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ABSTRACT: Aberrant degradation of proteins is associated with many
pathological states, including cancers. Mass spectrometric analysis of tumor
peptidomes, the intracellular and intercellular products of protein degradation,
has the potential to provide biological insights on proteolytic processing in
cancer. However, attempts to use the information on these smaller protein
degradation products from tumors for biomarker discovery and cancer biology
studies have been fairly limited to date, largely due to the lack of effective
approaches for robust peptidomics identification and quantification and the
prevalence of confounding factors and biases associated with sample handling
and processing. Herein, we have developed an effective and robust analytical
platform for comprehensive analyses of tissue peptidomes, which is suitable for
high-throughput quantitative studies. The reproducibility and coverage of the
platform, as well as the suitability of clinical ovarian tumor and patient-derived
breast tumor xenograft samples with postexcision delay of up to 60 min before
freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can
effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results
obtainable from conventional bottom-up proteomics and provides insights not readily obtainable from such approaches.
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■ INTRODUCTION

Proteolysis is tightly linked with cancer pathogenesis. For
example, proteasomal activity in malignant tumors is
significantly greater in breast cancer (BrCa) and endometrial
cancer tissues compared to normal tissues;1 the activity of
extracellular proteases such as matrix metallopeptidase families
is considerably elevated in pancreatic cancer, giving rise to
much higher abundance of collagen fragments compared to
healthy controls.2 Therefore, studying the peptidome, that is,
peptides derived from endogenous proteolysis events, can
provide important insights into the activity of various
endogenous peptidases under clinically relevant conditions, as
well as potential information on biologically active peptides.3,4

Advanced liquid chromatography-tandem mass spectrometry
(LC-MS/MS)-based peptidomics provides a powerful tool for
identifying relatively large sets of endogenous peptides in a

given biological sample, such as cell lines5,6 and bodily fluids
(e.g., blood serum/plasma3,7−9 and urine10,11). Without
converting proteins into peptides using trypsin or other
proteases as applied in conventional bottom-up proteomic
sample preparation, the natural forms of the peptidome
peptides can be retained in the samples, including post-
translational modifications and degradation products revealing
the substrate cleavage specificities of their natural proteases.
While a large number of peptidomics studies in mammals and a
variety of invertebrates were focused on the identification of
neuropeptides and peptide hormones,12,13 many others have
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been carried out for discovering signature endogenous protein
fragments in blood3,7,8 or tissue14−16 that are indicative of
disease states such as cancer. More recent studies in cell lines
have identified proteolytic products of intracellular and
intercellular proteins that appear to be stable bioactive
molecules with explicit roles in cellular signaling pathways,
rather than simple transient protein degradation products.5,17

Our recent study of blood plasma peptidome revealed
significantly changed peptidomics profiles between samples
from breast cancer patients and healthy controls but with very
similar bottom-up proteomic profiles, showing the potential of
peptidomics to reveal endogenous proteolytic processing
information to which conventional bottom-up proteomics is
effectively blind.18 Thus, by globally assessing peptide
concentrations and identifying relevant cleavage events,
peptidomics could serve as a powerful tool in both character-
izing the entire set of endogenous peptides and identifying
novel physiologically active protease/substrates interactions in
vivo for cancer studies.
The ability to identify a broader range of peptidome peptides

in biological samples relies on not only advances in MS and
related analytical tools (hence better sensitivity and reprodu-
cibility) but also improvements on other aspects of the analysis,
such as sample preparation and data interpretation (e.g.,
informatics tools for analyzing the large peptidomics data
sets19). Moreover, peptidome peptides may be processed
differently in different cell types or even the same type of cells
under different pathological conditions. Therefore, how to
efficiently extract the full repertoire of peptides from
complicated clinical tissue samples while maintaining the
“original” status of the samples (e.g., avoiding potential
confounding factors) and further detection of all peptides,
given the limited dynamic range of measurement capabilities,
are typical concerns for peptidomics. For example, post mortem
stability is potentially problematic for peptidomics studies,20 as
are issues associated with the handling of clinical samples,
including degradation associated with postexcision delay,
making it difficult to characterize the “true” peptidome of
clinical tumor samples. To the best of our knowledge, no
detailed study assessing the effects of postexcision delay on
tumor/tissue peptidomes has been performed to date. In
addition, interpreting the significance of peptidome compo-
nents identified from clinical tissue samples in a biological
context is of great biomedical interest, specifically differentiating
between specific regulated events that convey biological
information and less specific general effects associated with
protein degradation. Identifying the natural proteases and their
associated pathways in clinical tissue samples and exploring the
biological significance of the protease/substrate interaction has
the potential to provide novel insights into the mechanisms of
molecular tumor pathology.21

In the present study, we applied a quantitative peptidomics
platform with in-house-developed data analysis tools to
characterize the peptidomes in human ovarian cancer (OvCa)
tumor and BrCa patient-derived xenograft (PDX) tumor
samples. The ability of the platform to achieve highly
reproducible measurements and comprehensive peptidomics
coverage was demonstrated. In addition, analyses of tumor
samples undergoing up to 60 min postexcision delay showed
little or no effect of warm ischemia on peptidomes from both
BrCa and OvCa tumors. Importantly, the peptidome profiles
were found to effectively distinguish the different BrCa
subtypes in the PDX tumor samples. In line with our previous

BrCa cell line study and research from other groups, the
proteasome was identified as the potential major contributor to
human OvCa and BrCa tumor peptidomes. Taken together,
our results demonstrate that robust quantitative peptidomics
analysis can be effectively performed on clinical tumor samples
using our peptidomics platform, which sets a stage for further
determination of molecular details and functional significance
of the peptidomic/degradomic activities in cancers.

■ MATERIALS AND METHODS

Tumor Samples and Postexcision Delay Experiments

After obtaining consent to IRB-approved protocols, tissue was
collected from three patients with high-grade serous ovarian
carcinoma. Each patient was under general anesthesia and had a
large midline vertical incision that identified advanced disease
(FIGO stage IIIC or IV). Prior to performing primary tumor
resection and before any compromise to vascular supply, a
portion of ovarian tumor attached to the omentum was rapidly
resected using sharp or blunt dissection. The tumor specimen
was immediately dissected into four contiguous and adjacent
specimens strips, each no larger than 10 × 3 × 3 mm, and
placed into cryovials and frozen in liquid nitrogen at four
different time points (0, 5, 30, and 60 min, at room
temperature). The first specimen (0 min) was processed as
quickly as possible, with an elapsed time from resection to
freezing of 1 min or less. All specimens were then stored in −80
°C freezers until cryopulverization (described below).
The PDX BrCa tumors, also referred to as “Washington

University Human in Mouse” (or WHIM lines) from
established basal (WHIM2 and WHIM6) and luminal
(WHIM16) breast cancer subtypes, were raised subcutaneously
in 8 week old NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice (Jackson
Laboratories, Bar Harbor, ME) as previously described (sample
names and corresponding cancer subtypes are listed in Table
1).22,23 For studying potential ischemic effect on tumor

peptidomic analysis, WHIM6 basal tumors from each animal
were harvested by surgical excision at approximately 1.5 cm3,
rapidly divided into four pieces, and snap-frozen by immersion
in a liquid nitrogen bath at times 0 (∼30 s) (WHIM6-0-a and
WHIM6-0-b) and 60 min (WHIM6-60-a and WHIM6-60-b)
postexcision. Another basal PDX tumor sample (WHIM2) and
a luminal PDX tumor sample (WHIM16) were collected and
processed without delay. The snap-frozen tumor tissues for
individual time points were then placed in precooled tubes on
dry ice and stored at −80 °C until cryopulverization.
The ovarian cancer tumor samples and breast cancer PDX

tumor samples were further processed by cryopulverization.
Briefly, tumor pieces were transferred into precooled Covaris
Tissue-Tube 1 Extra (TT01xt) bags and processed in a Covaris
CP02 Cryoprep device (Covaris, Woburn, MA) using different

Table 1. Summary of the PDX Breast Tumor Samples
Analyzed in the Present Study

sample name cancer subtype WHIM line delay

WHIM6-0-a basal BrCa WHIM6 0 min
WHIM6-60-a basal BrCa WHIM6 60 min
WHIM6-0-b basal BrCa WHIM6 0 min
WHIM6-60-b basal BrCa WHIM6 60 min
WHIM2 basal BrCa WHIM2 N/A
WHIM16 luminal BrCa WHIM16 N/A
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impact settings according to the total tumor tissue weight: <250
mg = 3; 250−350 mg = 4; 350−440 mg = 5; 440−550 mg = 6.
Tissue powder was transferred to an aluminum weighing dish
(VWR, Radnor, PA), and the tissue was thoroughly mixed with
a metal spatula precooled in liquid nitrogen. The tissue powder
was then partitioned (∼100 mg aliquots) into precooled
Corning cryovials (Sigma-Aldrich, St. Louis, MO). All
procedures were carried out on dry ice to maintain tissue in
a powdered, frozen state.

Peptidomics Sample Preparation

For peptide extraction, extraction buffer containing 0.25%
acetic acid and protease inhibitor cocktail (Sigma-Aldrich, St.
Louis, MO) was added into approximately 20 mg (wet weight)
of pulverized ovarian cancer tumor and breast cancer PDX
samples at a ratio of 1:10 (w/v). Mixed samples were
homogenized on ice for 1 min and then sonicated with three
short bursts of 10 s followed by intervals of 5 min for cooling
on the ice bed. After that, samples were centrifuged at 4 °C, 14
000g, for 30 min, and the supernatant was filtered in an Amicon
Ultracel 30 kDa MWCO filter tube (Millipore, Billerica, MA)
by centrifugation (4 °C, 8000g) to remove peptides larger than
30 kDa. The flow-through was concentrated in Speed-Vac
(Thermo Fisher Scientific, Waltham, MA), and final yield of
peptidome peptides was calculated by BCA protein assay kit
(Pierce, Rockford, IL).

LC-MS/MS Analysis

All peptidomics samples were analyzed using nanoACQUITY
UPLC system (Waters Corporation, Milford, MA) coupled
online to a LTQ Orbitrap Velos mass spectrometer (Thermo
Fisher Scientific, Waltham, MA). A 70 cm × 75 μm i.d. (flow
rate 300 nL/min) and a 110 cm × 75 μm i.d. (flow rate 200
nL/min) fused-silica capillary column packed with 3 μm Jupiter
C18-bonded particles (Phenomenex, Torrance, CA) was used
for analysis of the PDX breast tumor and ovarian tumor
samples, respectively. Mobile phases consisting of 0.1% formic
acid in water (A) and 0.1% formic acid acetonitrile (B) were
operated with effective gradient profiles as follows (min:%B):
0:1, 6:8, 60:12, 225:35, 291:45, 300:95 (110 cm × 75 μm i.d.
column; flow rate 200 nL/min) and 0:1, 6:8, 36:12, 135:35,
175:45, 205:95 (70 cm × 75 μm i.d. column; flow rate 300 nL/
min). The LTQ Orbitrap Velos mass spectrometer was
operated in the data-dependent mode acquiring high-resolution
CID scans (R = 15 000, 5 × 104 target ions) after each full MS
scan (R = 60 000, 1 × 106 target ions) for the top six most
abundant ions within the mass range of 400 to 2000 m/z. An
isolation window of 2 Th and a normalized collision energy of
35 were used for CID. The dynamic exclusion time was 60 s.

Data Analysis

SEQUEST24 with MS-GF rescoring,25 MS-Align+,26 and the
Unique Sequence Tags (UStags)27 algorithms were used to
independently search all the MS/MS spectra against either the
human NCBI database (Build37.3) for identification of the
peptidome peptides in the ovarian tumor samples or a
composite human−mouse NCBI database for the PDX tumor
samples. For SEQUEST (no enzyme digestion, mass tolerance
for parent ions is 5 Da, and 0.05 Da for fragment ions) and MS-
Align+ methods (15 ppm for parent ions), target decoy
database searching strategy was adopted for FDR estimation;
UStags result was subjected to manual validation. MS/MS
search results were then filtered using the following criteria:
SEQUEST with MSGF SpecProb <1 × 10−9 (data were filtered

so that each spectrum had at most one peptide identification
event, and overall peptide level FDR was less than 1%), MS-
Align+ with a p value <1 × 10−6 (less than 1% FDR), and
further combined to create peptide databases (one for the
ovarian tumor data and one for the PDX breast tumor data) for
direct analysis of the LC-MS data in each individual analysis
using the recently developed Informed Quantitation (IQ)
approach (described below).
IQ first enumerates all confidently observed peptides. A

precise empirical formula is used to generate the theoretical
isotopic profile using a standard binomial expansion algorithm.
For a given charge state for each peptide, IQ generates an
extracted ion chromatogram (XIC) using a tight mass tolerance
(e.g., 5 ppm) that is based on the most abundant peak of the
theoretical isotopic profile. To determine which chromato-
graphic peak represents the true LC-MS feature, IQ tests all
detected chromatographic peaks that fall within an elution time
window. Underlying MS1 mass spectra for each chromato-
graphic peak are summed and mass spectral peaks detected
using three-point peak detection, as described previously.28 The
m/z values of the theoretical isotopic profile are used to guide
the extraction of the observed isotopic profile from the summed
mass spectra. Least-squares fitting of the theoretical isotopic
profile on the observed profile is then performed,28 providing a
measure of how well the observed isotopic profile matches the
theoretical isotopic profile. This metric is called the “fit score”
and is a key metric for resolving correct versus incorrect
features. It is important to model the behavior of the score
metric on false (random) data (the computational details are
being prepared for a separate publication); therefore, we have
modeled the score distribution of false hits and used that to
guide the filtering. The fit scores used for each tested
chromatographic peak are assembled, and IQ selects the
“best” chromatographic peak as follows. The chromatographic
peak candidates are filtered to remove all null results (when no
isotopic profile was found). If there is only a single
chromatographic peak candidate, it is selected. If the top two
candidates have very similar fit scores (within 0.05), the most
abundant LC-MS peak is selected. Otherwise, the LC-MS
feature with the lowest (i.e., best) fit score is selected.
After a chromatographic peak is selected for a given peptide/

charge state target, IQ then calculates the final abundance
measurement. This comprises summing a total of five mass
spectra, centered around the apex scan of the elution profile. A
key step in IQ is the alignment of observed mass and elution
times to database values in order to correct for variations in
mass and elution time measurements taken across multiple data
sets. Alignment of mass and the LC elution time make it
possible to narrow the mass tolerance used in generating XICs
and the elution time window for selecting the correct
chromatographic peak. Currently, VIPER29 is used in a first-
pass analysis (using conventional accurate mass and time, or
AMT tag approach) to output mass and normalized elution
time (NET) alignment information, which is then loaded into
IQ and used for mass and NET correction during subsequent
processing. Data processed by the IQ approach was initially
filtered by fit score (<0.2), NET tolerance (<0.025), mass
accuracy (± 2.5 ppm), and followed by a manual validation
using an in-house tool SIPPER30 to eliminate false positives.
The identified peptides were grouped to a nonredundant
protein list using IDpicker3.31

The ProteinCoverageSummarizer tool developed in-house
and corresponding protein databases were used to map the
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unique peptide sequences into proteins. The intensities of
peptides were first log10 transformed and then median
normalized across all samples (most bioinformatics analysis
was performed using R program unless specifically indicated).
Unsupervised hierarchical clustering analysis was applied to
peptide data sets using Euclidean distance as distance metrics
and ward linkage for clustering. Only peptides detected in all
samples were subjected to the clustering analysis. Datasheets
containing normalized peptide intensities were imported into
DanteR program32 for principal component analysis (PCA).
The same datasheets were also imported into R for Volcano
plot and other statistical tests (two-factor ANOVA, t test), with
an adjusted p value of 0.05 for significance. Venn Diagram
Plotter (http://omics.pnl.gov/software/venn-diagram-plotter)
was used for Venn diagrams. The frequency of various amino
acids within the cleavage site (P6, P5, P4, P3, P2, P1, P1′, P2′,
P3′, P4′, P5′, and P6′) from all identified peptides was
analyzed.33 For each peptide, N- and C-terminal cleavage sites
were analyzed as PX_Up and PX_Down, respectively, the

frequencies of which were later plotted together for individual P
sites. In addition, amino acid frequencies at all P sites were
adjusted to the relative abundance of each amino acid within all
human proteins. Frequencies of amino acids at all 12 P sites
were analyzed to identify potential proteases based on the
protease cleavage rules which were adopted from the
comprehensive publication by Keil et al.38 Gene List Analysis
was conducted using Panther (http://www.pantherdb.org/) to
obtain biological information (e.g., function, pathway) of the
precursor proteins.
In order to evaluate changes in the peptidome over time, a

kinetics-based regression model was used. This model assumes
that changes observed within a reasonably short period of time
(1 h at most) following perturbation (cold ischemia) can be
described by the law of unidirectional chemical reaction (eq 1).

ε= + − +−Y B A Blog( ) log( ( )e )kt
(1)

where Y is the measured relative protein concentration or
abundance, A is the starting concentration, B is the final

Figure 1. Summary of peptide identifications from OvCa tumor and PDX breast tumor samples. Bar graphs show the numbers of identified peptides
from each PDX breast tumor (A) and OvCa tumor (C). The intensities of identified peptides (log10 values) from PDX (B) and OvCa (D) tumor
samples are plotted against their monoisotopic masses (Da), showing a similar peptide intensity range but different mass ranges. The distributions of
the precursor proteins in terms of number of unique peptidome peptide identifications are shown in pie graphs for the PDX samples (E) and OvCa
samples (F).
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concentration, k is the rate constant, t is time, and ε is the
normally distributed measurement error. To infer the A, B, and
k parameters, we applied constrained Nelder−Mead optimiza-
tion that minimizes the sum of squared errors. The imposed
constrains are along the lines of chemical kinetic principles: A >
0, B > 0 as the concentrations cannot be negative; k > 0 since
no species can be exponentially growing. The statistical
significance of the chemical kinetic model was tested against
a null hypothesis model that assumes that there is not any
change in the data associated with time points (eq 2).

ε= +Y Clog( ) log( ) (2)

where C is the constant protein abundance or concentration
value. The fit of the null hypothesis model is represented by a
flat line. The statistical significance of the alternative model can
be assessed using F-statistic that looks at the ratio of the sums
of squared error residuals taking into account the degrees of
freedom of the alternative and null hypothesis models.
Datasheets containing peptides and their intensities from

OvCa tumor time point samples, with log2 ratios normalized as
specified above, were used for the statistical analysis. Each cold
ischemia time point was treated as an independent group in an
ANOVA analysis, with statistical significance being assessed
using an F-test based on the ratio of between group to within
group variability. This allowed capturing trends that are not
unidirectional. To leverage information across observed
peptides for more robust estimation of variance, we employed
an empirical Bayes approach implemented as a moderated F-
test in the Bioconductor “limma” package.34 The resulting p
values were adjusted for multiple testing using the Benjamini−
Hochberg method.

■ RESULTS

Peptidomics Analysis of PDX Breast Tumor Samples

An average of 1358 ± 64 (CV = 4.7%) distinct peptides were
identified by IQ from the analyses of each of the 10 PDX breast
tumor samples (see Materials and Methods, Table 1, and
Figure 1A); overall, a total of 2026 distinct peptides with
molecular weight ranging from 600 to 14 000 Da (Figure 1B)
were identified from all PDX tumor samples (the distribution of
log10 transformed intensity of one sample is shown in
Supporting Information Figure S3A). These peptides repre-
sented naturally occurring fragments of 824 different precursor
proteins (peptidome peptides, their precursor proteins, and
original peptide intensities from each PDX breast tumor sample
were provided in Supporting Information Table S1), and the
distribution of the numbers of peptides derived from the
precursor proteins is shown in Figure 1E. These results
demonstrate the good, consistent peptidome coverage of the
analytical platform (Figure 1A).
The reproducibility of the peptidomics platform was

evaluated through analysis of three full process replicates of
the WHIM6 sample at the 0 min time point. The base peak
chromatograms of the three WHIM600-a process replicates
were well-aligned (Supporting Information Figure S1A); a
considerable overlap (70.3%) of the identified peptides was also
observed for the three WHIM6-0-a replicates (Supporting
Information Figure S1B); furthermore, the peptide abundances
in the three WHIM6-0-a replicates were well-correlated to each
other (R2 value 0.94−0.97; Supporting Information Figure
S1C). These results demonstrated the good reproducibility of

the integrated peptidomics platform, including sample prep-
aration, LC-MS/MS instrument analysis, and IQ analysis.
We next explored whether peptidomics tumor sample

analysis is capable of differentiating different BrCa subtypes.
Two PDX tumor samples, WHIM2 and WHIM16, representing
the basal and luminal BrCa subtypes, respectively, were
analyzed in duplicate. The precursor proteins from the two
WHIM2 and two WHIM16 analyses exhibited a considerable
overlap (70.0%; Supporting Information Figure S2A). In the
heatmap from unsupervised hierarchical clustering analysis, the
two process replicates showed very similar relative peptide
abundances; however, the WHIM2 samples showed substan-
tially different peptidomics profiles from the WHIM16 samples
(Figure 2A). Moderated t test analysis further showed that,
when comparing WHIM16 to WHIM2 samples, out of a total
of 815 common peptides, 450 were differentially abundant (p
value <0.05) (Figure 2B and Supporting Information Figure
S2B). This suggested a significant change in the peptidome
between the two BrCa subtypes. To investigate if the difference
in the peptidomic profile corresponds to that at the precursor
protein level, we compared the changes in abundance of the
differential peptidome peptides (through their precursor
proteins) to that of the differential proteins (p value <0.05)
from our previous bottom-up study of the same PDX samples
(iTRAQ-labeled, with two WHIM2 replicates and two
WHIM16 replicates; unpublished results). We found that
peptides derived from 140 precursor proteins have the same
propensity in abundance change as that of their precursor
proteins, while 161 precursor proteins displayed opposite
abundance changes compared to their corresponding pepti-
dome peptides (Supporting Information Table S1). In addition,
peptidome peptides derived from 62 precursor proteins showed
inconsistent abundance changes (i.e., both upregulated and
downregulated peptides from the same precursor protein),
suggesting potential complicated proteolytic processes on the
precursor protein from which the peptidome peptides were
derived (Supporting Information Table S1). Taken together,
these results suggest that peptidome could potentially provide
insights on the BrCa subtypes beyond the protein expression
level analysis.
Pearson correlation analysis of all the PDX breast tumor data

showed that there was fairly good correlation within each
WHIM line, again demonstrating the good reproducibility of
the platform; however, the correlation became much less
between different WHIM lines (R2 value 0.50−0.66; Figure
3A). Notably, all the WHIM6 samples showed relatively good
correlation to each other, independent of the postexcision delay
of 60 min (R2 value 0.74−0.96, Figure 3A). Unsupervised
hierarchical clustering showed similar trends (Supporting
Information Figure S2C). PCA analysis showed clear, complete
separation of all three WHIM lines and again confirmed that
the WHIM6 samples cannot be separated by any potential
effects attributable to different time of warm ischemia (Figure
3B).

Peptidomics Analysis of Ovarian Cancer Tumor Samples

From analyses of all 12 ovarian cancer tumor tissue samples
(from three patients, each with 4 time points), we identified a
total of 5756 distinct peptides ranging from 500 to 6000 Da
(Supporting Information Table S2 and Figure 1D); the number
of identified peptides was highly consistent across samples
(4952 ± 285; CV = 5.8%). These peptides were mapped into
974 distinct precursor proteins (peptidome peptides, their
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precursor proteins, and original peptide intensities from each
ovarian tumor sample are provided in Supporting Information
Table S2), and the distribution of the numbers of peptides
derived from the precursor proteins is shown in Figure 1F.
Interestingly, although the same sample preparation protocols
and analysis pipeline were applied for both the PDX and OvCa
tumor peptidome analysis, for unknown reasons, the PDX
samples yielded much smaller peptidomes (contain both

human and mouse sequences) than the OvCa samples
(∼30%; Figure 1A vs 1C); however, the difference in number
of precursor proteins was much smaller for the BrCa and OvCa
peptidomes: 824 and 974, respectively. Compared to the PDX
breast tumor samples, OvCa tumor peptidomes have similar
peptide intensity range but a smaller mass range (Figure 1B vs
1D; the distribution of log10 transformed intensity of one OvCa
sample is shown in Supporting Information Figure S3B).
Pearson correlation analysis, unsupervised hierarchical

clustering analysis, and principal component analysis was
performed to assess the ischemic effect on the OvCa tumor
peptidome. Despite considerable overlap (95.4%) of the
precursor proteins in all three patients (Supporting Information
Figure S4A), the pairwise peptide intensities of all three
patients were poorly correlated (Figure 4A). In contrast,
peptides of the four time point samples from the same patient
showed much better correlation, suggesting that any potential
ischemic effect on the peptidome is much smaller than the
patient-to-patient difference (Figure 4A). The clustering
analysis (Figure 4B) and PCA analysis (Supporting Information
Figure S4B) showed similar trends: the four time point samples
for each patient had more similar peptidome profiles and were
clustered together; the peptide intensity patterns changed
significantly across the three patients and thus were clearly

Figure 2. Drastic differences in peptidomics profiles of the PDX breast
tumor WHIM2 and WHIM16 samples. (A) Unsupervised hierarchical
clustering analysis of all peptides from WHIM2 and WHIM16
samples. (B) Volcano plot showing peptide abundance ratio
(WHIM16/WHIM2) versus the adjusted p values (from the
moderated t test) for 815 peptides that were detected in all four
analyses. Blue (235 downregulated) and red (215 upregulated) hollow
dots represent the peptides with p values <0.05; black hollow dots, not
significantly changing peptides.

Figure 3. Peptidomics profiles clearly distinguish the different PDX
breast tumor WHIM lines. Pearson correlation (A) and PCA analysis
(B) of peptide intensities in all 10 PDX breast tumor samples.
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separated (grouped by patient) in PCA plots. These results
indicate that variations in postexcision delay time provided a
much smaller contribution to variations in peptidome peptide
abundances than did patient heterogeneity.
A kinetics-based regression analysis was performed to further

investigate whether there was any ischemic effect on the OvCa
peptidome that is consistent across patients (the p values of the
analysis are provided in Supporting Information Table S2). As
shown by the volcano plot in Supporting Information Figure
S4C, none of the peptides was significantly changing across the
three patients as a result of 60 min ischemic stress. In addition,
the two-factor ANOVA analysis showed a minimal contribution
(<1%) of ischemic time to the significantly affected peptides,
compared to other factors such as the patient heterogeneity
(40%) (Supporting Information Figure S4D). Overall, results

from all analyses on the OvCa tumor peptidome further
indicated a negligible ischemic effect on the OvCa tumor
peptidome within the first 60 min after excision, which is
consistent with our PDX breast tumor peptidomics analysis.
Previously, we have performed conventional bottom-up
proteomics analysis for the same set of OvCa tumor time
course samples, and the results showed that the overall protein
abundance does not change significantly with up to 60 min
postexcision delay,35 which is also consistent with our tumor
peptidome observations from the same samples.

IQ Analysis Improves Data Quality

The present peptidomics studies benefitted from the data
analysis tool applied, IQ. As an example, we compared the IQ
analysis results of the OvCa data to those obtained through
conventional analyses such as MS-Align+ (MS/MS data) and
the AMT tag strategy (LC-MS data). As expected, MS-Align+
suffers from the undersampling issue of typical data-dependent
acquisition of MS/MS data and hence provided much lower
peptidome coverage and less consistent results for each
individual analysis (Supporting Information Figure S5A).
Although, IQ and AMT tag analyses both use a database
consisting of peptides identified from SEQUEST, MS-Align+,
and UStags analysis of the entire peptidomics data sets (for
each cancer type), IQ provided higher peptidome coverage and,
more importantly, less missing data across the entire data sets
(Supporting Information Figure S5B). This is because IQ uses
all isotopic peaks as opposed to the AMT tag method36,37

which uses individually deisotoped spectra, resulting in
improved sensitivity, better distinguished overlapping features,
more accurate quantification, and better reproducibility.

Proteolytic Cleavage Specificities in Ovarian and Breast
Cancer Tumors

Peptidomics profiles are informative regarding cancer degrado-
mic activities.3 In order to investigate the degradomic activities
of ovarian cancer and breast cancer tumors, precursor protein
cleavage sites of all samples were examined for the frequency of
signature amino acids. For peptides identified from OvCa
samples, the most frequently observed amino acids at the P1
position were Leu, Lys, and Phe (Figure 5A). When normalized
to the relative abundance of each amino acid within all of the
human proteome, these amino acids were still the most
common in the P1 position (Figure 5B). Thus, the preferred
residues at the P1 position were basic and hydrophobic amino
acids. In addition, predominant amino acids at the P1′ position
of the cleavage sites were Leu, Val, Phe, Ala, and Ser, which
were still among the most frequently seen amino acids after
normalized to the amino acid abundance of the human
proteome (Figure 5C,D). Chymotrypsin preferentially cleaves
proteins at Phe, Tyr, and Trp with high specificity and at Leu,
Met, and His with lower specificity.38 Similar analyses of the
residues were performed at other sites including P2, P3, P4, P5,
P6, P2′, P3′, P4′, P5′, and P6′, showing the involvement of
other proteases such as enterokinase and pepsin (Supporting
Information Figure S6). Met also appears to be one of the most
prominent residues at P1 and P1′ positions of the peptides after
normalization (Figure 5B), but this can be attributed to N-
terminal processing of the precursor proteins (discussed in the
following paragraph). Collectively, the observed P1 amino acids
indicate that chymotrypsin activity is most likely responsible for
producing the peptides in the ovarian tumor peptidome.
Previous studies indicated that the proteasome degradation
pathway generates a large number of internal fragments, while

Figure 4. Analysis of the OvCa peptidome data demonstrated minimal
ischemic effect within 60 min of postexcision delay. (A) Pearson
correlation and (B) unsupervised hierarchical clustering analyses of all
OvCa tumor samples (four time point samples from each of the three
patients). It is evident that potential ischemic effect on tumor
peptidome as a result of up to 60 min postexcision delay is much
smaller than patient heterogeneity.
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more terminal fragments are expected from the cytosolic
proteolytic pathways.39 Considering this, the percentages of
terminal and internal peptides in OvCa peptidome were
examined based on the sequence alignment of the peptides to
their precursor proteins. The results showed that 82% of the
5756 peptides were internal peptides while 17% were terminal
ones. In addition, 54% of the peptides were within the length
range of proteasome products (3−23 amino acids).40,41 Taken
together, our data suggest that the chymotrypsin activity, which
is possibly from the proteasome subunit, is the major, but not
the only, contributor to the OvCa peptidome.

To investigate the other potential proteolytic mechanisms,
we further examined the cleavage specificities of amino acid
residues at the N-terminus and C-terminus of identified OvCa
peptidome peptides. As shown by Supporting Information
Figure S7A, Ala and Ser were the most frequently observed
amino acids at the starting position of the peptides, which were
derived from the N-terminus of precursor proteins with the first
Met cleaved off. For the other N-terminal, all C-terminal, and
overall peptidome peptides, no amino acid was observed with
prominent frequency (Supporting Information Figure S7B−G).
Based on the MEROPS database search (http://merops.sanger.
ac.uk/index.shtml), an uncharacterized methionyl dipeptidase42

(Met-Xaa dipeptidase) which most frequently cleaves Ala and
Ser after Met matched the observed cleavage pattern,
suggesting the involvement of N-terminal methionine excision
(NME) in the generation of OvCa peptidome. In addition,
∼51% of the Met at P1 of all OvCa peptidome peptides was
contributed by the NME process. Therefore, in addition to the
contribution of proteasome subunit’s low chymotrypsin
specificity for Met, the NME process gives rise to the
distinctive prevalence of Met at the P1 position of all OvCa
peptidome peptides (Figure 5B).
Similar analyses were performed on the 2026 peptides

identified from PDX breast tumor samples. The most
frequently observed residues at the P1 position were Lys,
Leu, Arg, and Phe, which were still among the most abundant
amino acids when normalized to the amino acid abundance in
the human proteome (data not shown), suggesting that trypsin
and chymotrypsin activity were possible contributors to the
peptides in the BrCa tumor peptidome. On the other hand,
prevailing amino acids at the P1′ position were Met, Leu, Ala,
Val, and Ser, including both polar and nonpolar amino acids.
The cleavage specificities of other critical P and P′ sites were
also analyzed (data not shown). In contrast to OvCa tumors,
most of the peptides from PDX breast tumor were terminal
peptides, 63%, and only 37% were internal ones. Taken
together, these results suggest that cytosolic and extracellular
proteolytic pathways appear to be the major contributor to the
breast cancer peptidome rather than the proteasome-mediated
proteolytic pathway.
However, our previous peptidomics studies of breast cancer

cell lines suggested that chymotrypsin activity was the major
contributor to the peptidome (unpublished results), which
seemed to contradict the current data from the PDX tumor
samples. To evaluate whether the xenograft system (i.e.,
“contamination” from mouse blood) contributed to the
cleavage specificities of the BrCa tumor peptidome, we divided
the peptides into human-only, mouse-only, and human−
mouse-shared subgroups and performed similar cleavage
specificity analyses for all groups. As shown in Supporting
Information Figure S8, for human-only peptides, Lys, Leu, and
Arg were the prevailing residues at the P1 site, while Ser, Val,
Leu, Met, and Ala were mostly observed at the P1′ site.
Residues at the other P and P′ sites excluded the possibility of
proteases from the digestive system (Supporting Information
Figure S9). Thus, the proteasome still appears to be the
prominent contributor of the human-specific peptides, although
possibly out of a combined contribution of the chymotrypsin
(β5 subunit) and trypsin activities (β2 subunit).43 For the other
mouse and mixed mouse−human groups, possible cytosolic
and extracellular proteases were contributing equally to
proteasome subunits, which was also supported by the presence
of about 50% internal peptides in the peptidome of these two

Figure 5. Cleavage specificity analysis at P1 and P1′ sites for OvCa
peptidome peptides. (A) Number of peptides undergoing cleavages is
shown on the y-axis for all P1 amino acids. P1_Down, downstream P1
site on the peptides; P1_Up, upstream P1 site. (B) P1 amino acid
frequency in panel A was adjusted to the relative abundance of each
amino acid in all human proteins. Ratio of 1.0 indicates that
corresponding amino acid present in the cleavage site has the same
frequency in overall human protein amino acid composition, while
>1.0 suggests an amino acid found more frequently in the cleavage site
than elsewhere in the peptides. (C) as in (A) except for the P1′
position. (D) as in (B), except for the P1′ position.
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groups. This is also consistent with our previous peptidomics
analysis of breast cancer patient blood plasma, where trypsin-
like activity, instead of chymotrypsin-like activity, was
prevalent.18

Are the Tumor Peptidome Precursor Proteins Highly
Abundant or Unstable?

To examine whether the identified peptidome peptides are
from known major cellular proteins, as an example, the OvCa
peptidome precursor proteins were compared to the list of the
most abundant proteins from our previous bottom-up study of
exactly the same OvCa tumors.35 Two hundred thirty-eight of
the 974 nonredundant protein groups identified in the OvCa
peptidome were among the 500 most abundant proteins in the
OvCa tumors (Supporting Information Figure S10A), and 34
of these 238 proteins were among the 50 most abundant
proteins (Supporting Information Figure S10B). We further
compared the distributions of the spectral counts of the
peptidome precursor proteins and the entire list of protein
identifications in the bottom-up studies to examine the relative
abundances of the peptidome precursor proteins. It appeared
that more than 25% of the OvCa peptidome precursor proteins
are relatively low abundance proteins in the proteome (with
spectral count <5; Supporting Information Figure S10C); a
similar trend was observed for the precursor proteins in the
PDX BrCa peptidome (Supporting Information Figure S10D).
Moreover, the relative abundances for the same precursor
protein in the proteome and peptidome do not correlate well
(R2 < 0.2; results not shown). There are many potentially
interesting low abundance precursor proteins that were
identified with multiple peptidome peptide identifications,
such as tumor protein D52 and protein FAM195B (trans-
membrane receptor protein tyrosine kinase activity) in the
BrCa peptidome. The detailed information on these peptidome
precursor proteins is provided in Supporting Information Table
S3.
We also investigated whether the identified precursor

proteins represent the most unstable proteins reported in
studies of other cells. By comparing with the 600 proteins in
A549 cells and 6000 proteins in HeLa cells with the highest
turnover rates,44,45 we found that 67 matched proteins in the
A549 cell study and 684 matched proteins in the HeLa cell
study. Only five precursor proteins were among the top 50
unstable proteins in A549 cells, and only 53 were among the
top 500 category in HeLa cells (Supporting Information Figure
S10E,F). Therefore, our data suggest that there is no
correlation between the peptides identified in OvCa peptidome
and the abundance/stability of the proteins from which these
peptides are derived. Similar results were also obtained from
the PDX breast tumor peptidome analysis (data not shown).

Degradation Substrates in BrCa and OvCa Tumors Are
Involved in Broad Biological Processes

The biological processes in which the precursor proteins are
involved were compared by gene ontology analyses between
BrCa and OvCa data sets. As shown in Figure 5, approximately
25% of the 974 precursor proteins in ovarian cancer,
representing the most prevalent proteolytic substrates, were
participating in the metabolic processes. The second largest
group of peptidome precursor proteins (∼15%) was relevant to
the cellular processes including cellular component morpho-
genesis, neural development, and immune responses. The rest
of the precursor proteins were participating in processes such as
transport, cell communication, reproduction, cellular compo-

nent organization, and apoptosis, counting for two-thirds of
total biological processes. However, none of these represents
more than 10% of the total biological processes. Interestingly,
the distribution pattern of the 824 precursor protein groups in
the BrCa tumor peptidome was similar to that in the OvCa
tumor (Supporting Information Figure S11). These results
suggest that protein degradation is a global event in both OvCa
and BrCa tumors.

■ DISCUSSION
We have developed an analytical platform for comprehensive
and quantitative analyses of the tissue peptidomes. Replicate
analysis of the WHIM6, WHIM2, and WHIM16 PDX breast
tumors was first carried out to evaluate reproducibility and
robustness of the platform. For studying potential ischemic
effect on tumor peptidomic analysis, the WHIM6 tumors with
ischemic times of 0 and 60 min (each with two replicates) and
three clinical ovarian tumors each with ischemic times of 0, 5,
30, and 60 min were analyzed. The three different WHIM
tumor samples were further analyzed to explore the potential of
peptidomic profiles for distinguishing cancer subtypes. Both
BrCa and OvCa tumor peptidomes were further characterized
in terms of enzyme cleavage specificity and degradation
substrates.
The study of the low molecular weight collection of

bioreactive peptides, protein degradation products, and small
intact proteins (i.e., peptidomics) is often criticized as being less
sensitive, less reproducible, and as vulnerable to a lack of
controls in sample collection and preparation.46,47 In this study,
we developed and evaluated a robust, efficient, and quantitative
peptidomics platform and demonstrated its utility for in-depth
characterization of human ovarian tumor and PDX breast
tumor peptidomes. We also evaluated ischemic effects on
peptidomics analysis and showed that the effects of up to 60
min of postexcision delay at room temperature are minimal in
both tumor types. To our knowledge, our study represents the
broadest characterization and first quantitative analysis of
human cancer tumor peptidomes. This entire quantitative
peptidomics platform encompassing sample preparation, LC-
MS analysis, and data analysis provides a foundation for future
peptidomics applications in biological and translational studies
in cancer. Peptidomics patterns have been previously reported
as capable of discriminating cancer types, such as breast,
prostate, and bladder cancer, and healthy controls.3 Our
previous breast cancer plasma peptidomics study also showed
that blood plasma peptidomic profiles are strikingly different
between the early stage breast cancer patients and healthy
controls, providing important, complementary information on
top of conventional bottom-up proteomics.18 In this study,
substantially different peptidome profiles were observed for the
three different WHIM lines (Figure 3A and Supporting
Information S4C). Interestingly, the PCA plot showed a clear
separation of the two WHIM lines that were both basal BrCa
(i.e., WHIM2 and WHIM6), to the degree that was as strong as
the separation between basal and luminal BrCa (e.g., WHIM2
and WHIM16; Figure 3B). Although the total number of PDX
samples tested in this study was relatively small, the initial
experimental results obtained herein demonstrate the potential
of separating these BrCa subtypes using their peptidomics
profiles. In the case of OvCa, samples from different patients
were also clearly separated (Supporting Information Figure
S5B). These results suggest that peptidomics profiles are
sensitive to human pathophysical status and human hetero-
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geneity and hence could provide highly valuable information on
endogenous proteolytic events for cancer studies.
One of the major intracellular protein degradation pathways

is mediated by the proteasome, which generally cleaves proteins
after hydrophobic residues by its chymotrypsin-like β5 subunit
and after basic residues by its trypsin-like β2 subunit.48,49 The
length of the proteasomal cleavage products ranges from 3 to
23 amino acid residues.40,41 In addition, proteasomal
degradation is expected to produce a larger number of internal
fragments, whereas the proteolytic products of other
cytoplasmic proteases are terminal ones. For OvCa, we found
that the peptidome consisted of peptides rich in Leu, Lys, and
Phe at the P1 position; more than half of the peptides fell
within the range of proteasome products, the majority of which
were internal peptides, suggesting major proteasome involve-
ment in producing the OvCa tumor peptidome. The PDX
breast tumor is harvested after the transplantation and growth
of human BrCa tumor underneath the mouse skin22 and hence
exhibits a different tumor peptidome that appears to be the
results of mixed proteasome and trypsin-like activities. This is
presumably due to the vascularization that occurred during the
tumor expansion phase and hence the shifted peptidomic−
degradomic activities brought in by the mouse-origin proteins.
Indeed, after removing the mouse-only and human−mouse-
shared peptides from the PDX breast tumor peptidome, the
proteasome still appears to be the major contributor for the
human BrCa tumor peptidome, which is in agreement with the
findings in our previous peptidomics studies in BrCa cell lines.
N-terminal methionine excision is an important proteolytic

pathway regulating the diversity of N-terminal amino acids of
proteins, conserved from prokaryotes to eukaryotes. Although
Met is the first amino acid of newly synthesized proteins, it is
often removed from the mature proteins for nonbulky N-
terminal residue to avoid immediate degradation by the
ubiquitin−proteasome system.50 Besides being part of the
protein-maturing mechanism, recent data suggest that NME
also serves to regulate the protein’s half-life based on the N-end
rule at post-translational level throughout development,
tumorigenesis, and in response to abiotic stress. For example,
retained Met, Ser, Ala, Thr, Val, or Gly at N-terminus generally
stabilize proteins for half-lives longer than 20 h, while proteins
with N-terminal Phe, Leu, Asp, Lys, or Arg have half-lives of 3
min or less in mammals.51 Therefore, NME is tightly regulated
with other mechanisms including the ubiquitin−proteasome
pathway to determine the fate of proteins under various
circumstances.52 Our data here revealed the prominent
contribution of NME for the generation of OvCa tumor
peptidome peptides. Based on the N-end rule, those proteins
starting with nonbulky residues such as Ser, Ala, Thr, and Val
(Supporting Information Figure S7A) are generally stabilized
for longer half-lives instead of undergoing a proteolytic process,
suggesting that NME contributes possibly at translational level
rather than serves as a switch for protein degradation at post-
translational levels in OvCa tumor cells.
In summary, in this study, we have evaluated a sensitive and

robust tumor peptidomics platform that is amenable for high-
throughput and reproducible quantitative cancer peptidomics
studies. We have shown that protein degradation is a global
event in both OvCa and BrCa tumors and that peptidomics
profiling has the ability to differentiate cancer subtypes. Our
study also indicates that warm ischemia effects are negligible up
to 60 min of postexcision delay in both BrCa and OvCa tumor
peptidomes, providing a basis for proper tumor specimen

processing, handling, and selection for tumor peptidomics
studies. Furthermore, we also show that chymotrypsin and
trypsin activities of proteasome subunits are the major
contributors to both the OvCa and BrCa tumor peptidome.
The observation that the cancer peptidome differs in a

controlled, but unspecified, manner between the known
subtypes of BrCa, as well as between BrCa and OvCa, suggests
that there are cancer-specific changes in the regulation of
normal proteolytic processes. The fact that varying times of
warm ischemia, from 0 to 60 min, had little discernible effect on
the peptidomic profile in either PDX xenografts or actual
clinical samples of OvCa suggests that these cancer-specific
proteolytic process are tightly regulated and not merely a
nonspecific increase in protein degradation. These two
observations suggest that a more extensive and tightly
controlled analysis of tumor peptidomes, including the use of
normal control tissues and clinical metadata, has the potential
to provide new and potentially useful insights regarding cancer
biology.
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