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Background: Altered lipid metabolism may be a risk factor for dementia, and blood

cholesterol level has a strong genetic component. We tested the hypothesis that

dyslipidemia (either low levels of high-density lipoprotein cholesterol (HDL-C) or high total

cholesterol) is associated with cognitive status and domains, and assessed causality

using genetic predisposition to dyslipidemia as an instrumental variable.

Methods: Using data from European and African genetic ancestry participants in

the Health and Retirement Study, we selected observations at the first non-missing

biomarker assessment (waves 2006–2012). Cognition domains were assessed using

episodic memory, mental status, and vocabulary tests. Overall cognitive status was

categorized in three levels (normal, cognitive impairment non-dementia, dementia).

Based on 2018 clinical guidelines, we compared low HDL-C or high total cholesterol to

normal levels. Polygenic scores for dyslipidemia were used as instrumental variables in

a Mendelian randomization framework. Multivariable logistic regressions and Wald-type

ratio estimators were used to examine associations.

Results: Among European ancestry participants (n = 8,781), at risk HDL-C levels were

associated with higher odds of cognitive impairment (OR = 1.20, 95% CI: 1.03, 1.40)

and worse episodic memory, specifically. Using cumulative genetic risk for HDL-C levels

as a valid instrumental variable, a significant causal estimate was observed between

at risk low HDL-C levels and higher odds of dementia (OR = 2.15, 95% CI: 1.16,

3.99). No significant associations were observed between total cholesterol levels and

cognitive status. No significant associations were observed in the African ancestry

sample (n = 2,101).

Conclusion: Our study demonstrates low blood HDL-C is a potential causal risk

factor for impaired cognition during aging in non-Hispanic whites of European ancestry.

Dyslipidemia can be modified by changing diets, health behaviors, and therapeutic

strategies, which can improve cognitive aging. Studies on low density lipoprotein

cholesterol, the timing of cholesterol effects on cognition, and larger studies in

non-European ancestries are needed.
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INTRODUCTION

Dementia is a chronic and progressive syndrome beyond normal
cognitive decline in aging. It affects memory, mental status, and
activities of daily living, resulting in disability and dependency.
There is no treatment currently available to cure or to alter the
progressive course of dementia (1). Worldwide, over 50 million
people are currently living with dementia, with 10 million new
cases every year (1). The cost for global dementia treatment is
expected to reach two trillion United States dollars by 2030 (2).

Altered lipid metabolism is implicated in dementia
pathogenesis. Several epidemiological studies show associations
between fundamental differences in cholesterol levels and
cognitive decline risks. A meta-analysis reported a relative risk of
2.14 for participants with high total cholesterol (TC) in midlife to
develop all-type dementia compared to participants with normal
cholesterol (3). Another study found that risk of poor memory
was associated with lower high-density lipoprotein cholesterol
(HDL-C) (4). However, results have been inconsistent across
studies and the causal relationship has not been rigorously
assessed (5–7). Blood cholesterol levels have a strong inherited
basis. A recent genome-wide association study (GWAS)
identified 157 loci associated with blood cholesterol levels,
which cumulatively explained over 50% of the inter-individual
variation of blood cholesterol levels (8, 9). Given the large genetic
component, genetic predisposition to increased blood cholesterol
levels may be used as an instrumental variable to test the inferred
causality of blood cholesterol levels on cognitive impairment.

Our current study hypothesized that blood cholesterol
levels (HDL-C and TC) play an etiological role in dementia.
This hypothesis posits that genetic variants that affect lipid
metabolism would influence risk of cognitive impairment
through changes in blood cholesterol levels. We applied an
inverse-variance weighted Mendelian randomization framework
analysis in European and African genetic ancestry samples in a
United States based aging study, to investigate the causal nature
of lipid dysregulation and cognitive impairment. Throughout
this study, we use the term dementia to refer to the syndrome
characterized by progressive memory loss that interferes with
activities of daily living, but without specifying an underlying
etiological mechanism.

METHODS

Study Sample From the Health and
Retirement Study
The Health and Retirement Study (HRS), funded by the National
Institute on Aging and the Social Security Administration, is a
publicly available longitudinal panel cohort study of people over
age 50 in the United States. The study includes assessments of
economic conditions, health, and other aspects of life surveyed

Abbreviations: BMI, body mass index; CI, confidence intervals; CIND, cognitive

impairment-non dementia; GWAS, genome-wide association study; HDL-C, high-

density lipoprotein cholesterol; HRS, Health and Retirement Study; OR, odds

ratios; PC, principal component; PGS, polygenic score; SNP, single nucleotide

polymorphisms; TC, total cholesterol.

in waves every 2 years since its inception in 1992. More than
43,000 people have participated in the study to date (10). Each
wave interviews roughly 20,000 individuals.

Sample selection steps are shown in Supplementary Figure 1.
We excluded participants who were younger than 50 or over
90 at their cholesterol measurement because the underlying
neuropathological mechanisms and risk factors of dementia are
considerably different in those age groups (11). To minimize
misclassification of cognitive status, we also excluded individuals
who presented with dementia at the prior wave and with a normal
cognition measure in a subsequent wave (n= 29).

Exposure Assessments
HRS began collecting blood-based biomarkers, including HDL-
C and TC, from individuals who participated in an enhanced
face-to-face interview in 2006 (a randomly selected half of
the sample) and 2008 (the other half). Similarly, new cohort
members in 2010 were randomly assigned to one of the two
groups. The HRS repeats blood sampling for biomarker measures
for each group every 4 years (12–14). Special informed consent
was obtained for the blood acquisition process (10). Cholesterol
levels were retrieved from the HRS health sensitive data (15).
We used the National Health and Nutrition Examination
Survey equivalent assay values constructed by the HRS in our
analyses (16). We selected the first non-missing blood assay
results from participants (over the course of four waves with
biomarkers 2006–2012) to maximize the sample size of non-
missing data in biomarkers, genetics, and cognitive assessments
across waves (n= 18,700).

We dichotomized blood cholesterol levels based on the 2018
guidelines published in the Journal of the American College of
Cardiology (17): For HDL-C, normal levels were defined as: ≥40
mg/dL for males or ≥50 mg/dL for females, and at risk (low)
levels were defined as: <40 mg/dL for males or <50 mg/dL for
females. For TC, normal levels were defined as: <240 mg/dL,
and at risk (high) levels were defined as: ≥240 mg/dL. Diverse
lipid ratios (e.g., TC/HDL-C, LDL/HDL) have been used as
atherogenic indexes for metabolic syndrome and cardiovascular
disease. These indices have shown better predictive capacity for
the aforementioned diseases than isolated lipid markers (18).
Hence, we used the TC/HDL-C ratio as a sensitivity analysis in
our study.

Outcome Assessments
HRS respondents who could participate in the interview
themselves were asked to perform a series of cognition tests
(Table 1). Their performance on each task was recorded in
a continuous scale (19). Our main outcome, the Langa-Weir
cognitive status, was classified in three levels based on a
total score on a 27-point scale (normal: 12–27, cognitive
impairment-non dementia (CIND): 7–11, and dementia: 0–6)
(20). Few studies have specifically examined how cholesterol
levels influence different cognitive domains, and while the
majority have reported that lower HDL-C levels are tied to worse
memory performance, some have reported a lack of association
with other cognitive functions (21). Thus, we also used summary
scores of three separate cognitive domains: word recall for
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TABLE 1 | Cognition domain scores and summary scores in the Health and

Retirement Studya.

Total

cognition

Langa-

Weir

classification

Domain

analysis

Episodic memory

Immediate word recall (0–10) X X X

Delayed word recall (0–10) X X X

Mental status

Serial 7 subtraction (0–5) X X X

Backward count from 20 (0–2) X X X

Date naming (0–4) X

Object naming (0–2) X

Naming the president and the

vice president of the

United States (0–2)

X

Vocabulary

Vocabulary summary score

(0–10)

X

Total 35 27 -

aAll scores were reported in integers, larger score indicates better performance in a

certain test.

episodic memory, serial 7 subtraction test for mental status, and
an adaptation of the Wechsler Adult Intelligence Scale-revised
vocabulary in our analyses (22).

Immediate and Delayed Recall
The interviewer read a list of 20 nouns (e.g., lake, car, army, etc.,)
to the respondent, and asked the respondent to recall as many
words as possible from the list in any order. After ∼5min of
asking other survey questions (e.g., depression, and cognition
items including backwards count, and serial 7’s) the respondent
was asked to recall the nouns previously presented as part of the
initial recall task.

Serial 7’s Test
The interviewer asked the respondent to subtract 7 from 100, and
continue subtracting 7 from each subsequent number for a total
of five trials. It was up to the respondent to remember the value
from the prior subtraction without prompting.

Vocabulary
This measure was adapted from the Wechsler Adult Intelligence
Scale-revised. Specifically, respondents were asked to define five
words from one of two sets: (1) repair, fabric, domestic, remorse,
plagiarize, and (2) conceal, enormous, perimeter, compassion,
audacious. Respondents are randomly assigned to one set of
words in the first wave and the sets are alternated in each wave
thereafter (23).

All cognition variables were measured at the same wave as the
corresponding cholesterol measure and retrieved from the HRS
cross-wave imputation of cognitive functioning data (24).

Covariate Assessments
Other covariates used in our analysis included demographic
characteristics, behavioral risk factors, and chronic health
conditions. Age (years) at was calculated by subtracting
the birth year from the cholesterol measurement year.
Cholesterol measurement wave was an indicator of individual’s
first non-missing cholesterol measure. Sex (male/female),
years of education, proxy status (self/proxy-respondent),
body mass index (BMI, kilograms/meters2), lipid-lowering
medication (yes/no), histories of stroke, hypertension, diabetes
(yes/no), smoking status (current, former, never), and alcohol
consumption (ever drinking yes/no) were self-reported. Average
exercise level was an average score of three exercise variables
(vigorous, moderate, mild) created from self-reported physical
activity variables in the HRS. All covariates were assessed at the
cholesterol measurement wave and retrieved from the RAND
HRS Longitudinal File (25).

Genetic Data
HRS began collecting genetic data from respondents in 2006.
Respondents provided saliva samples after reading and signing a
consent form during an enhanced face-to-face interview. Details
of the genotype collection and quality control can be found
elsewhere (26). Genotyping was conducted by the Center for
Inherited Disease Research using the Illumina HumanOmini2.5
BeadChip. Genotype data that passed initial quality control were
released and analyzed by the Quality Assurance/Quality Control
analysis team at the University of Washington. Raw genetic
data on unrelated individuals, both genotyped and imputed
to the 1,000 Genomes Project, is available from the National
Center for Biotechnology Information’s database of genotypes
and phenotypes (dbGaP Study Accession: phs000428.v2.p2).

Genetic ancestry in HRS was identified through the union
of self-reported race/ethnicity and principal component (PC)
analysis on genome-wide single nucleotide polymorphisms
(SNP) calculated across all participants plus HapMap controls
(26). Participants who were self-identified non-Hispanic White
and fell within the European ancestry genetic PC cluster were
included in the European ancestry sample. Participants who self-
identified as non-Hispanic Black and fell within the African
ancestry genetic PC cluster were included in the African ancestry
sample. The HRS releases ancestry-specific PCs created within
each ancestry sample (27).

We used a polygenic score (PGS) constructed by the HRS
as the instrumental variable in our Mendelian randomization
analyses. A PGS is a weighted sum of cumulative genetic risk
for a trait, which aggregates multiple individual loci across the
human genome and weights them by effect sizes from a prior
GWAS meta-analysis (27). The HDL-C and TC PGSs were
created using weights from a 2013 GWAS by the Global Lipid
Genetics Consortium (9). The general cognition PGS was created
using weights from a 2015 GWAS by the Cohorts for Heart and
Aging Research in Genomic Epidemiology consortium (28). All
the PGSs were standardized (mean = 0, standard deviation =

1) within ancestry. We included APOE-ε4 allele carrier status
along with the general cognition PGS in our sensitivity analyses
as a precision variable to reduce standard errors in the regression
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models and to capture the large genetic component of dementia
attributed to the APOE-ε4 variant. A binary variable of APOE-
ε4 allele carrier (having at least one copy of the ε4 allele,
yes/no), was retrieved from the HRS genetic data imputed to
the worldwide 1,000 Genomes Project reference panel (phase
I) (29). A promoter variant (rs3764261[A]) on the cholesteryl
ester transfer protein (CETP) gene is consistently related to
the metabolism of HDL-C (30). We retrieved the number of
copies of this SNP from the HRS measured genotype files for
sensitivity analyses.

Statistical Analysis
Distributions of baseline characteristics were compared between
included and excluded samples, ancestry, and across exposure
(cholesterol level) and outcome (cognitive status) groups. χ2 test
and analysis of variance were used as appropriate to examine
the homogeneity across groups. We used linear regressions
to examine the associations between cholesterol PGSs and
other covariates.

In our main analyses (European ancestry sample), we
used multivariable logistic regressions and Wald-type ratio
estimators to test the associations and inferred causality
between dyslipidemia and cognitive status, using cholesterol
PGSs as instrumental variables. Results from the Mendelian
randomization and multivariable logistic regression were
compared using a test of interaction to evaluate heterogeneity
(31). Normal cognitive status, normal HDL-C levels, and normal
TC levels were treated as reference groups. Our primary models
were adjusted for age, sex, years of education, lipid-lowering
medication, cholesterol measurement wave, and five ancestry-
specific PCs. Additional adjustment included health risk factors
that were associated with blood cholesterol levels. We also
added APOE-ε4 allele carrier and general cognition PGS in
our sensitivity analyses as further potential confounders of
the association between lipid profile and dementia risk. We
investigated continuous cognitive domain scores as outcomes
with linear regression models to understand the associations
between cholesterol levels and different cognitive domains.

Sensitivity Analyses
To assess the robustness of our findings, we performed several
analyses. Because only the relevance assumption of Mendelian
randomization is testable (32, 33), we performed improvement
χ
2 tests to evaluate the strength of the instrument, with values

>10 being taken as evidence for strong instruments (34). We
checked for pleiotropy to tentatively assess the violation of
independence and exclusion restriction assumptions. Hence,
we examined the associations between HDL or TC PGS and
potential confounding factors using linear regression, as well as
the associations between general cognition PGS and HDL PGS
or TC PGS, adjusted for five-ancestry-specific PCs. To control
for pleiotropy, we replaced the PGS with an indicator variable
of variants in the CETP SNP (0/1/2 copies of risk allele[A]) as an
instrumental variable. As a negative control, we also conducted
analyses in subsets of individuals with normal HDL-C or TC
levels who were not using any lipid-lowering medication.

We checked for non-linear associations between dyslipidemia
and cognitive status by using a smooth function of continuous
cholesterol. We examined the association between TC/HDL-
C ratio (logarithmic transformed) and cognitive status.
Finally, all analyses were additionally conducted in an African
ancestry sample.

We reported odds ratios (OR) for logistic regression and β̂

coefficients for linear regression along with their 95% confidence
intervals (CIs). Population attributable fractions were also
calculated for significant associations. We considered P-value <

0.05 for statistical significance if not specified. All analyses were
carried out separately by genetic ancestry and adjusted for a set of
five ancestry-specific PCs to adjust for population stratification.
A heuristic model and study subsets are shown in Figure 1.
Analyses were performed in R statistical software (version 3.6.1)
(35). Code to produce all analyses in this manuscript are available
online (https://github.com/bakulskilab).

RESULTS

There were 10,882 participants included in our analytic sample.
Compared to the excluded sample (n = 7,818), our included
sample was older, more educated, more likely to have normal
TC levels, and had better cognition (Supplementary Table 1).
Among the included sample, the European and African ancestry
groups had similar distributions of HDL-C and TC levels
(Table 2). Participants in the European ancestry sample were
older, more educated, performed better in cognition tests, and
less likely to have chronic health conditions, relative to the
African ancestry sample.

In the European ancestry sample (n = 8,781), health status
including BMI, smoking, alcohol consumption, histories of
stroke, hypertension, and diabetes were associated with both
outcome and exposures. Thus, in our sensitivity models, we
additionally adjusted for these variables. The average exercise
level was also associated with cognitive impairment. But because
it was correlated with BMI (r = −0.17, p < 0.001), hypertension
(r = −0.12, p < 0.001), and diabetes (r = −0.16, p < 0.001), and
may also be subject to reverse causation, we left those variables
out for our analyses. Cognitive status was positively associated
with the APOE-ε4 allele carrier status and general cognition PGS
(Table 3).

Associations With Cumulative Genetic Risk
of Dyslipidemia
In the European ancestry sample, cholesterol PGSs were highly
associated with their corresponding blood cholesterol measures.
After adjusting for age, sex, years of education, lipid-lowering
medication, cholesterol measurement wave, and five ancestry-
specific PCs, a one standard deviation increase in HDL PGS
was associated with 0.78 (95% CI: 0.74, 0.82) lower odds of at
risk relative to normal HDL-C level; a one standard deviation
unit increase in TC PGS was associated with 1.21 (95% CI:
1.13, 1.29) times odds of at risk relative to normal TC level.
Improvement χ

2 test statistics confirmed both cholesterol PGSs
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FIGURE 1 | Mendelian randomization analyses structure and subsets of study population, Health and Retirement Study, (n = 10,882)a. CIND, Cognitive

Impairment-Non-Dementia; HDL-C, High Density Lipoprotein Cholesterol; TC, Total Cholesterol. All variables were measured at the first instance of biomarker

collection for a participant from Health and Retirement Study waves 2006–2012. Mendelian randomization assumptions: (i) the genetic variant must be associated

with the exposure, (ii) the genetic variant must not be associated with any confounder of the exposure-outcome association and (iii) the genetic variant must be

associated with the outcome only via the exposure. aSubsets used in standard logistic regression and Mendelian randomization analyses: participants with (A)

non-missing values in HDL level + CIND or normal cognitive status; (B) non-missing values in HDL level + dementia or normal cognitive status; (C) non-missing values

in TC level + CIND or normal cognitive status; (D) non-missing values in TC level + dementia or normal cognitive status.

as valid instruments for blood cholesterol levels in our sample
(HDL PGS: χ2 = 98.7; TC PGS: χ2 = 32.6) (Table 4).

In the European ancestry sample, HDL PGS was not
associated with CIND but was associated with dementia
(Table 5). After adjusting for age, sex, years of education,
lipid-lowering medication, cholesterol measurement wave, and
five ancestry-specific PCs, a one standard deviation increase
in HDL PGS was associated with 0.81 (95% CI: 0.69, 0.96)
lower odds of dementia relative to normal cognition. This
association attenuated after additional adjustments of health
status (Table 5). TC PGS was not directly or indirectly associated
with the odds of CIND or dementia. No association was observed
between HDL or TC PGS and any cognitive domain score
(Supplementary Table 2).

Figure 2 presents the associations of HDL or TC PGSs with
baseline characteristics in the European ancestry sample. Both
cholesterol PGSs were associated with lipid-lowering medication
usage and alcohol consumption. In addition, HDL PGS was also
associated with history of hypertension, diabetes, smoking status,
BMI, and years of education.

Associations Between HDL-C Levels and
Cognition
Multivariable logistic regression results showed at risk (low)
HDL-C levels were associated with increased odds of CIND
(Table 6). According to population attributable fraction results,
5% of the CIND cases were attributed to at risk (low) HDL-C
levels. In the primary adjusted model, those with at risk (low)

HDL-C levels had 1.20 (95% CI: 1.03, 1.40) times higher odds of
CIND relative to normal cognition. This association attenuated
to the null after additional adjustments for health status. No
associations were observed between HDL-C levels and dementia.

Mendelian randomization analyses showed no evidence of
inferred causality between HDL-C levels and CIND (OR
= 0.92, 95% CI: 0.69, 1.23; Table 6), despite significant
logistic associations observed between HDL-C levels and CIND.
However, an inferred causal relationship was observed between
HDL-C levels and dementia. According to the Wald-type/ratio
results, using HDL PGS as an instrumental variable, individuals
with at risk (low) HDL-C levels had 2.15 (95% CI: 1.16,
3.99) times higher odds of dementia relative to normal
cognition. This Mendelian randomization result was significantly
different from the multivariable logistic regression result (P for
heterogeneity= 0.04).

For specific cognitive domains, at risk (low) HDL-C levels
were associated with worse performance in word recall tests
(episodic memory) only in multivariable regression (Table 7).
No association was observed between HDL-C levels and mental
status or vocabulary scores. None of the associations between
HDL-C levels and cognitive domain score could be considered
causal through Mendelian randomization analyses.

Associations Between TC Levels and
Cognition
Neither significant logistic regression associations nor
causal inference were observed between TC levels and
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TABLE 2 | Characteristics of sample participants (n = 10,882) stratified by ancestry, in the Health and Retirement Studya.

Overall European African Overall

P-valueb

n = 10,882 n = 8,781 n = 2,101

Categorical variables [count (frequency)]

HDL clinical levelc 0.46

Normal 6,711 (68.3%) 5,362 (68.1%) 1,349 (69.0%)

At risk (low) 3,112 (31.7%) 2,507 (31.9%) 605 (31.0%)

TC clinical levelc 0.43

Normal 9,170 (84.4%) 7,415 (84.5%) 1,755 (83.8%)

At risk (high) 1,700 (15.6%) 1,360 (15.5%) 340 (16.2%)

Cognitive status at HDL or TC measurement wave <0.001*

Normal 8,913 (81.9%) 7,537 (85.8%) 1,376 (65.5%)

Cognitive impairment-non dementia 1,624 (14.9%) 1,059 (12.1%) 565 (26.9%)

Dementia 345 (3.17%) 185 (2.11%) 160 (7.62%)

Sex (female) 6,423 (59.0%) 5,101 (58.1%) 1,322 (62.9%) <0.001*

Lipid-lowering medication (Yes) 5,430 (49.9%) 4,413 (50.3%) 1,017 (48.4%) 0.13

Stroke history (Yes) 824 (7.57%) 619 (7.05%) 205 (9.76%) <0.001*

Hypertension history (Yes) 7,150 (65.7%) 5,384 (61.3%) 1,766 (84.1%) <0.001*

Diabetes history (Yes) 2,494 (22.9%) 1,740 (19.8%) 754 (35.9%) <0.001*

Smoking status <0.001*

Never 4,554 (41.8%) 3,712 (42.3%) 842 (40.1%)

Former 4,793 (44.0%) 3,969 (45.2%) 824 (39.2%)

Current 1,535 (14.1%) 1,100 (12.5%) 435 (20.7%)

Drink status (ever drinker) 5,922 (54.4%) 4,986 (56.8%) 936 (44.6%) <0.001*

Proxy status (self-respondent) 10,882 (100%) 8,781 (100%) 2,101 (100%)

APOE-ε4 allele carrier (Yes) 2,605 (27.8%) 2,003 (25.8%) 602 (37.9%) <0.001*

Cholesterol measure wave <0.001*

Wave 2006 3,893 (35.8%) 3,394 (38.7%) 499 (23.8%)

Wave 2008 3,922 (36.0%) 3,341 (38.0%) 581 (27.7%)

Wave 2010 1,582 (14.5%) 1,063 (12.1%) 519 (24.7%)

Wave 2012 1,485 (13.6%) 983 (11.2%) 502 (23.9%)

Continuous variables [Mean (SD)]

Blood HDL (mg/dL) 54.4 (16.1) 54.2 (16.1) 55.0 (16.0) 0.06

Blood TC (mg/dL) 197 (42.2) 197 (42.2) 197 (42.3) 0.67

Age at HDL or TC measurement wave (yrs) 67.6 (10.1) 68.4 (10.1) 64.1 (9.34) <0.001*

Years of education 13.0 (2.65) 13.2 (2.54) 12.2 (2.91) <0.001*

Body mass index (kg/m2 ) 28.9 (6.16) 28.4 (5.84) 30.8 (7.02) <0.001*

Immediate word recall 5.50 (1.58) 5.61 (1.57) 5.06 (1.52) <0.001*

Delayed word recall 4.36 (1.92) 4.53 (1.91) 3.65 (1.83) <0.001*

Serial 7 subtraction 3.57 (1.64) 3.82 (1.50) 2.54 (1.80) <0.001*

Backward count from 20 1.89 (0.46) 1.92 (0.40) 1.77 (0.64) <0.001*

Vocabulary sum score 5.56 (2.05) 5.86 (1.89) 4.34 (2.19) <0.001*

Total cognition 22.1 (4.85) 22.6 (4.57) 19.3 (5.18) <0.001*

APOE, Apolipoprotein E; HDL, High Density Lipoprotein Cholesterol; SD, Standard Deviation; TC, Total Cholesterol.
aAll variables were measured at the first instance of biomarker collection for a participant from Health and Retirement Study waves 2006-2012. All the statistics including count, frequency,

mean, SD, and P-value were calculated based on non-missing data for each variable.
bThe overall P-value was calculated from chi-square test or analysis of variance for categorical or continuous variables as appropriate, interpreted as differences between groups.

*indicates a significance at a P-value of 0.05.
cAt risk low HDL: <40 mg/dL for male and <50 mg/dL for female; At risk high TC: ≥240 mg/dL.

cognitive status in either multivariable logistic regression
or Mendelian randomization analyses. Results did not
differ between the logistic regression and Mendelian

randomization estimates (P for heterogeneity: CIND/normal
= 0.27; dementia/normal = 0.34) (Table 6). For specific
cognitive domains, no association or causal relationship
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TABLE 3 | Bivariate characteristics stratified by cognitive status or cholesterol clinical level, in the Health and Retirement Study, European ancestry sample (n = 8781)a.

Cognitive status High density lipoprotein cholesterol (HDL) Total cholesterol (TC)

Overall Normal CIND Dementia P-valueb Overall Normal At risk

(low)

P-valueb Overall Normal At risk

(high)

P-valueb

n = 8781 n = 7537 n = 1059 n = 185 n = 7869 n = 5362 n = 2507 n = 8775 n = 7415 n = 1360

Categorical variables [count (frequency)]

HDL clinical levelc <0.001* - <0.001*

Normal 5,362

(68.1%)

4,668

(69.0%)

590 (62.6%) 104 (64.2%) 5,358

(68.1%)

4,288

(65.2%)

1,070

(83.1%)

At risk (low) 2,507

(31.9%)

2,096

(31.0%)

353 (37.4%) 58 (35.8%) 2,505

(31.9%)

2,287

(34.8%)

218 (16.9%)

TC clinical levelc 0.12 <0.001* -

Normal 7,415

(84.5%)

6,340

(84.2%)

913 (86.2%) 162 (87.6%) 6,575

(83.6%)

4,288

(80.0%)

2,287

(91.3%)

At risk (high) 1,360

(15.5%)

1,191

(15.8%)

146 (13.8%) 23 (12.4%) 1,288

(16.4%)

1,070

(20.0%)

218 (8.70%)

Sex (Female) 5,101

(58.1%)

4,433

(58.8%)

570 (53.8%) 98 (53.0%) 0.003* 4,599

(58.4%)

3,070

(57.3%)

1,529

(61.0%)

0.002* 5,099

(58.1%)

4,083

(55.1%)

1,016

(74.7%)

<0.001*

Lipid-lowering

medication (Yes)

4,413

(50.3%)

3,735

(49.6%)

588 (55.5%) 90 (48.6%) 0.001* 3,958

(50.3%)

2,592

(48.3%)

1,366

(54.5%)

<0.001* 4,412

(50.3%)

4,009

(54.1%)

403 (29.6%) <0.001*

Stroke history (Yes) 619 (7.05%) 414 (5.49%) 163 (15.4%) 42 (22.7%) <0.001* 553 (7.03%) 326 (6.08%) 227 (9.05%) <0.001* 619 (7.05%) 549 (7.40%) 70 (5.15%) 0.003*

Hypertension history

(Yes)

5,384

(61.3%)

4,547

(60.3%)

721 (68.1%) 116 (62.7%) <0.001* 4,814

(61.2%)

3,133

(58.4%)

1,681

(67.1%)

<0.001* 5,380

(61.3%)

4,623

(62.3%)

757 (55.7%) <0.001*

Diabetes history (Yes) 1,740

(19.8%)

1,428

(18.9%)

264 (24.9%) 48 (25.9%) <0.001* 1,533

(19.5%)

839 (15.6%) 694 (27.7%) <0.001* 1,739

(19.8%)

1,591

(21.5%)

148 (10.9%) <0.001*

Smoking status 0.001* <0.001* <0.001*

Never 3,712

(42.3%)

3,243

(43.0%)

386 (36.4%) 83 (44.9%) 3,306

(42.0%)

2,285

(42.6%)

1,021

(40.7%)

3,710

(42.3%)

3,091

(41.7%)

619 (45.5%)

Former 3,969

(45.2%)

3,361

(44.6%)

524 (49.5%) 84 (45.4%) 3,550

(45.1%)

2,444

(45.6%)

1,106

(44.1%)

3,968

(45.2%)

3,427

(46.2%)

541 (39.8%)

Current 1,100

(12.5%)

933 (12.4%) 149 (14.1%) 18 (9.73%) 1,013

(12.9%)

633 (11.8%) 380 (15.2%) 1,097

(12.5%)

897 (12.1%) 200 (14.7%)

Drink status (Ever

drinker)

4,986

(56.8%)

4,492

(59.6%)

438 (41.4%) 56 (30.3%) <0.001* 4,479

(56.9%)

3,262

(60.8%)

1,217

(48.5%)

<0.001* 4,982

(56.8%)

4,189

(56.5%)

793 (58.3%) 0.23

APOE-ε4 allele carrier

(Yes)

2,003

(25.8%)

1,659

(24.9%)

274 (28.8%) 70 (41.2%) <0.001* 1,787

(25.9%)

1,206

(25.8%)

581 (26.2%) 0.74 2,001

(25.7%)

1,656

(25.3%)

345 (28.1%) 0.04*

First cholesterol

measure wave

0.91 0.318 0.02*

Wave 2006 3,394

(38.7%)

2,910

(38.6%)

412 (38.9%) 72 (38.9%) 2,758

(35.0%)

1,857

(34.6%)

901 (35.9%) 3,394

(38.7%)

2,858

(38.5%)

536 (39.4%)

(Continued)
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TABLE 3 | Continued

Cognitive status High density lipoprotein cholesterol (HDL) Total cholesterol (TC)

Overall Normal CIND Dementia P-valueb Overall Normal At risk

(low)

P-valueb Overall Normal At risk

(high)

P-valueb

n = 8781 n = 7537 n = 1059 n = 185 n = 7869 n = 5362 n = 2507 n = 8775 n = 7415 n = 1360

Wave 2008 3,341

(38.0%)

2,853

(37.9%)

417 (39.4%) 71 (38.4%) 3,086

(39.2%)

2094

(39.1%)

992 (39.6%) 3,341

(38.1%)

2,792

(37.7%)

549 (40.4%)

Wave 2010 1,063

(12.1%)

924 (12.3%) 117 (11.0%) 22 (11.9%) 1,051

(13.4%)

726 (13.5%) 325 (13.0%) 1,058

(12.1%)

905 (12.2%) 153 (11.2%)

Wave 2012 983 (11.2%) 850 (11.3%) 113 (10.7%) 20 (10.8%) 974 (12.4%) 685 (12.8%) 289 (11.5%) 982 (11.2%) 860 (11.6%) 122 (8.97%)

Continuous variables [mean (SD)]

Age at measurement

(yrs)

68.4 (10.1) 67.4 (9.72) 74.5 (9.99) 76.6 (9.26) <0.001* 68.1 (10.1) 67.9 (10.2) 68.7 (10.0) 0.001* 68.4 (10.1) 68.8 (10.1) 66.4 (9.65) <0.001*

Years of education 13.2 (2.52) 13.5 (2.34) 11.7 (2.76) 10.6 (3.32) <0.001* 13.2 (2.51) 13.4 (2.52) 12.9 (2.46) <0.001* 13.2 (2.52) 13.2 (2.53) 13.3 (2.42) 0.50

HDL polygenic risk

score

−0.01

(1.00)

−0.01

(1.00)

0.01 (0.98) −0.16

(1.06)

0.11 −0.02

(1.00)

0.06 (0.99) −0.20

(1.01)

<0.001* −0.01

(1.00)

−0.03

(1.01)

0.08 (0.97) <0.001*

TC polygenic risk score 0.00 (1.00) 0.00 (1.00) −0.02

(0.99)

−0.08

(1.04)

0.42 −0.01

(0.99)

0.02 (0.99) −0.06

(0.98)

<0.001* 0.00 (1.00) −0.02

(1.00)

0.09 (0.98) <0.001*

General cognition

polygenic risk score

−0.01

(1.00)

0.00 (1.00) −0.11

(0.98)

0.01 (0.92) 0.002* −0.01

(1.00)

0.00 (1.01) −0.05

(0.97)

0.04* −0.01

(1.00)

−0.01

(1.00)

−0.03

(1.00)

0.36

BMI (kg/m2) 28.4 (5.84) 28.6 (5.82) 27.2 (5.82) 26.8 (5.84) <0.001* 28.4 (5.88) 27.8 (5.61) 29.9 (6.17) <0.001* 28.4 (5.84) 28.5 (5.87) 27.9 (5.68) 0.001*

Immediate word recall 5.61 (1.57) 5.97 (1.32) 3.69 (1.05) 2.03 (1.20) <0.001* 5.62 (1.56) 5.69 (1.57) 5.48 (1.55) <0.001* 5.61 (1.57) 5.58 (1.57) 5.76 (1.55) <0.001*

Delayed word recall 4.54 (1.90) 4.99 (1.57) 2.02 (1.35) 0.53 (0.77) <0.001* 4.55 (1.90) 4.63 (1.90) 4.39 (1.90) <0.001* 4.54 (1.90) 4.49 (1.90) 4.78 (1.90) <0.001*

Serial 7 subtraction 3.82 (1.50) 4.14 (1.21) 2.08 (1.63) 0.64 (0.97) <0.001* 3.81 (1.51) 3.86 (1.47) 3.72 (1.58) <0.001* 3.82 (1.50) 3.83 (1.49) 3.73 (1.56) 0.02*

Backward count from

20

1.92 (0.39) 1.95 (0.31) 1.79 (0.61) 1.32 (0.95) <0.001* 1.92 (0.39) 1.92 (0.39) 1.92 (0.39) 0.87 1.92 (0.39) 1.92 (0.40) 1.93 (0.37) 0.44

Vocabulary sum score 5.87 (1.89) 6.09 (1.80) 4.98 (1.87) 3.81 (2.10) <0.001* 5.87 (1.91) 5.89 (1.89) 5.81 (1.94) 0.32 5.86 (1.89) 5.86 (1.89) 5.89 (1.90) 0.79

Total cognition 22.6 (4.54) 24.2 (3.05) 16.6 (1.92) 10.0 (3.42) <0.001* 22.7 (4.54) 22.9 (4.51) 22.3 (4.58) <0.001* 22.6 (4.54) 22.6 (4.51) 23.0 (4.72) 0.01*

APOE, Apolipoprotein E; CIND, Cognitive Impairment Non-Dementia; HDL, High Density Lipoprotein Cholesterol; SD: Standard Deviation; TC, Total Cholesterol.
aAll variables were measured at the first instance of biomarker collection for a participant from Health and Retirement Study waves 2006–2012. All the statistics including count, frequency, mean, SD, and P-value were calculated based

on non-missing data for each variable.
bThe overall P-value was calculated from chi-square test or analysis of variance for categorical or continuous variables as appropriate, interpreted as differences between groups. *indicates a significance at a P-value of 0.05.
cAt risk low HDL: <40 mg/dL for male and <50 mg/dL for female; At risk high TC: ≥240 mg/dL.
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TABLE 4 | Associations between polygenic risk score for cholesterol (HDL-C and TC) and blood cholesterol levels, in the Health and Retirement Study, European ancestry

sample (n = 8,781)a.

CIND & normal Dementia & normal Overall sample

N OR (95 CI%) N OR (95 CI%) N OR (95 CI%)

High density lipoprotein cholesterol (HDL-C)

Crude 7,707 0.77 (0.73, 0.81) 6,926 0.75 (0.71, 0.79) 7,997 0.77 (0.73, 0.81)

Adjustedb 7,707 0.78 (0.74, 0.82) 6,926 0.77 (0.73, 0.81) 7,997 0.78 (0.74, 0.82)

Improvement χ
2c 97.5 99.8 98.7

Total cholesterol (TC)

Crude 8,590 1.12 (1.05, 1.18) 7,716 1.10 (1.03, 1.17) 8,921 1.11 (1.05, 1.18)

Adjusted 8,590 1.21 (1.13, 1.30) 7,716 1.20 (1.12, 1.28) 8,921 1.21 (1.13, 1.29)

Improvement χ
2 32.6 25.5 32.6

CI, Confidence Interval; CIND, Cognitive Impairment-Non Dementia; OR: Odds Ratio.
aAll variables were measured at the first instance of biomarker collection for a participant from Health and Retirement Study waves 2006–2012. All the values were based on results

from multivariable logistic regression analyses in each sample, in which “normal cholesterol level” was used as the reference group.
bAdjusted for age, sex, years of education, lipid-lowering medication, cholesterol measurement wave, and five ancestry-specific principal components.
cCalculated by 2*(log likelihood of full model − log likelihood of reduced model). Statistics larger than 10 indicates a valid instrument in convention.

TABLE 5 | Associations between polygenic risk score for cholesterol and cognitive status, in the Health and Retirement Study, European ancestry sample (n = 8,781)a.

High density lipoprotein cholesterol (HDL) Total cholesterol (TC)

CIND vs. normal Dementia vs. normal CIND vs. normal Dementia vs. normal

N OR (95 CI%) N OR (95 CI%) N OR (95 CI%) N OR (95 CI%)

Total effect of cholesterol PGS

Crude 7,707 1.03 (0.96, 1.10) 6,926 0.83 (0.71, 0.97) 8,590 0.98 (0.92, 1.04) 7,716 0.92 (0.79, 1.06)

Adjusted (demographic)b 7,707 1.02 (0.95, 1.10) 6,926 0.82 (0.69, 0.96) 8,590 0.97 (0.90, 1.05) 7,716 0.90 (0.76, 1.07)

Adjusted (health status)c 7,707 1.03 (0.96, 1.11) 6,926 0.83 (0.70, 0.98) 8,590 0.97 (0.90, 1.05) 7,716 0.90 (0.76, 1.07)

Direct effect of cholesterol PGS (adjusting for cholesterol level)

Crude 7,707 1.05 (0.98, 1.12) 6,926 0.84 (0.72, 0.98) 8,590 0.98 (0.92, 1.05) 7,716 0.92 (0.79, 1.06)

Adjusted (demographic) 7,707 1.03 (0.96, 1.11) 6,926 0.81 (0.69, 0.96) 8,590 0.97 (0.90, 1.04) 7,716 0.90 (0.76, 1.07)

Adjusted (health status) 7,707 1.04 (0.97, 1.12) 6,926 0.83 (0.70, 0.98) 8,590 0.97 (0.90, 1.05) 7,716 0.91 (0.76, 1.07)

APOE, Apolipoprotein E; CI, Confidence Interval; CIND, Cognitive Impairment-Non Dementia; OR, Odds Ratio.
aAll variables were measured at the first instance of biomarker collection for a participant from Health and Retirement Study waves 2006–2012. All the values were based on results

from multivariable logistic regression analyses in each sample, in which “normal cognitive status” and “normal cholesterol level” were used as the reference groups.
bAdjusted for age, sex, years of education, lipid-lowering medication, cholesterol measurement wave, and five ancestry-specific principal components.
cAdjusted for ever drink alcohol, history of stroke, hypertension, diabetes, and BMI in addition to variables in b.

was observed between TC levels and any cognitive domain
score (Table 7).

Sensitivity Analyses
In the European ancestry sample, after adjusting for five ancestry-
specific PCs, general cognition PGS was not associated with HDL
PGS (β̂ = −0.02, P = 0.08), but was associated with TC PGS
(β̂ = −0.04, P = 0.005). Multivariable logistic regression and
Mendelian randomization results were similar when we further
adjusted for dementia genetic variables (APOE-ε4 allele carrier
status and general cognition PGS).

Given that HDL PGS was associated with multiple baseline
characteristics (Figure 2), there may be pleiotropic effects
between cognition and blood HDL-C levels. To control for this
potential pleiotropy, we used rs3764261 as a valid instrumental
variable, but no causal relationship was found as above

(Supplementary Table 3). In the subsample of participants
with normal HDL-C and TC levels and not using any lipid-
lowering medication, neither HDL PGS nor TC PGS was
associated with cognitive status, showing lack of evidence
for the violation of the independence assumption in our
analysis (Supplementary Table 4). No association was observed
between the log-transformed TC/HDL-C ratio on cognitive
status (Supplementary Table 5).

Supplementary Figure 2 shows non-linear associations
between continuous cholesterol and cognitive status, adjusting
for age, sex, years of education, lipid-lowering medication,
cholesterol measurement wave, and five ancestry-specific
PCs. The probability of predicted CIND and dementia both
decreased with increased HDL-C, which were consistent with
our previous findings that low HDL-C level was associated
with cognitive impairment. For TC, we observed an expected
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FIGURE 2 | Associations between cholesterol polygenic risk score and factors potentially confounding the relation between cholesterol and cognitive status, in the

Health and Retirement Study, European ancestry sample (n = 8,781). APOE, Apolipoprotein E; BMI, Body Mass Index; CI, Confidence Interval; HDL, High Density

Lipoprotein Cholesterol; TC, Total Cholesterol.

non-linear association with CIND and dementia: before the
clinical cut point of 240 mg/dL, the probability of predicted
CIND and dementia both decreases with the increase of
TC concentration, while the probability increased after the
cut point.

Among the African ancestry sample (n = 2,101), HDL and
TC PGSs were also associated with blood HDL-C and TC levels,
respectively; while improvement χ

2 test statistics indicated
neither cholesterol PGSs were valid instruments (HDL: 4.96
< 10; TC: 9.09 < 10), so no further Mendelian randomization
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TABLE 6 | Associations between blood cholesterol levels and cognitive status, in the Health and Retirement Study, European ancestry sample (n = 8781)a.

High density lipoprotein cholesterol (HDL) Total cholesterol (TC)

N Logistic regression Wald-type/ratio P for

heterogeneityb
N Logistic regression Wald-type/ratio P for

heterogeneity

OR (95 CI%) OR (95 CI%) OR (95 CI%) OR (95 CI%)

CIND vs. normal

Crude 7,707 1.33 (1.16, 1.53) 0.89 (0.69, 1.16) 0.01* 8,590 0.85 (0.70, 1.02) 0.82 (0.45, 1.48) 0.91

Adjusted (demographic)c 7,707 1.20 (1.03, 1.40) 0.91 (0.68, 1.23) 0.11 8,590 1.10 (0.90, 1.34) 0.86 (0.58, 1.26) 0.27

Adjusted (health status)d 7,707 1.15 (0.99, 1.35) 0.88 (0.65, 1.18) 0.12 8,590 1.13 (0.91, 1.38) 0.87 (0.59, 1.28) 0.17

Dementia vs. normal

Crude 6,926 1.24 (0.89, 1.71) 1.94 (1.13, 3.34) 0.16 7,716 0.76 (0.47, 1.15) 0.40 (0.08, 1.88) 0.44

Adjusted (demographic) 6,926 1.02 (0.72, 1.44) 2.15 (1.16, 3.99) 0.04* 7,716 0.93 (0.57, 1.47) 0.56 (0.22, 1.43) 0.34

Adjusted (health status) 6,926 0.97 (0.67, 1.39) 2.02 (1.08, 3.77) 0.047* 7,716 0.91 (0.55, 1.44) 0.57 (0.22, 1.47) 0.39

APOE, Apolipoprotein E; BMI, Body Mass Index; CI: Confidence Interval; CIND: Cognitive Impairment-Non Dementia; OR: Odds Ratio.
aAll variables were measured at the first instance of biomarker collection for a participant from Health and Retirement Study waves 2006–2012. All values were based on results from

multivariable logistic regression or Mendelian randomization analyses in each sample, in which “normal cognitive status” and “normal cholesterol level” were used as reference groups.
bP-value represents the statistical significance of the test of heterogeneity between logistic regression and Mendelian randomization. *indicates a significance at a P-value of 0.05.
cAdjusted for age, sex, years of education, lipid-lowering medication, cholesterol measurement wave, and five ancestry-specific principal components.
dAdjusted for ever drink alcohol, history of stroke, hypertension, diabetes, and BMI in addition to variables in c.

analyses were performed (Supplementary Table 6a). In
multivariable logistic regression, no associations were observed
between HDL or TC polygenic score and CIND or dementia
(Supplementary Table 6b, Model 1), or between HDL-C or TC
level and cognitive status (Supplementary Table 6b, Model 2).

DISCUSSION

The present study was conducted among a sample of older
adults from the Health and Retirement Study participating
in the 2006–2012 waves with biomarker and cognition data.
To our knowledge, this is a novel study using a Mendelian
randomization framework to investigate the inferred causal
nature of dyslipidemia on cognitive status and separate cognitive
domains. In the European ancestry sample, after adjusting for
age, sex, years of education, lipid-lowing medication, cholesterol
measurement wave, and five ancestry-specific PCs, at risk (low)
HDL-C levels were associated with higher odds of CIND, lower
episodic memory scores, and lower mental status scores. Using
inverse-variance weightedMendelian randomizationmethods, at
risk (low) HDL-C level was inferred to be causally associated with
dementia (OR = 2.25, 95% CI: 1.23, 4.09). No associations or
causal inferences were observed between TC levels and cognitive
status. These findings represent important new information
supporting HDL-C management as a public health approach to
prevent dementia.

Our observed associations between at risk (low) HDL-C
levels and cognitive impairment in the European ancestry
sample are consistent with previous studies (36, 37). HDL-
C is involved in the deposition and clearance of beta-
amyloid – a determining factor for endothelial inflammation
and subsequent neurodegeneration in the brain (38). Animal
models show a protective effect of HDL-C against memory
deficits, neuroinflammation, and cerebral amyloid angiopathy

(39). Several longitudinal studies also found a potential protective
effect of midlife HDL-C on future cognitive decline (40, 41). For
specific cognitive domains, at risk HDL-C and TC were both
associated with worse episodic memory only, which suggests
that dysregulation of lipid metabolism might be associated
with certain cognitive functions. However, we were not
able to identify specific neuropsychiatric or neuropathological
mechanisms in this study. We did not observe an association
between TC and cognitive status in either ancestry sample,
which differs from some existing findings. For example, a
prior meta-analysis reported adults with high TC had 2.14
times higher risk of developing dementia compared to those
with normal TC (3). The difference may be attributed to
variations across samples, in that our included study sample
captured a lower proportion of abnormal TC participants
(Supplementary Table 1). Additionally, we hypothesize that the
lack of association between TC and dementia in our European
sample may be due to a physiological decline of TC circulating
levels in older adults. Studies have noted that TC may not
be an adequate marker to characterize lifetime exposure to
dyslipidemia or atherogenic risk due to the fact that TC levels
decline with age (42, 43). However, HDL-C circulating levels
are relatively stable over time and may be a better indicator
of atherogenic risk among older adults (44). Therefore, our
null causal inferred association between TC and dementia may
correspond to a physiological decline of TC levels due to aging;
and hence, a misclassification of the lifetime atherogenic risk.
In contrast, the non-null association between HDL-C levels
and cognitive impairment may be a reflection of more stable
circulating levels of this lipoprotein in older adults.

It is worth noticing that in our study of older adults, we only
observed significant associations between HDL-C and CIND, but
not with dementia. One possible explanation on that is that in our
sensitivity analyses, we adjusted for potential mediators, which
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TABLE 7 | Associations between blood cholesterol levels and cognitive domain scores, in the Health and Retirement Study, European ancestry sample (n = 8781)a.

High density lipoprotein cholesterol (HDL-C) Total cholesterol (TC)

N Linear regression Wald-type/ratio P for

heterogeneityb
N Linear regression Wald-type/ratio P for

heterogeneity
β coefficient (95% CI) β coefficient (95% CI) β coefficient (95% CI) β coefficient (95% CI)

Total cognition score

(0–35)

Crude 5,270 −0.61 (−0.87, −0.35) −0.38 (−0.82, 0.06) 0.19 5,924 0.45 (0.12, 0.79) 0.23 (−0.84, 1.29) 0.75

Adjustedc 5,270 −0.26 (−0.49, −0.03) −0.26 (−0.67, 0.14) 0.18 5,924 −0.20 (−0.50, 0.10) 0.20 (−0.59, 1.00) 0.52

Episodic memory

Immediate word recall Crude 7,869 −0.21 (−0.28, −0.13) −0.10 (−0.23, 0.02) 0.26 8,775 0.18 (0.09, 0.27) 0.04 (−0.27, 0.35) 0.93

Adjusted 7,869 −0.10 (−0.16, −0.03) −0.10 (−0.21, 0.02) 0.11 8,775 −0.08 (−0.16, 0.00) 0.05 (−0.18, 0.28) 0.57

Delayed word recall Crude 7,869 −0.25 (−0.34, −0.16) −0.11 (−0.26, 0.04) 0.49 8,775 0.29 (0.18, 0.40) −0.05 (−0.42, 0.32) 0.63

Adjusted 7,869 −0.13 (−0.21, −0.05) −0.13 (−0.27, 0.01) 0.17 8,775 −0.01 (−0.11, 0.09) 0.06 (−0.22, 0.34) 0.64

Mental status

Serial 7 subtraction Crude 7,869 −0.13 (−0.20, −0.06) −0.05 (−0.17, 0.07) 0.68 8,775 −0.11 (−0.19, −0.02) 0.08 (−0.21, 0.38) 0.53

Adjusted 7,869 −0.01 (−0.08, 0.05) 0.03 (−0.09, 0.15) 0.87 8,775 −0.09 (−0.18, −0.01) 0.06 (−0.17, 0.29) 0.66

Backward count from 20 Crude 7,869 0.00 (−0.02, 0.02) 0.00 (−0.04, 0.03) 0.76 8,775 0.01 (−0.01, 0.03) 0.03 (−0.05, 0.10) 0.52

Adjusted 7,869 0.01 (−0.01, 0.03) 0.00 (−0.04, 0.03) 0.70 8,775 0.00 (−0.02, 0.02) 0.03 (−0.03, 0.09) 0.46

Vocabulary

Vocabulary summary

score

Crude 2,714 −0.08 (−0.23, 0.07) −0.20 (−0.45, 0.05) 0.08 3,166 0.03 (−0.16, 0.22) 0.09 (−0.52, 0.70) 0.78

Adjusted 2,714 0.07 (−0.07, 0.21) −0.08 (−0.31, 0.16) 0.28 3,166 −0.09 (−0.27, 0.09) −0.07 (−0.54, 0.40) 0.96

BMI, Body Mass Index; CI: Confidence Interval; CIND: Cognitive Impairment-Non Dementia; OR: Odds Ratio.
aAll variables were measured at the first instance of biomarker collection for a participant from Health and Retirement Study waves 2006–2012. All values were based on results from linear regression and Mendelian randomization

analyses in each sample.
bP-value represents the statistical significance of the test of heterogeneity between linear regression and Mendelian randomization.
cAdjusted for age, sex, years of education, lipid-lowering medication, cholesterol measurement wave, and five ancestry-specific principal components.
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could be part of the causal chain between the cholesterol level
and cognitive impairment. Adjusting for potential mediators
can bias those associations (45). The attenuated association
between HDL-C and CIND after additional adjustments for
health conditions also supports this assumption (Table 6).

By contrast, the causal inference was only observed for at
risk (low) HDL-C levels with dementia. No causal relationships
were observed between HDL-C levels and CIND or any
cognitive domain scores, including episodic memory. We were
limited to cross-sectional HDL-Cmeasurements and were unable
to capture repeated cholesterol measures prior to impaired
cognition or cumulative lifetime HDL-C levels. It is possible
that the polygenic score for HDL is a better proxy for lifetime
HDL-C levels because genetic risk is established early in life and
maintained throughout the life course. Under this scenario, a
lower polygenic score for HDL might be a marker of decreased
lifetime HDL-C levels, which could increase the risk of dementia
in later life.

To assess the validity of our Mendelian randomization
models, several tests were performed to evaluate the assumptions
of the testing framework. The relevance assumption is met by
providing evidence of both cholesterol PGSs as valid instruments
using improvement χ

2 tests. A limitation of our analysis is the
potential violation of the independence and exclusion restriction
assumptions. Even though we tested for potential violations of
pleiotropy, implemented negative controls, and as a sensitivity
analysis used the SNP rs3764261 as a valid instrumental variable,
our study cannot rule out the presence of pleiotropy. As such, the
inferred causality between HDL-C and cognitive status should be
interpreted with caution.

No association was found between cholesterol levels and
cognitive status in the African ancestry sample. African
ancestry participants are traditionally underrepresented in
genetic research. Because the method for computing the
cholesterol PGSs depended on summary statistics from GWASs
focused exclusively on participants of the European ancestry,
results may have limited generalizability to other ancestral groups
(46). Furthermore, we had a relatively small sample of the African
ancestry (nAfrican = 2,101 vs. nEuropean = 8,781). A similar study
should be replicated in an African ancestry with a larger sample
size and PGSs based on GWASs among the African ancestry
specifically. Previous studies have found that African American
men and women have better lipid profiles than their White
counterparts, including higher levels of HDL-C, lower levels
of LDL-C, TC, and triglycerides (TG) (47, 48). Despite this
beneficial lipid profile, African Americans, as a collective group,
are at greater risk for chronic conditions that are physiologically
related to an unfavorable lipid imbalance, such as: coronary
heart disease (49), stroke (50), and dementia (3). In our sample,
participants of African ancestry have comparable lipid profiles
to those with European ancestry. However, our results indicate
that an adverse lipid profile is not predictive of dementia nor
CIND among African ancestry participants. Therefore, future
research should focus on understanding and identifying clinical
biomarkers of cognitive decline for participants with non-
European ancestry.

There are several strengths and limitations in our current
study. First, studies examining blood cholesterol levels and
cognitive function in the context of genetics are limited, and
thus our findings contribute to an important, yet sparse,
literature. Second, Mendelian randomization has a powerful
control for confounding and reverse causation, which often
impede or mislead epidemiological studies of causation (51).
We used summary scores (PGSs) of cumulative variation
across multiple genetic loci to capture a larger fraction of
variability of blood cholesterol, and thus increased the power
of testing. The lack of data on other lipid markers such as
LDL-C and triglycerides (TG) is an important limitation of
our study. We do not know to what extent the exclusion of
these two markers may affect the robustness of our results, as
LDL-C and TG are important atherogenic risk factors often
associated with stroke and vascular dementia. To address this
limitation, we implemented in our sensitivity analysis a ratio
measure (TC/HDL-C) which may be a measure with better
atherogenic predictive power (18, 52, 53). However, using the
ratio measure, our results did not substantively change. Further,
studies with a more complete lipid panel data are warranted.
Our findings should be considered in light of potential selection
bias. Individuals with dyslipidemia may die prematurely from
dyslipidemia-related diseases, such as cardiovascular diseases,
before developing dementia. Thus, our sample may have been
biased toward healthier individuals – those that survived – which
may not be representative in the general older population. In
such a case, our estimates are conservative and represent an
underestimation of the true causal odds ratio. In this study, we
were able to broadly classify dementia status. Additional studies
will be able to examine dementia subtypes for specificity of
associations. Furthermore, although, the dementia and CIND cut
points have been clinically validated with an estimated sensitivity
of 78% (20), the classification of cognitive status is not as well-
defined as other more explicitly defined variables. However,
our analysis with multiple domains of cognition suggests that
our main finding of a potential causal association between
HDL-C and dementia among participants of European ancestry
may be robust. We argue that any potential misclassification
of dementia by the Langa-Weir cognitive status’ algorithm
is non-differential by HDL-C status. Therefore, our estimates
are conservative and biased toward the null. Finally, we used
concurrent assessments of cholesterol and cognition in our
current study, but measurements of early-life cholesterol level
were not available. Results of causal tests could be strengthened
by further studies with time-specific variables. Similar studies
should be replicated with larger sample sizes and in multiple
ancestries to promote generalizability.

Dementia is a major public health concern worldwide.
Blood cholesterol levels, unlike genetic factors, can be
modified by changing diets and health behaviors. Findings
in our study underscore the protective effects of increased
blood HDL-C and its role in maintaining cognition during
aging. Thus, therapeutic strategies aimed at controlling
cholesterol levels could be a converging target to mitigate
cognitive deficits.
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