respectively. The time constants were set to sE = 10 ms for the
excitatory and sI = 2 ms for the inhibitory subpopulations. The noise term was
an Ornstein–Uhlenbeck process with mean μx = 0, a time constant 1/Θx =
1 ms, and a sigma parameter of σx = 10. To elicit self-sustained activity, a step
current was injected at the beginning of each trial on the excitatory population.

The function fY(x) represents the intrinsic excitability of the neurons, and it is
modeled as a threshold-linear function with threshold θY and gain gY.

fYðxÞ =
�

0 if x < θY
gYðx � θYÞ if x ≥ θY

, Y = E, Ig:f [3]

The thresholds were set to θE = 4.8 and θI = 25, and the gains to gE = 1
and gI = 4. The higher thresholds in PV neurons are consistent with experimen-
tal findings (46).

The linear relationship between excitatory and inhibitory weights (Fig. 4) cor-
responds to the steady-state solution of the neural subsystem when the inhibi-
tory and excitatory rates are at their target setpoints. The solution can be
obtained by setting the left side of Eqs. 1 and 2 to zero and substituting the
steady-state E and I values with Eset and Iset:

WEI =
WEEESet
ISet

� θEgE + ESet
ISetgE

, [4]

WII =
WIEESet
ISet
� θIgI + ISet

ISetgI
: [5]

Thus, the slope of the E/I balance line in Fig. 4 corresponds to Eset/Iset. We
choseWE E andWI E as the “free” weights. See details and analytical results in
SI Appendix, Section 2.2.

Synaptic Plasticity. Plasticity at all four weight classes (WE E, WE I, WI E,
and WI I) was governed by different families of homeostatic-based plasticity
rules, all driven by the deviation of the actual excitatory and inhibitory rates from

their target setpoints (Eset and Iset). Three different learning rules are presented
in the main text of this article.
Standard homeostatic family of rules.

ΔWEE =+αEEðEset � EÞ
ΔWEI = �αEIðEset � EÞ
ΔWIE =+αIEðIset � IÞ
ΔWII = �αIIðIset � IÞ,

[6]

where αE and αI are the learning rates onto the excitatory and inhibitory units,
respectively. The setpoints were based on empirically measured values in ex vivo
cortical circuits (46), Eset = 5 and Iset = 14 Hz and follow a classic homeostatic
formulation (33, 34, 43, 44). As outlined in SI Appendix, Section 1.5, we also
examined variants of these rules, such as standard synaptic scaling (which
includes the weight as a factor).

We prove that these rules are stable only in a narrow parameter regime:
when excitatory plasticity dominates (SI Appendix, Section 2).
Cross-homeostatic family of rules.

ΔWEE =+αEEðIset � IÞ
ΔWEI = �αEIðIset � IÞ
ΔWIE = �αIEðEset � EÞ
ΔWII =+αIIðEset � EÞ:

[7]

These rules differ from the standard homeostatic formulation in that the set-
points are “crossed,” meaning that the weights onto the excitatory (inhibitory)
population change in order to minimize the inhibitory (excitatory) error. We prove
that these rules are stable for any set of parameters (SI Appendix, Section 1.3).
Two-term cross-homeostatic family of rules.

ΔWEE =+αEEðEset � EÞ + αEEðIset � IÞ
ΔWEI = �αEIðEset � EÞ � αEIðIset � IÞ
ΔWIE =+αIEðIset � IÞ � αIEðEset � EÞ
ΔWII = �αIIðIset � IÞ + αIIðEset � EÞ:

[8]

The two-term rules combine homeostatic and cross-homeostatic terms. This
exact formulation can be obtained after an approximation of a gradient descent
derivation on the following loss function:

L =
1
2
ðE � EsetÞ2 + 1

2
ðI� IsetÞ2: [9]

The mathematical derivation can be found in the SI Appendix, Section 3.
We prove that these rules are stable for a biologically meaningful set of parame-
ter values, as long as the homeostatic part does not dominate (SI Appendix,
Section 1.4).

For all other methods, including the implementation of the multiunit firing
rate and spiking models, numerical and analytical methods, proofs, and deriva-
tion of the two-term cross-homeostatic rule, see the SI Appendix.

Data, Materials, and Software Availability. Software necessary to repro-
duce all data shown throughout this manuscript is fully available in the public
repository GitHub (see links below). Computational analysis for the rate-based
model was performed in custom-written MATLAB R2020a software (https://www.
mathworks.com/). Brian2 was used to simulate the spiking model (https://
briansimulator.org/). SageMath was used for the analytical proofs (https://www.
sagemath.org/) (SI Appendix). The MATLAB source code that reproduces Figs. 2,
4–6 and SI Appendix, Fig. S4 is available at https://github.com/saraysoldado/
Paradoxical2022 (74). The spiking model can be found at https://github.com/
mikejseay/spiking-upstates/tree/Paradoxical2022 (75). The Jupyter notebooks
with SageMath code to reproduce all analytical results are available at https://
github.com/SMDynamicsLab/Paradoxical2022 (76).
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