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Abstract: Given that human Campylobacter jejuni infections are rising globally and antibiotic treatment
is not recommended, infected patients would substantially benefit from alternative therapeutic
strategies. Short-chain fatty acids such as butyrate are known for their health benefits, including anti-
microbial and anti-inflammatory effects. This prompted us to investigate potential disease-alleviating
properties of butyrate treatment during acute murine C. jejuni-induced enterocolitis. Therefore,
following gut microbiota depletion IL-10−/− mice were challenged with 109 viable C. jejuni cells by
oral gavage and treated with butyrate via the drinking water (22 g/L) starting on day 2 post-infection.
As early as day 3 post-infection, butyrate reduced diarrheal severity and frequency in treated mice,
whereas on day 6 post-infection, gastrointestinal C. jejuni burdens and the overall clinical outcomes
were comparable in butyrate- and placebo-treated cohorts. Most importantly, butyrate treatment
dampened intestinal pro-inflammatory immune responses given lower colonic numbers of apoptotic
cells and neutrophils, less distinct TNF-α secretion in mesenteric lymph nodes and lower IL-6 and
MCP-1 concentrations in the ileum. In conclusion, results of our preclinical intervention study
provide evidence that butyrate represents a promising candidate molecule for the treatment of acute
campylobacteriosis.

Keywords: butyrate; short-chain fatty acids; Campylobacter jejuni; immune-modulatory modes of
action; host–pathogen interactions; gut microbiota depletion; campylobacteriosis model; preclinical
intervention survey; antibiotic-independent natural compounds

1. Introduction

Campylobacter jejuni are microaerophilic spiral-shaped Gram-negative bacteria and the
most prevalent causes of bacterial diarrheal diseases in both developed and developing
countries [1,2]. With more than 120,000 reported campylobacteriosis cases in the European
Union in 2020, C. jejuni infections are a significant public health concern and come with
high economic costs due to loss of productivity [3]. Given that C. jejuni is a common
colonizer of farm animals, including poultry, swine, and cattle [4], most transmissions
are caused by the consumption of undercooked meat and improper kitchen hygiene [5].
In addition, contaminated water or raw milk may also promote C. jejuni infection [5]. In
humans, C. jejuni induces hyperactivation of the innate immune system, characterized by
the invasion of the colonic mucosa and lamina propria by neutrophilic granulocytes [6].
During intestinal inflammation, C. jejuni causes malabsorption by disrupting tight junction
proteins and impairing electrolyte homeostasis [7]. Depending on the virulence of the
bacterial strain and the status of the host’s immune system, the degree of symptoms during
campylobacteriosis often differs, as some individuals present relatively mild symptoms,
whereas others suffer from a severe enterocolitis syndrome [2]. Main symptoms, such as
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watery stool with mixed blood, abdominal cramps, and fever, usually lasts 2 to 6 days. In
most cases, antibiotics are not recommended, since the disease itself is self-limiting and
treatment mainly focuses on rehydration with electrolyte supplementation [5,6]. However,
cases with post-infectious sequelae such as Guillain–Barré syndrome or inflammatory
bowel disease, for instance, have been reported within weeks or months after the primary
C. jejuni infection [8].

The molecular basis of C. jejuni enteritis is directly linked to the Gram-negative bac-
terial cell wall molecule lipooligosaccharide (LOS), which induces a hyperactivation of
the innate and adaptive immune system via Toll-like receptor-4 (TLR-4) sensing bacterial
lipopolysaccharide (LPS) [9,10]. In the past, in vivo C. jejuni infection studies were limited
by the murine microbiota, which exerts a strong colonization resistance against distinct
enteropathogens, including C. jejuni. Moreover, conventional laboratory wild-type mice do
not respond to C. jejuni infections since these animals are physiologically about 10,000-fold
more resistant against LPS and LOS when compared with humans [11,12]. Given that
interleukin-10 (IL-10) is required for LOS resistance [13], researchers use IL-10−/− mice
following gut microbiota depletion as a practical and reliable model for campylobacteriosis
caused by C. jejuni-induced pro-inflammatory immune responses. After application of
broad-spectrum antibiotics, mice can successfully be colonized with C. jejuni and exhibit,
due to the lack of IL-10, symptoms of acute intestinal campylobacteriosis characterized by
wasting and bloody diarrhea [14,15]. In addition, the immunopathological responses can
be observed beyond the gastrointestinal tract, in extra-intestinal and systemic sites [15].
Various non-toxic molecules have already been evaluated for disease-alleviating effects
during C. jejuni infection applying the murine infection and inflammation model, including
vitamin C [16], vitamin D [17], carvacrol [18], urolithin-A [19], various essential oils [20–23],
and activated charcoal [24] to date.

Infamous for its rancid smell, butyric acid (or its salt butyrate) constitutes a short
chain fatty acid (SCFA) with four carbon atoms. Along with other SCFAs such as acetate
and propionate, butyrate is physiologically generated by anaerobic bacterial fermentation
of indigestible fiber in the intestinal lumen [25,26]. After crossing the colonic epithelia
by diffusion or via monocarboxylate transporter (MCT)-1, MCT-4, and sodium-coupled
monocarboxylate transporter 1 (SMCT1), butyrate can be utilized in the β-oxidation path-
way. Although butyrate only constitutes the smallest percentage of all generated SCFAs
in the gut, it is the primary energy source for colonocytes [25,27]. For years, it has been
evident that butyrate is a crucial mediator for host-microbiome interactions and, thus,
essential for maintaining intestinal homeostasis and overall gastrointestinal health [28].
Butyrate has been further shown to modulate immune functions via specific G-protein
coupled receptors (GPR) such as GPR41, GPR43, GPR109A, and GPR164. Beyond the
gut, these receptors can be found in various extraintestinal tissues, including fat and the
nervous system, with the highest expression on immune cells [29]. For example, activation
of GPR109A, highly expressed on intestinal epithelial cells, has been proven to suppress
colonic inflammation, barrier damage, and even carcinogenesis [29–31]. Butyrate medi-
ated anti-inflammatory properties were also linked to the downregulation of the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways and
inhibition of histone deacetylase (HDAC) activity, constituting a central epigenetic control
mechanism [32].

Campylobacteriosis patients may benefit substantially from novel anti-inflammatory
therapies, which avoid the risk for resistance development seen in Campylobacter popula-
tions worldwide. Resistance to fluoroquinolones used for initially calculated therapy of
bacterial infectious enteritis and for treating severe cases of C. jejuni infection poses a seri-
ous problem [33]. Therefore, this placebo-controlled intervention study applying a murine
C. jejuni infection and inflammation model evaluates the multifaceted health beneficial
properties of butyrate. Following gut microbiota depletion, IL-10−/− mice were challenged
with C. jejuni by oral gavage and surveyed for gastrointestinal pathogen loads, clinical
outcome, and intestinal immune responses after therapeutic butyrate supplementation.
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2. Materials and Methods
2.1. Ethical Statement

The murine infection study was performed under the directive 2010/63/EU (Require-
ments for animal protection used for scientific purposes in the European Union). All
protocols were authorized by the ethical committee in Berlin (“Landesamt für Gesundheit
und Soziales”, Berlin, Germany; No. G0104/19). The clinical condition of each animal was
surveyed every day throughout the observation period.

2.2. Microbiota-Depleted IL-10−/− Mice

IL-10−/− mice were born and raised at the Charité University experimental mouse
facility (Forschungseinrichtungen für Experimentelle Medizin, Berlin, Germany). Under
specific pathogen free and standard conditions, a maximum of three mice were housed
together in a cage with filter tops in a semi-barrier experimental setup (particularly a
cycle of 12 h light/12 h dark, 22–24 ◦C, 55 ± 15% humidity). The animals were fed a
standard chow diet (ssniff R/M-H, V1534-300, Sniff, Soest, Germany) and autoclaved
tap water ad libitum. To assure intestinal C. jejuni colonization, the murine commensal
intestinal microbiota had to be eradicated by an antibiotic cocktail (ABx) consisting of
ampicillin plus sulbactam (2 g/L; Dr. Friedrich Eberth Arzneimittel, Ursensollen, Germany),
ciprofloxacin (200 mg/L; Fresenius Kabi, Bad Homburg, Germany), imipenem (250 mg/L;
Fresenius Kabi, Bad Homburg, Germany), metronidazole (1 g/L; B. Braun, Melsungen,
Germany) and vancomycin (500 mg/L; Hikma Pharmaceuticals, London, UK) that was
added to the autoclaved drinking water of 3-week-old mice for eight weeks, as reported
previously [34,35]. To minimize cross-contamination, mice were handled under strict
aseptic conditions (accessible with lab coats, sterile gloves, hair, and shoe coverings). Two
days before the C. jejuni infection, ABx was replaced by autoclaved water to assure antibiotic
washout. During the antibiotic pretreatment course as well as immediately before C. jejuni
infection sterility of fecal samples were confirmed by culture (i.e., by using enrichment
broths), as described in detail [34].

2.3. C. jejuni Infection

On days 0 and 1, the microbiota-depleted 3-month-old mice (total number of n = 36)
were subjected to 109 colony forming units (CFU) of C. jejuni strain 81–176 (oral gavage).
Therefore, the enteropathogens were derived from frozen stocks and streaked onto karmali
agar and on columbia agar (supplemented with 5% sheep blood) plates (both from Oxoid,
Wesel, Germany) two days prior respective infections (i.e., day-2 and day-1). The culture
media were incubated in a box at 37 ◦C (microaerophilic conditions, CampyGen gas
packs, Oxoid, Wesel, Germany). Two days later, bacteria from one fluently grown karmali
agar plate were harvested in 5 mL sterile phosphate-buffered saline (PBS; Thermo Fisher
Scientific, Waltham, MA, USA) to an approximate McFarland density of 3 (i.e., OD of 0.6 at
600 nm wavelength) resulting in a yield of 109 víable C. jejuni cells in a volume of 0.3 mL
used for subsequent gavage. The yields were reconfirmed by cultural analyses of serial
dilutions of the bacterial suspensions on respective solid culture media. The following
cohorts of age- and sex-matched microbiota-depleted IL-10−/− mice (individual numbers
in parentheses) were finally included in three independent C. jejuni infection experiments:
(i) naive (non-infected, non-treated) mice (6/5/5); (ii) C. jejuni-infected, placebo-treated
mice (6/6/6); (iii) C. jejuni-infected, butyrate-treated mice (6/6/6).

2.4. Butyrate Treatment

Butyrate treatment started on day 2 post-infection (p.i.) and continued until the
end of the experimental period (namely, day 6 p.i.). Sodium butyrate (Sigma-Aldrich,
München, Germany) was dissolved in autoclaved tap water to a final concentration of
22 g/L and sterile filtered before being applied as a drinking solution ad libitum. Taking
into consideration that the average body weight of a mouse was ∼25 g and the daily
drinking volume ∼5 mL, each mouse received a daily dose of approximately 110 mg
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butyrate (4.4 g/kg body weight/day). The placebo group consisting of sex-matched litter
mate mice was offered sterilized (i.e., autoclaved) drinking water instead (ad libitum).

2.5. Gastrointestinal Colonization of C. jejuni

After the oral challenge, bacterial loads were quantitatively surveyed in feces samples
daily, and upon sacrifice on day 6 p.i., gastrointestinal luminal contents were derived
under aseptic conditions. Therefore, fecal contents from the colon, ileum, duodenum,
and stomach lumen were carefully squeezed into 2.0 mL plastic tubes containing 1.0 mL
sterile PBS (Thermo Fisher Scientific, Waltham, MA, USA). The weights of respective tubes
were assessed before and after careful transfer of the fecal luminal samples. Then, serial
dilutions of fecal aliquots were plated on columbia agar plates (Oxoid, Wesel, Germany),
and incubated for 48 h at 37 ◦C under microaerophilic conditions. The CFU numbers were
normalized to the weight of the fecal sample as assessed by the difference in weights of the
plastic tubes after and before transfer of respective sample. The detection limit of viable
C. jejuni was 100 CFU/g.

2.6. Clinical Outcome

To quantify the clinical outcome of C. jejuni-induced disease, we assessed different
parameters during experimental period each day. The cumulative clinical scores (maximum
12 points) are composed of fecal blood (0: no blood; 2: microscopic detection of blood
applying the Guaiac-based fecal occult blood testing (Haemoccult, Beckman Coulter/PCD,
Krefeld, Germany); 4: macroscopic blood visible), diarrhea (0: normal feces; 2: pasty feces;
4: liquid feces) and clinical symptoms including wasting aspects (0: normal; 2: ruffled fur,
reduced locomotion; 4: isolation, severely impaired locomotion, pre-final aspect).

2.7. Sampling Methods

Six days after C. jejuni infection, mice were sacrificed by carbon dioxide asphyxiation.
Ex vivo biopsies of mesenteric lymph nodes (MLN), colon, and ileum were taken under
aseptic conditions for cytokine measurements. In parallel, gastrointestinal samples from
the colon, ileum, duodenum, and stomach were preserved for subsequent cultural analyses.
Furthermore, colonic samples were derived for quantitative in situ immunohistochemical
detection of distinct immune cell populations.

2.8. Immunohistochemistry

Immunohistochemical stainings were performed in ex vivo colonic samples that had
been fixed in 5% formalin and embedded in paraffin, as previously reported [36]. In brief, to
detect apoptotic cells, neutrophils and regulatory T cells, as well as T and B lymphocytes, the
paraffin sections were stained with primary antibodies against cleaved caspase-3 (Asp175,
Cell Signaling, Beverly, MA, USA, 1:200), MPO7 (No. A0398, Dako, Glostrup, Denmark,
1:500), FOXP3 (clone FJK-165, No. 14-5773, eBioscience, San Diego, CA, USA, 1:100), CD3
(No. N1580, Dako, Glostrup, Denmark, 1:10), and B220 (No. 14-0452-81, eBioscience, San
Diego, CA, USA, 1:200), respectively. An independent investigator determined the mean
numbers of positive cells in 6 high-power fields (HPF, 0.287 mm2; 400× magnification).

2.9. Pro-Inflammatory Mediator Measurements

Longitudinally cut and washed (in PBS) colonic and ileal ex vivo biopsies (strips of
approximately 1 cm2), as well as ex vivo biopsies derived from the MLN (3 nodes), were
cultured for 18 h at 37 ◦C in 24-flat-bottom well culture plates (Thermo Fisher Scientific,
Waltham, MA, USA) containing 500 µL serum-free RPMI 1640 medium (Thermo Fisher
Scientific, Waltham, MA, USA), plus penicillin (100 U/mL; Biochrom, Berlin, Germany) and
streptomycin (100 µg/mL; Biochrom, Berlin, Germany). Applying the Mouse Inflammation
Cytometric Bead Array (CBA; BD Biosciences, Heidelberg, Germany) on a BD FACSCanto
II flow cytometer (BD Biosciences, Heidelberg, Germany), respective culture supernatant
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samples were tested for interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and
monocyte chemoattractant protein-1 (MCP-1) according to the manufacturer’s instructions.

2.10. Data Analysis

Data were pooled from three independent experiments. Prism (version 9, GraphPad,
San Diego, CA, USA) was used to assess medians and significance levels (two-sided
probability (p) values ≤ 0.05) by applying Student’s t-test and the Mann–Whitney test for
pairwise comparisons of normally and not normally distributed data, respectively. For
multiple comparisons, the one-sided ANOVA with Tukey’s post-correction (for normally
distributed data) and the Kruskal–Wallis test with Dunn’s post-correction (for not normally
distributed data) were applied.

3. Results
3.1. Intestinal Pathogen Loads following Oral Butyrate Treatment of C. jejuni-Infected Mice with
Acute Enterocolitis

We first addressed whether oral butyrate treatment would impact C. jejuni colonization
within the gastrointestinal tract of infected mice. On two consecutive days (namely, days
0 and 1), microbiota-depleted IL-10−/− mice were perorally challenged with 109 viable
C. jejuni cells by gavage. Starting from day 2 p.i. and lasting until necropsy, the animals were
subjected to butyrate via the drinking water (ad libitum). Daily cultural analyses of C. jejuni
in fecal samples revealed that butyrate did not lower fecal pathogen burdens (Figure S1).
On day 6 p.i., C. jejuni numbers derived from defined parts of the gastrointestinal lumen
were comparable between butyrate- and placebo-treated mice (Figure 1). Hence, oral
butyrate treatment of C. jejuni-infected mice does not affect gastrointestinal pathogenic
colonization.
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Figure 1. Gastrointestinal C. jejuni colonization in infected IL-10−/− mice upon butyrate treatment.
Following gut microbiota depletion IL-10−/− mice were challenged with C. jejuni strain 81–176 by
oral gavage on days 0 and 1. Starting from day 2 p.i., the animals were subjected to butyrate (BUT) or
placebo (PLC) via the autoclaved tap water ad libitum. On day 6 p.i. the pathogen numbers were
assessed in luminal samples derived from the stomach, duodenum, ileum, and colon by culture and
indicated as C. jejuni counts per gram. Differently colored circles indicate data from three individual
experiments. Medians (blue bar) and the total numbers of included animals (parentheses) are shown.

3.2. Clinical Outcome following Oral Butyrate Treatment of C. jejuni-Infected Mice with Acute
Enterocolitis

Upon sacrifice (day 6 p.i.), mice from both cohorts exhibited a similar outcome of acute
campylobacteriosis as indicated by comparable clinical scores (n.s.; Figure 2). As early as
day 3 p.i. and 24 h after initiation of treatment, butyrate-treated mice suffered less distinctly



Microorganisms 2022, 10, 1953 6 of 14

from diarrhea compared with the placebo group, given lower clinical diarrhea scores in the
former versus the latter (p < 0.01–0.05; Figure 3). Notably, one-third of the butyrate-treated
mice did not display any diarrheal symptoms, whereas all placebo counterparts were
suffering from diarrhea. Thus, butyrate treatment alleviates the development of diarrhea
during acute campylobacteriosis.
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Figure 2. Clinical outcome of C. jejuni-infected mice upon butyrate treatment. Following gut mi-
crobiota depletion, IL-10−/− mice were challenged with C. jejuni strain 81–176 by oral gavage on
days 0 and 1. Starting from day 2 p.i., the animals were subjected to butyrate (BUT) or placebo (PLC)
via the autoclaved tap water ad libitum. Naive mice served as uninfected and untreated controls.
(A) The overall clinical outcome was quantitated in all animals on day 6 p.i. with a clinical scoring
system by adding scores of distinct parameters including (B) wasting, (C) diarrhea, and (D) fecal
blood. Differently colored circles indicate data from three individual experiments. Medians (blue
bar), significance levels (p values) evaluated by the ANOVA test with Tukey post-correction or by the
Kruskal–Wallis test and Dunn’s post-correction, and total numbers of included animals (parentheses)
are shown.
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Figure 3. Diarrhea development over time in C. jejuni-infected mice upon butyrate treatment. Fol-
lowing gut microbiota depletion IL-10−/− mice were challenged with C. jejuni strain 81–176 by oral
gavage on days 0 and 1. Starting from day 2 p.i., the animals were treated with either butyrate (BUT)
or placebo (PLC) via the autoclaved tap water ad libitum. Diarrheal severity was assessed in each
animal from day 0 to day 6 p.i. applying a clinical diarrhea score. Differently colored circles indicate
data from three individual experiments. Medians (blue bar), significance levels (p values) evaluated
by the Mann–Whitney test, and the number of diarrheal mice out of the total cohort in parentheses
are given.

3.3. Effects of Oral Butyrate Treatment on C. jejuni-Induced Apoptosis in Mice with Acute
Enterocolitis

Since intestinal inflammation during C. jejuni mediated acute enterocolitis is associated
with significantly shorter intestines, we measured the colonic lengths after sacrificing the
mice. Murine campylobacteriosis was accompanied by shorter colons in infected compared
with uninfected mice (p < 0.001; Figure 4A), whereas the large intestinal lengths did not
differ between butyrate and placebo cohorts (n.s.; Figure 4A). We further quantitated
the numbers of cleaved caspase3+ colonic epithelial cells, indicative of apoptosis and a
microscopic marker for intestinal inflammatory responses during murine campylobac-
teriosis. C. jejuni infection resulted in markedly increased numbers of apoptotic colonic
epithelial cells (p < 0.001 versus naive; Figure 4B and Figure S2A). This increase was, how-
ever, far less pronounced upon butyrate treatment as indicated by more than 50% lower
caspase3+ colonic epithelial cells in mice from the butyrate versus the placebo cohort on day
6 p.i. (p < 0.05; Figures 4B and S2A). Hence, butyrate treatment dampens C. jejuni-induced
apoptosis in colon epithelial cells.

3.4. Immunomodulatory Effects of Oral Butyrate Treatment in C. jejuni-Infected Mice with Acute
Enterocolitis

We quantitively assessed innate and adaptive immune cell responses in the large
intestinal tract following oral butyrate application to C. jejuni-infected mice and performed
immunohistochemical stainings of colonic paraffin sections. C. jejuni infection resulted in
increased numbers of MPO7+ cells in the colonic mucosa and lamina propria, indicative
of neutrophilic granulocytes as members of the innate immune system (p < 0.001 versus
naive; Figure 5A and Figure S2B). Butyrate-treated mice, however, exhibited approximately
40% lower numbers of colonic neutrophils on day 6 p.i. when compared to the placebo
control group (p < 0.01; Figure 5A and Figure S2B). This was also the case for CD3+ T
lymphocytes counted in the colonic mucosa and lamina propria, but the difference did not
reach statistical significance due to respective standard deviations (n.s.; Figures 5B and
S2C). In addition, mice from both cohorts displayed comparably elevated colonic numbers
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of FOXP3+ regulatory T cells and B220+ B lymphocytes on day 6 p.i. (p < 0.001 versus naive;
Figures 5C,D and S2D,E). Hence, oral butyrate treatment resulted in less C. jejuni-induced
accumulation of neutrophils in the large intestinal tract of infected mice.
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3.5. Intestinal Pro-Inflammatory Mediator Secretion following Oral Butyrate Treatment of
C. jejuni-Infected Mice with Acute Enterocolitis

We then investigated pro-inflammatory mediator responses in distinct parts of the
intestinal tract upon butyrate treatment of C. jejuni-infected mice. Six days after oral
challenge with C. jejuni, elevated TNF-α concentrations were measured in ex vivo biopsies
taken from the MLN and colon (p < 0.05–0.001 versus naive; Figure 6A,B). TNF-α secretion
in the MLN of butyrate-treated mice was significantly less pronounced when compared to
their placebo counterparts on day 6 p.i. (p < 0.05; Figure 6A), which, however, did not hold
true for the colon (n.s.; Figure 6B). In addition, elevated IL-6 and MCP-1 concentrations
could be assessed in the ileum of placebo (p < 0.01 and p < 0.05, respectively) but not
in butyrate-treated mice when compared to naive control animals (Figure 6C,D). Hence,
therapeutic application of butyrate to mice with acute campylobacteriosis results in less
pronounced intestinal secretion of pro-inflammatory mediators.
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Figure 6. Intestinal pro-inflammatory mediator secretion upon therapeutic butyrate application to
C. jejuni-infected mice. Following gut microbiota depletion IL-10−/− mice were challenged with
C. jejuni strain 81–176 by oral gavage on days 0 and 1. Starting from day 2 p.i., the animals were
subjected to butyrate (BUT) or placebo (PLC) via the autoclaved tap water ad libitum. Naive mice
were uninfected and untreated, and served as control animals. On day 6 p.i., TNF-α secretion was
assessed in ex vivo biopsies derived from (A) mesenteric lymph nodes (MLN) and (B) colon, whereas
in the terminal ileum, (C) MCP-1 and (D) IL-6 concentrations were measured. Differently colored
circles indicate data from three individual experiments. Medians (blue bar), significance levels
(p values) evaluated by the ANOVA test with Tukey post-correction or by the Kruskal–Wallis test and
Dunn’s post-correction, and total numbers of included animals (parentheses) are shown.

4. Discussion

In our clinical intervention study applying an acute campylobacteriosis in vivo model,
therapeutic butyrate treatment via the oral route resulted in reduced intestinal inflammatory
sequelae, whereas gastrointestinal C. jejuni loads were not affected in infected microbiota-
depleted IL-10−/− mice. The butyrate concentration within the drinking solution (i.e.,
22,000 mg/L) was more than five times above the minimal inhibitory concentration (MIC)
of 4096 mg/L determined for the C. jejuni strain 81–176 (data not shown). The fact that
butyrate treatment did not exert clinically relevant antimicrobial activity against C. jejuni is
most possibly due to the short half-life of butyrate in vivo [37]. However, several in vitro
studies have proven the antibacterial effects of butyrate against C. jejuni and other Gram-
negative bacteria such as Salmonella [38,39]. In addition, given the mixing and dilutional
effects of intestinal fluids, the concentration of the biologically active molecule within the
infected intestines can be expected to be much lower than the MIC measured in vitro.

Furthermore, one needs to take into consideration that the duration of the butyrate
treatment was relatively short. Thus, prophylactic butyrate treatment regimens might
exert more pronounced antibacterial effects in vivo and therefore need to be addressed
in future studies. It is further tempting to speculate that most of the molecule has been
reabsorbed in the upper gastrointestinal tract, whereas the concentration of biologically
active butyrate reaching the colonic lumen was far too low to exhibit relevant antibacterial
effects. Thus, augmentation of intestinal butyrate production by probiotic supplementation
or application of the SCFA in a formulation facilitating release in the colon might be more
effective in achieving pathogen-lowering effects in the distal intestines [40,41].

Despite the high C. jejuni loads in the colon, butyrate-treated mice suffered less dis-
tinctly from diarrhea during acute campylobacteriosis. Importantly, butyrate application
prevented diarrhea in one-third of the mice, not showing any changes in stool consistency
starting as early as day 3 p.i. and lasting until termination of the study. Previous stud-
ies have shown that butyrate regulates the expression of tight junction proteins such as
claudin-3, occluding, and ZO-1, as well as intestinal mucus production [42–44]. Therefore,
we hypothesize that C. jejuni-induced disruption of epithelial tight junction proteins might



Microorganisms 2022, 10, 1953 11 of 14

have been alleviated through butyrate by upregulation of tight junction protein expres-
sion preserving the colonic epithelial barrier [7,44]. The transfer of the results obtained in
our preclinical placebo-controlled intervention study to defined treatment options during
human campylobacteriosis is supported by the fact that the anti-diarrheal effects of bu-
tyrate have been confirmed in humans recently. In line with a past clinical trial, sodium
butyrate supplementation reduced the occurrence of travelers’ diarrhea and prevented
acute dehydration following diarrheal diseases [45]. A recent in vitro study addressing
butyrate pretreatment of Caco-2 cells during C. jejuni infection further showed that bu-
tyrate prevented pathogenic adhesion and preserved butyrate receptors and transporters,
namely GPR109A and SMCT1, necessary for water and electrolyte absorption and anti-
inflammatory signaling pathways [46].

The diarrhea-alleviating effects in C. jejuni-infected IL-10−/− mice upon oral butyrate
treatment were accompanied by lower numbers of apoptotic colonic epithelial cells. In sup-
port, butyrate even protected rats from neuronal apoptosis during middle cerebral artery
occlusion via GPR41 activation [47]. Moreover, butyrate-treated mice exhibited less severe
immune cell responses as indicated by significantly lower numbers of neutrophils in the
colonic mucosa and lamina propria during campylobacteriosis. In contrast, at least a trend
towards reduced adaptive immune cell populations such as T and B lymphocytes could be
observed when compared to infected placebo counterparts. This is in line with a previous
in vivo study showing less distinct recruitment of neutrophils and reduced inflammation
after the application of a butyrate-releasing derivative [48,49]. We could further show that
oral butyrate treatment resulted in less pronounced TNF-α secretion in MLN draining the
infected and inflamed intestines. Our results are well in line with previous studies, show-
ing that butyrate decreases bacteria-induced inflammation by reducing pro-inflammatory
cytokines such as TNF-α upon inhibition of neutrophilic infiltration [48,50]. In addition,
elevated MCP-1 and IL-6 concentrations were measured in the terminal ileum of placebo,
but not of butyrate-treated mice at day 6 p.i. Although the molecular mechanisms un-
derlying the disease-alleviating properties of butyrate observed in our present preclinical
intervention study have not been investigated in more detail, we would like to propose that
the anti-inflammatory effects might have been due to down-regulating events within NFκB-
dependent signaling pathways [42]. Considering that butyrate exhibits anti-inflammatory
properties and can also preserve intestinal epithelial barrier functions, dampening the
excessive immune responses following C. jejuni infection constitutes a promising novel
therapeutic approach to combat acute campylobacteriosis [31,51]. Furthermore, since past
studies have linked decreases in SCFAs to be critical in the pathogenesis of inflammatory
bowel diseases [52], constituting post-infectious sequelae of C. jejuni infection, it is tempting
to speculate that butyrate treatment might also alleviate the occurrence of post-infectious
complications due to its anti-apoptotic and putative intestinal barrier preserving properties.
Another area of future research to elevate butyrate mediated effects is to combine the
SCFAs with other antibacterial or immunomodulatory compounds. In vitro studies have
suggested that butyrate exhibits synergistic anti-microbial and anti-inflammatory effects
when applied with different organic or plant-derived compounds such as forskolin, for
instance [53,54]. Hence, the disease-alleviating effects of butyrate during C. jejuni infection
might be further enhanced synergistically when combined with the yet-to-be-identified
compound(s) in effective dosages.

The preclinical results in the here applied murine C. jejuni infection and inflammation
model demonstrate that butyrate may represent a novel option for enteritis treatment
in patients suffering from campylobacteriosis. The anti-inflammatory effects of butyrate
may also lower the risk for post-infectious sequelae of acute campylobacteriosis. The
application of butyrate is considered safe given a low risk of potential adverse effects
and circumvents the risk of resistance development associated with antibiotic treatment.
Since butyrate displays a strong smell, compliance of patients can be assured by applying
odorless butyrate analogs in capsules [55]. In addition, patients may benefit from high fiber
diets to boost bacterial butyrate production in the gut [56].
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5. Conclusions

Our placebo-controlled intervention study provides evidence that butyrate is a promis-
ing candidate molecule to ameliorate enteric inflammation during acute campylobacteriosis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10101953/s1, Figure S1: Kinetic survey of pathogen
loads in C. jejuni-infected IL-10−/− mice following butyrate treatment. Figure S2: Representative
photomicrographs illustrating quantitative in situ immunohistochemical analyses of (A) apoptotic
epithelial cells (positive for cleaved caspase-3) and distinct (B) innate (MPO7+ neutrophilic gran-
ulocytes) as well as adaptive immune cell subsets such as (C) CD3+ T lymphocytes, (D) FOXP3+
regulatory T cells, and (E) B220+ B lymphocytes in stained colonic paraffin sections.
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