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Abstract

Two vital functions of the innate immune system are to initiate inflammation and redistribute

micronutrients in favor of the host. Zinc is an essential micronutrient used in host defense.

The zinc importer ZIP8 is uniquely induced through stimulation of the NF-κB pathway by

LPS in monocytes and functions to regulate inflammation in a zinc-dependent manner.

Herein we determined the impact of zinc metabolism following LPS-induced inflammation in

human macrophages. We observed that ZIP8 is constitutively expressed in resting macro-

phages and strikingly elevated following LPS exposure, a response that is unique compared

to the 13 other known zinc import proteins. During LPS exposure, extracellular zinc concen-

trations within the physiological range markedly reduced IL-10 mRNA expression and pro-

tein release but increased mRNA expression of TNFα, IL-8, and IL-6. ZIP8 knockdown

inhibited LPS-driven cellular accumulation of zinc and prevented zinc-dependent reduction

of IL-10 release. Further, zinc supplementation reduced nuclear localization and activity of

C/EBPβ, a transcription factor known to drive IL-10 expression. These studies demonstrate

for the first time that zinc regulates LPS-mediated immune activation of human macro-

phages in a ZIP8-dependent manner, reducing IL-10. Based on these findings we predict

that macrophage zinc metabolism is important in host defense against pathogens.

Introduction

Micronutrient metabolism plays a critical role in innate immune defense against microbial

infection. Macrophages exploit the biochemical characteristics of transition metals in part by

manipulating their uptake and trafficking following pathogen recognition. Cation re-distribu-

tion from extracellular and intracellular compartments into the cell cytosol in response to

infection benefits the host in a number of important ways. It inhibits pathogen growth and
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survival through deprivation of indispensable micronutrients, generates host protective Fen-

ton-reaction-dependent reactive oxygen species and affords nonspecific inhibition of bacterial

protein binding [1–3]. Importantly, internalized micronutrients also help orchestrate vital sig-

naling pathways [3–6]. Zinc is an essential micronutrient utilized in host defense. Inadequate

zinc nutrition reduces innate immune competence, thereby increasing susceptibility to infec-

tious disease [7]. Human zinc metabolism, which is primarily controlled by fourteen ZIP (Zrt/

Irt-like protein) zinc import proteins and ten cytosolic zinc export proteins (ZnTs), is altered

by microbial-initiated activation of innate immune cells [8, 9].

Lipopolysaccharide (LPS) stimulates human macrophage gene transcription following Toll-

like receptor 4 (TLR4) binding and sequential activation of intracellular biochemical signaling

cascades. The resulting nuclear localization and activation of a number of transcriptional co-

activators and transcription factors including but not limited to nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) and CCAAT/enhancer binding protein beta (C/

EBPβ) largely determines the inflammatory response to infection [10, 11]. Monocytes respond

to recognition of LPS by increasing transcription of the zinc transporter SLC39A8 (ZIP8) [12].

ZIP8 is induced through the canonical NF-κB pathway following LPS exposure resulting in

translocation of ZIP8 protein to the plasma membrane and intracellular vesicles, and zinc

import into the cytoplasm. The newly formed zinc pool in turn reduces further NF-κB activity

through inhibition of I kappa-B kinase (IKK) activity [4, 13]. NF-κB is responsible in part for

production of pro-inflammatory cytokines and chemokines that include but are not limited to

tumor necrosis factor alpha (TNFα), interleukin eight (IL-8) and interleukin six (IL-6) [10].

LPS stimulation of human macrophages also induces the immune modulatory cytokine inter-

leukin ten (IL-10) [14–16]. IL-10 production by LPS-stimulated macrophages occurs following

phosphorylation of the IKK complex and mitogen-activated protein kinases (MAPKs), that

regulate activation of transcription factors including cAMP response element-binding protein

(CREB), activator protein one (AP-1), C/EBPδ, C/EBPβ and NF-κB subunit p50 (p50). Con-

current activation of the transcriptional co-activators CREB-binding protein (CBP) and p300

also enhance the IL-10 response. [17–21].

Macrophages differ significantly from monocytes in their phenotype and function. The

metabolic pathways responsible for zinc trafficking during macrophage host defense have only

begun to be explored [3, 22]. In response to microbes, macrophages produce both pro-inflam-

matory cytokines and IL-10 in order to coordinate a localized and balanced response aimed at

efficiently eliminating infection while minimizing damage to surrounding tissue. IL-10 pro-

duction by human macrophages in response to infection is essential for regulating immune

responses through both autocrine and paracrine feedback mechanisms [17]. Importantly, IL-

10 stimulation of murine and human macrophages significantly reduces production of pro-

inflammatory cytokines [15, 16, 23, 24].

We hypothesized that ZIP8-mediated transport of extracellular zinc into human macro-

phages has the capacity to modulate the balance of pro- and anti-inflammatory cytokines

produced in response to LPS. Consequently, deficits in zinc metabolism would disrupt mac-

rophage function through modulation of zinc-dependent signaling pathways that alter host

defense. In this study we determined that ZIP8 is constitutively expressed in macrophages

and substantially induced following LPS exposure. Most striking, ZIP8-mediated zinc

uptake within hours of LPS stimulation resulted in reduced IL-10 production and an

increase in the pro-inflammatory cytokine response. Furthermore, nuclear accumulation

and activation of the IL-10 inducing transcription factor C/EBPβ is reduced by zinc supple-

mentation of LPS-exposed macrophages.

Zinc and Macrophage Immune Regulation
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Materials and Methods

Reagents

TRIzol, RPMI 1640 with L-glutamine, and DPBS were purchased from Invitrogen (Carlsbad,

CA). Zinc Sulfate heptahydrate, LPS L-4516 from E.coli and BSA were purchased from Sigma-

Aldrich (St. Louis, MO). Ficoll-Paque and TMB substrate were purchased from GE Healthcare

(Little Chalfont, UK). Rabbit polyclonal antiserum anti-peptide to amino acid residues 225–243

of human ZIP8 (1:1000) was purchased from Covance (Princeton, NJ). Mouse anti-human

monoclonal β-Actin (#69101) (1:10,000) antibody was purchased from MP Biomedicals (Santa

Ana, CA). Rabbit anti-human monoclonal Lamin B1 (#377001) (1:1000) antibody was pur-

chased from Santa Cruz Biotechnology (Santa Cruz, CA). Rabbit anti-human monoclonal C/

EBPβ (#1479–1) (1:1000) antibody was purchased from Epitomics (Burlingame, CA). Rabbit

anti-human monoclonal NF-κB1 p105/p50 (#12540) (1:2000), polyclonal ERK (#4695) (1:1000),

polyclonal p-ERK (#9101) (1:1000), polyclonal p38 (#9212) (1:2000), monoclonal p-p38 (#9215)

(1:2000) and polyclonal p-C/EBPβ (#3084) (1:1000) antibodies were purchased from Cell Signal-

ing Technology (Danvers, MA). C/EBPβ TransAM ELISA kit was purchased from Active Motif

(Carlsbad, CA). ZIP8 epitope specific, 21mer small interfering RNA (siRNA) (target sequence

TAGGACTTAGGAAATAAATAA)and scramble control siRNA were purchased from QIAGEN

(Hilden, DEU).

Human monocyte-derived-macrophage zinc supplementation model

Blood was collected from healthy human volunteers under a protocol approved by the Ohio

State University’s Office of Responsible Research Practices (IRB), with written donor consent.

Human peripheral blood mononuclear cells (PBMCs) were then isolated from heparinized

blood on a Ficoll-Paque cushion (GE Healthcare) as previously described [25]. Differentiation

of monocytes into monocyte-derived macrophages (MDMs) was accomplished by incubation

of PBMCs (2x106/mL) within Teflon wells (Savillex) at 37˚C with 5% CO2 over a period of five

days in RPMI 1640 medium containing 20% autologous serum, which contains < 3 μM zinc.

MDMs in the PBMCs were placed in monolayer culture (99% pure), washed and repleted with

RPMI containing 2% autologous serum or 10% autologous serum, then repleted with or with-

out 10 μM, 18 μM or 40 μM Zinc Sulfate, with or without LPS 100 ng/mL.

Transfection of MDMs

PBMCs were transfected with 50 nM ZIP8 or control siRNA using the Amaxa Nulceofector

(Lonza) [26] as directed by the manufacturer. Following transfection PBMCs were seeded

onto tissue culture plates and incubated in RPMI-1640 with 10% autologous serum for 2 h at

37˚C in 5% CO2. Lymphocytes were removed by washing with warm RPMI-1640. Adhered,

transfected MDMs were repleted with RPMI-1640 containing 20% autologous serum and

incubated overnight at 37˚C in 5% CO2 to allow recovery before further treatment.

Cytokine assay

Cell free supernatants were collected from MDM monolayers at 6 and 24 h and used to mea-

sure IL-6, IL-8, IL-10 and TNFα by ELISA (R&D Systems).

Protein lysate preparation and Western blot

MDM monolayers were lysed with TN1 buffer to generate whole cell lysate, then incubated

at 4˚C for 10 min. Lysates were centrifuged at 17,949 × g at 4˚C to remove cell debris. To

generate nuclear isolates, MDM monolayers were lysed and processed with NE-PER nuclear
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and cytoplasmic extraction reagents (ThermoFisher Scientific) per manufacturer’s instruc-

tions. Protein concentration was measured using the Pierce BCA-protein assay kit (Ther-

moFisher Scientific) per manufacturer’s instructions. Lysates were reduced, denatured and

separated by SDS-PAGE, then transferred onto nitrocellulose membranes and blocked with

5% milk in TBS-T, then probed with primary and secondary antibodies of interest and by

development using ECL (GE Healthcare). Band densitometry was measured using Image J

software. Intensity was determined by subtracting background intensity compared to β-

actin or Lamin B1.

Quantitative Real Time RT-PCR

MDM monolayers were lysed with TRIzol (Invitrogen). RNA was isolated using chloroform

extraction and ethanol precipitation then converted into cDNA using the ThermoScript

RT-PCR system (Invitrogen). Quantitative PCR was performed using SYBR Green (Applied

Biosystems). Genes of interest were normalized to GAPDH. Relative copy number (RCN) was

determined using the formula: RCN = 2−ΔCt × 100, where ΔCt is the Ct(target) − Ct(reference).

Fold change was calculated by comparing treatment groups to resting controls.

Atomic absorption spectrometry

Donor serum diluted to concentrations of 0, 1, 2 10, 20 and 50% in RPMI 1640 or ZnSO4

diluted to concentrations of 0, 1, 10, 18 μM in RPMI 1640 containing 2% donor serum were

assayed by atomic absorption spectrometry using AAnalyst 400 (PerkinElmer).

C/EBPβ activity assay

Nuclear lysates were obtained from MDMs following treatment or control conditions as previ-

ously described using NE-PER nuclear and cytoplasmic extraction reagents purchased from

Thermo Scientific (Rockford, IL) per manufacturer’s instructions. Nuclear localization of acti-

vated C/EBPβ in MDM nuclear lysates was then determined using the TransAMTM C/EBPβ
Transcription Factor Assay purchased from Active Motif (Carlsbad, CA) per manufacturer’s

instructions. Absorbance at 450 nm was read by spectrophotometry.

Confocal microscopy

MDMs (1.5 x 105) were cultured on glass coverslips, then following 30 min, 24 h or 48 h treat-

ment with or without LPS (100 ng/mL) and with or without ZnSO4 18 μM, were washed three

times with RPMI and exposed to Zinpyr-1 (Sigma-Aldrich) (1 μM) for 15 min. MDMs were

then washed three times with DPBS, fixed with 4% paraformaldehyde for ten minutes, washed

three times with DPBS and mounted to slides using ProLong Gold AntiFade Mounting media

plus DAPI (Invitrogen Life Technologies). The slides were then examined by confocal micros-

copy using a FluoView 1000 Laser Scanning Confocal microscope (Olympus BX61). The mean

fluorescence intensity (MFI) of random confocal images for approximately 150 macrophages

per coverslip in duplicate for each experiment was quantified using pixel intensity measure-

ment (NIH Image J program). MFI was calculated by dividing the green fluorescent signal

above threshold by the number of DAPI stained nuclei for each image. Fold Zinc (MFI) was

determined by averaging the MFI for each experimental group and dividing that value by the

average resting control group MFI value. Fold change values were then averaged among inde-

pendent experiments.

Zinc and Macrophage Immune Regulation
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Statistics

Each experiment was conducted a minimum of 3 times with different donors. Prism-5 soft-

ware (Version 5.04; GraphPad) was used for linear regression analysis and to determine statis-

tical significance between means. An unpaired, one-tailed Student’s t-test was used to analyze

differences between two groups in most figures depicting cumulative data. A one-tailed Wil-

coxon matched-pairs signed rank test was used to analyze differences between groups for

cumulative data being compared to a baseline value. Significance was p< 0.05 for both tests

and is depicted as � or #, respectively.

Results and Discussion

LPS induces ZIP8 in human macrophages

Import of extracellular zinc into the cytosol is achieved mainly through fourteen ZIP trans-

porters which are differentially regulated and expressed in distinct cell types as a function of

intracellular and extracellular cues [8]. In particular, ZIP8 is typically not highly expressed

constitutively but is inducible by inflammation in monocytes [12]. Accordingly, we first exam-

ined the capacity of LPS to influence the expression of all ZIPs (1–14) in human macrophages

via mRNA expression in MDMs cultured in RPMI containing 10% autologous serum from

individual donors by qRT-PCR. We observed that LPS induces macrophage ZIP8 expression

without significantly altering mRNA expression of the thirteen other ZIPs in MDMs (Fig 1A),

and at an order of magnitude greater than the changes observed in any of the other ZIPs. ZIP8

was present in resting MDMs and ZIP8 mRNA was significantly induced following LPS expo-

sure by over 10-fold, which led to induction of additional ZIP8 protein production in MDMs

over time (Fig 1B and 1C). Consistent with previously published reports [27], ZIP8, an eight

trans-membrane spanning protein, appeared as a heavily glycosylated isoform with an appar-

ent molecular mass of approximately 140 kDa as determined by Western blotting. Following

LPS exposure, macrophage ZIP8 mRNA levels increased by 6 h and peaked at 48 h while pro-

tein levels increased at 24 h and remained elevated through 48 h (Fig 1B and 1C). The relative

equivalence of protein levels at 24 and 48 hours indicates that further elevation of ZIP8 mRNA

beyond that observed at 24 hours may not result in additional protein production. During mono-

cyte to macrophage differentiation, ZIP8 mRNA and protein were constitutively expressed, albeit

at lower levels than what was observed following macrophage LPS stimulation (Fig 1D and 1E).

These findings identified ZIP8 as the predominant LPS inducible importer of macrophage zinc.

Furthermore, it became clear that in comparison to previous reports in monocytes [12], macro-

phages produce appreciable amounts of ZIP8 protein at rest, indicating that ZIP8 has the capacity

to modulate intracellular zinc levels both within resting macrophages and to a greater extent fol-

lowing LPS exposure.

Zinc modulates LPS-induced macrophage cytokine production

The inflammatory profile elicited by LPS-exposed macrophages is dependent in part upon

micro-environmental zinc availability and ZIP8-mediated importation. The capability of

extracellular zinc to impact cytokine production is predicated largely upon its activity as an

intracellular second messenger following transport across the plasma membrane. Here we

demonstrate that human macrophages exposed to LPS use extracellular zinc concentrations

within the physiological range to modify inflammatory balance in the local milieu. The impact

of zinc on LPS-induced macrophage cytokine production was investigated by supplementation

of zinc sulfate into the media at different concentrations during LPS exposure. Analysis of

increasing concentrations of donor serum in RPMI 1640 by atomic absorption spectroscopy

Zinc and Macrophage Immune Regulation
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predicted an average serum zinc concentration of approximately 68 ug/dL (S1A Fig), which is

within the accepted normal range (66 to 110 ug/dL) [28]. Further, addition of 0, 10, 18 and

40 μM zinc sulfate into RPMI 1640 containing 2% autologous human serum, produced media

zinc concentrations that were negligible (< 5 ug/dL), below (45 ug/dL), within (68 ug/dL) or

above (147 ug/dL) normal, respectively (S1B Fig). MDMs were rested or exposed to LPS (100

ng/mL) and/or zinc sulfate for a period of 6 or 24 h.

Zinc co-administration during LPS exposure significantly reduced IL-10 mRNA expression

(Fig 2A) and protein release (Fig 2E). The impact of zinc on IL-10 release was highly reproduc-

ible among donors. In contrast, expression of TNFα, IL-8 and IL-6 mRNA (Fig 2B, 2C and

2D) and corresponding protein release (Fig 2F, 2G and 2H) were increased by co-administra-

tion of zinc with LPS. IL-10 production is increased in response to pro-inflammatory cyto-

kines including TNFα [29]. Therefore zinc-induced increases in autocrine or paracrine

signaling by TNFα, may in part account for the diminished inhibitory effect of zinc on IL-10

release between 6 and 24 h (Fig 2E and 2F). Previous studies using human monocyte cell mod-

els have shown that zinc can impact the extent of inflammation but results have varied likely

due to differences in the approach utilized. Specifically, zinc supplementation during LPS

exposure can both enhance and inhibit monocyte-derived pro-inflammatory cytokine release

depending on the dose and timing of zinc exposure [30, 31]. Furthermore, both direct deple-

tion and enrichment of intracellular zinc using the zinc chelator TPEN or the membrane per-

meable molecule pyrithione in concert with zinc, respectively, can reduce TNFα and IL-1β

Fig 1. ZIP8 is constitutively present and highly inducible by LPS in human macrophages. (A) The mRNA expression profile of all ZIPs

revealed that LPS (100 ng/mL) exposure significantly increases expression of ZIP8 in MDMs over time as determined by qRT-PCR. In contrast,

the basal levels of the 13 other ZIPs were minimal and LPS exposure did not alter the expression of these ZIPs. (B) ZIP8 mRNA in MDMs is

significantly induced following LPS (100 ng/mL) exposure. (C) ZIP8 protein levels in MDMs are significantly induced by LPS (100 ng/mL)

exposure compared to resting unstimulated cells. Cumulative densitometric analysis reveals that ZIP8 protein levels increased two-fold by 24 h

following LPS exposure. (D, E) ZIP8 mRNA and protein levels are maintained through monocyte to macrophage differentiation as determined by

qRT-PCR and Western blot analysis. Cumulative densitometric analysis reveals that ZIP8 protein is constitutively present during differentiation.

(A, B and D were quantified relative to GAPDH). Panels A, B and D are cumulative data from three different donors (mean ± SEM; *p < 0.05;

**p < 0.01). Panels C and E are each representative of 3 experiments.

doi:10.1371/journal.pone.0169531.g001
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release following LPS exposure in monocytic cells [32]. To our knowledge, prior studies have

not examined the extent to which zinc impacts immune function in primary human macro-

phages. Macrophage cytokine release controls the inflammatory balance within the local tissue

environment. Synchronous production of both pro-inflammatory and immune modulatory

cytokines including IL-10 regulates this balance. Our findings support the paradigm that mac-

rophages utilize available zinc within distinct tissue compartments to increase local inflamma-

tion through elevation of TNFα, IL-8 and IL-6 while simultaneously reducing IL-10. In our

model, we chose to examine zinc-mediated effects by recapitulating the physiologic zinc con-

centrations encountered in humans, thereby evaluating zinc-dependent changes in inflamma-

tion that occur in situ. It should be noted that zinc has been shown to directly bind LPS and

increase potency in PBMCs [33]. However, in our macrophage model, zinc reduced IL-10

expression and release while simultaneously increasing that of other cytokines and chemokines

thereby not supporting a generalizable increase in LPS potency.

ZIP8 regulates macrophage IL-10 release

Given the constitutive and highly inducible expression of ZIP8 in macrophages, we next

sought to determine whether ZIP8 was responsible for zinc-mediated cytokine changes in

macrophages. First, ZIP8 was knocked down in MDMs by transfection with ZIP8 or scramble

control siRNA. The impact of ZIP8 or control knockdown-treated MDMs were determined

after 24 h exposure to LPS (100 ng/mL) with or without zinc sulfate (18 μM) supplementation.

ZIP8 knockdown in MDMs was verified by Western blot analysis showing a consistent and

durable knockdown of greater than 60% percent out to 48 h (Fig 3A). Importantly, analysis of

the other 23 human zinc transporters by qRT-PCR revealed that only ZnT1 mRNA was signifi-

cantly reduced as a consequence of ZIP8 knockdown following 24 hours of LPS exposure (S1

Table). ZnT1 expression decreases when cytosolic zinc levels decline [34]. Therefore, reduced

ZnT1 expression during ZIP8 knockdown is consistent with reduced cytosolic zinc concentra-

tions through loss of ZIP8-mediated zinc import. Loss of ZIP8 may also drive increased import

by ZIPs or export by ZnTs without altering their mRNA or protein production by inducing

redistribution or altering dimerization [8].

Cytokine analysis revealed that zinc-dependent inhibition of IL-10 release at 6 and 24 h fol-

lowing LPS exposure (Fig 3B) was reversed by ZIP8 knockdown, indicating that ZIP8 plays a

vital role in the zinc-dependent reduction of macrophage IL-10. ZIP8 knockdown did not fur-

ther alter zinc-induced increases in TNFα, IL-8 and IL-6 (Fig 3B, 3C and 3D) indicating ZIP8

specificity towards IL-10 regulation but not to the other factors that we examined. Importantly,

we first observed zinc-dependent reductions in IL-10 at 6 h following LPS exposure (Fig 2A

and 2E) and prior to LPS-induced increases in ZIP8 protein (Fig 1C). Taken together, these

results indicate that the constitutively present pool of ZIP8 (Fig 1C and 1E) is sufficient to facil-

itate Zn-mediated reduction in the initial wave of IL-10 expression and that the induced pool

of ZIP8 over time sustains this inhibitory effect, presumably for longer periods of IL-10 inhibi-

tion during prolonged pathogen LPS exposure.

Fig 2. Zinc supplementation reduces macrophage IL-10 production in response to LPS. Zinc co-administration

during LPS (100 ng/mL) stimulation of macrophages at 6 h decreases (A) IL-10 but increases (B) TNFα, (C) IL-8, and

(D) IL-6 mRNA expression as determined by qRT-PCR (experimental groups quantified relative to GAPDH and

normalized to resting controls). Zinc also decreases (E) IL-10 but trends toward an increase of (F) TNFα, (G) IL-8 and

(H) IL-6 protein release at 6 h and 24 h as determined by ELISA (experimental groups normalized to resting controls).

Panels A, B, C and D or E, F, G and H are cumulative data from 3 or 4 different donors, respectively (mean ± SEM;

*p < 0.05; **p < 0.01; ***p < 0.001).

doi:10.1371/journal.pone.0169531.g002
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Cumulatively, our findings indicate that mononuclear phagocytes have evolved to use

ZIP8-dependent zinc to optimize the host inflammatory response to fit the context in which it

is required. Zinc is unique relative to other micronutrients because of its multifaceted impact

on cellular function. It is broadly essential for protein structure, catalytic function [35] and

protection from oxidant damage [36] but is also utilized in specific signal transduction path-

ways as a tightly regulated second messenger [4, 37, 38]. Given that monocytes and macro-

phages are in different tissue compartments and produce distinct cytokine and chemokine

profiles, it is to be expected that they use zinc to regulate inflammatory responses differently.

Moreover, our findings suggest that innate immune host defense mediated by human macro-

phages is most likely dysregulated in the setting of zinc deficiency. In this context, IL-10 serves

as a negative feedback regulator of TNFα, IL-6, IL-8, proIL-1β and IL-12 [15, 16, 23, 24, 39]

production. Accordingly, we predict that significant alteration in macrophage IL-10 release in

Fig 3. Reduction in macrophage IL-10 production by zinc is ZIP8-dependent. ZIP8 protein levels (A) are reduced

following LPS (100 ng/mL) exposure in MDMs transfected with siRNA targeting ZIP8 (anti-ZIP8) compared to scramble

control (SC) siRNA. Densitometric analysis of Panel 3A reveals that ZIP8 protein levels are reduced by over 60% following

knockdown. Zinc-dependent reduction in macrophage (B) IL-10 production but not (C) TNFα (D) IL-8 and (E) IL-6 production

is ZIP8-dependent as determined by ELISA of cell free supernatants following ZIP8 knockdown or scramble control and 6 or

24 h co-stimulation with LPS (100 ng/mL) and ZnSO4 (18 μM). Panel A is representative of 3 experiments. Panels B, C, D

and E are cumulative data from 5 different donors (mean ±SEM; #p < 0.05).

doi:10.1371/journal.pone.0169531.g003
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the setting of zinc deficiency during the initial response to pathogens has the potential to

adversely impact both local and systemic inflammation and thereby alter the clinical course of

infection.

ZIP8 modulates macrophage zinc import in response to LPS

ZIP8 resides on the plasma membrane and membrane of intracellular vesicles and organelles

[4, 12, 27, 38, 40]. From these locations it can direct vesicular zinc efflux in T-cells [38] and

increase intracellular zinc in monocytic cell lines [4, 12]. We previously determined that ZIP8

is localized to both the plasma membrane and intracellular vesicles in MDMs following LPS

exposure [4]. Based on these findings and our observation that ZIP8 is responsible for reduc-

tion of LPS-induced IL-10 release by zinc supplementation, we next sought to determine

whether ZIP8 increases macrophage uptake of zinc during LPS challenge. Following ZIP8

knockdown, macrophages were exposed to LPS (100 ng/mL) with or without zinc sulfate

(18 μM) for 30 min, 24 or 48 h. Cells were stained with the zinc-specific fluorophore Zinpyr-1

prior to fixation with paraformaldehyde, then stained with DAPI and viewed by fluorescence

confocal microscopy. Consistent with previously published reports [41], zinc localized within

punctate inclusions within the cytosol. Zinc supplementation increased cellular zinc levels as

early as 30 min after exposure (Fig 4A). Further increases in cytosolic zinc content occurred as

a consequence of LPS exposure during Zn supplementation that began by 24 h (Fig 4B) and

continued to increase up to 48 h (Fig 4C). Consistent with our hypothesis, ZIP8 knockdown

resulted in a robust reduction in macrophage zinc accumulation at all time points. Significant

differences were observed between ZIP8 knockdown and scramble control groups in LPS-

exposed zinc-supplemented macrophages at 24 and 48 h (Fig 4A, 4B and 4C). These findings

demonstrate that ZIP8 is responsible for zinc uptake within minutes as a result of constitutive

ZIP expression in macrophages as well as over a sustained time frame consequent to induction

of ZIP8 expression (Fig 1B and 1C)

In addition to zinc transport, ZIP8 participates in cytosolic influx of manganese, iron,

cadmium and selenite. Iron and zinc inhibit the ZIP8-mediated uptake of one another

[40, 42, 43]. Therefore, these cations have the potential to modulate the impact of zinc on

macrophage immune function through competitive uptake and cell signaling [44, 45].

Although, Zinpyr-1 is highly specific for labile zinc it may be limited in its ability to distin-

guish between particular divalent cations under certain circumstances [46]. The cumula-

tive impact of ZIP8 on macrophage inflammation in the presence of multiple substrates

will require further study. Our findings obtained in macrophages are consistent with pre-

vious work that identified both “early” zinc-mediated signaling events (seconds to min-

utes) and “late” signaling events (minutes to hours), which are both critical for effective

signal transmission during pathogen recognition [32, 47]. In this regard our data indicate

that ZIP8 can play a role in both signaling phases in macrophages since it is constitutively

present and highly inducible.

Zinc supplementation modulates C/EBPβ nuclear localization and

activity

Our previous work revealed that LPS induces the expression of ZIP8 through NF-κB [4].

The importation of zinc into the cytosol reduces subsequent nuclear localization of NF-κB

subunit p65 through direct zinc binding and inhibition of the upstream IKK-complex [4].

However, these observations were restricted to human monocytes and cell lines. Our cur-

rent findings reveal a distinct, ZIP8-dependent zinc effect on macrophage cytokine and che-

mokine production highlighted by a reduction in IL-10 release. In order to elucidate the
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underlying mechanisms responsible for that effect; we next evaluated the impact of zinc on

the LPS-inducible kinases and transcription factors known to regulate macrophage IL-10

expression.

Fig 4. ZIP8 increases zinc accumulation in macrophages. Increases in macrophage intracellular zinc concentrations as determined by

Zinpyr-1 staining in MDMs transfected with siRNA targeting ZIP8 (Anti-ZIP8) compared to scramble control (SC) siRNA after (A) 30 min (B), 24

hours and (C) 48 hours of zinc supplementation (18 μM) or zinc supplementation during LPS (100 ng/mL) exposure are reduced by ZIP8

knockdown compared to scramble control. Fold (MFI) was determined relative to resting control. Representative images and cumulative data

from 3 different experiments conducted in duplicate (mean ± SEM; *p < 0.05). Scale bars, 50 μm.

doi:10.1371/journal.pone.0169531.g004
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Accordingly, we determined the impact of zinc sulfate (18 μM) following LPS (100 ng/mL)

exposure on the expression, phosphorylation, and activity of C/EBPβ in macrophages. We also

determined the impact of zinc on the expression and extent of phosphorylation of the MAP

kinases p38 and ERK and p50. Zinc supplementation during LPS exposure led to oscillation of

C/EBPβ nuclear accumulation and phosphorylation that was consistently characterized by a

rapid reduction of protein at 5 min, followed by an increase at 15 min, and again, a decrease at

30 min (Fig 5A). C/EBPβ nuclear activity was also reduced by the addition of zinc (18 μM)

during LPS challenge at 5 min (Fig 5B). Additionally, mRNA levels of C/EBPβ were decreased

by zinc supplementation following 6 h exposure to LPS (Fig 5C). Zinc supplementation also

caused fluctuation in ERK phosphorylation with a consistent reduction in ERK phosphoryla-

tion at 60 min after LPS (Fig 5D). In contrast, zinc supplementation minimally impacted p-

p38 (Fig 5E) and p50/p105 (Fig 5F) levels. Based on these observations, we propose that the

import of extracellular zinc leads to a reduction in C/EBPβ-dependent and possibly ERK-

dependent IL-10 transcription and protein production. To our knowledge this is the first time

that zinc has been shown to reduce nuclear C/EBPβ protein content and activity.

C/EBPβ is activated following macrophage recognition of extracellular [48] or intracellular

pathogens [49] and is indispensable for macrophage bacterial killing [50]. Consistent with our

findings (Fig 5A, 5B and 5C), C/EBPβ is constitutively present in primary human macrophages

[51, 52] and LPS increases C/EBPβ gene expression [51, 53] that corresponds with an increase

in protein levels and DNA binding activity in murine macrophages [54, 55]. C/EBPβ-depen-

dent transcription is essential for macrophage cytokine expression, including IL-10, in

response to LPS [56–59]. Therefore, inhibition of C/EBPβ nuclear accumulation (Fig 5A) and

activity (Fig 5B) by zinc occurs following zinc-dependent reduction of IL-10 expression and

release consequent to LPS challenge. C/EBPβ is auto-regulated in response to LPS [60, 61],

therefore the observation that zinc reduces LPS-induced C/EBPβ mRNA levels (Fig 5C) dem-

onstrates that zinc is able to reduce its transcriptional activity. Accordingly, reduced C/EBPβ
mRNA levels contribute to reduction of C/EBPβ-driven IL-10 production. MAPK signaling is

also necessary for LPS-dependent IL-10 induction through C/EBPβ [21]. In murine macro-

phages, C/EBPβ transcription, DNA binding [55] and cytokine production [62–64] is induced

through p-38 kinase. In our model, zinc-mediated inhibition of C/EBPβ accumulation and

phosphorylation in human macrophages did not decrease p38 phosphorylation (Fig 5E),

which indicates that zinc modulates the activity of a yet to be identified kinase(s) or phospha-

tase(s) upstream of C/EBPβ in a TLR4-dependent signaling pathway. ERK is also important to

macrophage pro-inflammatory cytokine [65] and IL-10 production [17, 19, 20]. Consistent

with our findings, zinc has been shown to inhibit ERK phosphorylation in airway smooth

muscle cells [66]. Myeloid cell IL-10 production is proportional to the level of ERK activation

[67]. Specifically, LPS induces ERK phosphorylation through activation of the IKK complex in

the canonical NF-κB pathway. However, in murine macrophages LPS-induced DNA binding

of C/EBPβ, which is reduced by MAPK inhibition is independent of NF-κB signaling [21] and

overexpression of C/EBPβ, did not increase p50-mediated IL-10 transcription [18]. Our model

supports a zinc-mediated, p50-independent induction of IL-10 by C/EBPβ following LPS

exposure (Fig 5A and 5D) that is regulated through ZIP8.

Although pro-inflammatory cytokines including TNFα and IL-6 are induced by C/EBPβ,

their mRNA levels did not decrease following zinc-dependent reduction of C/EBPβ (Figs 2B,

2C, 2D, 5A and 5B). C/EBPβ availability in part determines its activity [11], such that zinc-

dependent alteration of its abundance may alter cytokine expression differentially.

Increases in microenvironmental tonicity induce further inflammation in LPS-stimulated

macrophages [68, 69]. Osmotic stress generated from our addition of zinc sulfate may further

help to explain elevations in pro-inflammatory cytokines. Regulation of macrophage cytokine
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Fig 5. Zinc inhibits LPS-induced C/EBPβ. During LPS challenge zinc alters (A) C/EBPβ nuclear accumulation and

phosphorylation beginning at 5 min and out to at least 30 min as determined by Western analysis of nuclear extracts and
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production is complex and regulated at many different levels. It is likely that the impact of zinc

in general and ZIP8-dependent zinc is multifactorial. Post-transcriptional regulation by micro-

RNAs modulate expression of ZIP transporters including ZIP8 [70, 71] as well as production

of pro-inflammatory cytokines [72] and IL-10 [73]. MicroRNA expression is also subject to

regulation by zinc [74, 75]. Further investigation of zinc-dependent modulation of cytokine

signaling in human macrophages is essential to understanding the mechanisms underlying

our observations.

In summary, we show that extracellular zinc reduces human macrophage IL-10 production

following LPS exposure. Most striking, the zinc-dependent effect on IL-10 is facilitated in large

part by the zinc transporter ZIP8, which is both constitutively expressed and further induced

by LPS. ZIP8 increases macrophage zinc uptake and accumulation. Zinc bio-redistribution

into the cytosol leads to an immediate alteration in C/EBPβ nuclear accumulation and activity

as well as a reduction in ERK phosphorylation through mechanisms that remain to be fully

defined. Based on our findings, we speculate that ZIP8-mediated reduction of IL-10 and

increase in TNFα, IL-6, and IL-8 by tissue macrophages may serve to facilitate more rapid res-

olution of infection and limit bacterial dissemination and further, that this regulation requires

physiologic amounts of zinc within the local milieu. We believe that the fundamental observa-

tions made herein have important implications for innate immune defense, particularly

against intracellular bacterial pathogens that manipulate IL-10 production and also underscore

the importance of proper zinc nutrition to optimize protective immune responses to infection.

Supporting Information

S1 Fig. Modeling serum zinc levels in RPMI media. (A) Levels of zinc in human donor

serum diluted in RPMI at different concentrations or (B) zinc sulfate diluted at different con-

centrations in RPMI containing 2% donor serum were determined by Atomic Absorption

Spectrometry and equations were generated by regression analysis for prediction of zinc levels

within the physiological range. Panels A and B are cumulative data from 3 different donors

(mean ± SEM).

(TIF)

S1 Table. The impact of ZIP8 knockdown on macrophage ZIP and ZnT expression. The

mRNA expression profile of all ZIPs and ZnTs after ZIP8 knockdown or treatment with a

scrambled control followed by LPS (100 ng/mL for 6, 24 or 48 h) exposure reveals that reduc-

tion in ZIP8 is the only major change in ZIP expression and reduction of ZnT1 at 24 h after

LPS is the only major change in ZnT expression following ZIP8 knockdown as determined by

qRT-PCR relative to GAPDH. S1 Table represents cumulative data from 3 different donors

(mean values).

(XLSX)
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