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Abstract

This study presents a computational tool for auto-segmenting the distribution of brain infusions observed by magnetic
resonance imaging. Clinical usage of direct infusion is increasing as physicians recognize the need to attain high drug
concentrations in the target structure with minimal off-target exposure. By co-infusing a Gadolinium-based contrast agent
and visualizing the distribution using real-time using magnetic resonance imaging, physicians can make informed decisions
about when to stop or adjust the infusion. However, manual segmentation of the images is tedious and affected by
subjective preferences for window levels, image interpolation and personal biases about where to delineate the edge of the
sloped shoulder of the infusion. This study presents a computational technique that uses a Gaussian Mixture Model to
efficiently classify pixels as belonging to either the high-intensity infusate or low-intensity background. The algorithm was
implemented as a distributable plug-in for the widely used imaging platform OsiriXH. Four independent operators
segmented fourteen anonymized datasets to validate the tool’s performance. The datasets were intra-operative magnetic
resonance images of infusions into the thalamus or putamen of non-human primates. The tool effectively reproduced the
manual segmentation volumes, while significantly reducing intra-operator variability by 67618%. The tool will be used to
increase efficiency and reduce variability in upcoming clinical trials in neuro-oncology and gene therapy.
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Introduction

Neuro-imaging can be used to non-invasively assess the

performance of drug infusions in the brain. Accurate character-

ization of the infusate distribution in the brain parenchyma is

critical to evaluating the success of an infusion on a patient-by-

patient basis. Such characterization provides crucial information

to improve future infusion protocols and understand the success or

failure of clinical trials. In fact, visualization is so useful that clinical

trials are moving beyond post-operative to intra-operative

magnetic resonance imaging (MRI) to monitor the drug distribu-

tion in real-time. A suite of technologies has been developed to

support trials using direct pressure-driven brain infusions, often

called Convection Enhanced Delivery (CED) [1]. These technol-

ogies have included image-guided stereotaxy [2], improved

cannulae [2,3] and surgical planning software [4,5]. CED achieves

high concentrations of drug with minimal off-target exposure since

it bypasses the blood-brain barrier and displaces the interstitial

fluid, thus making it possible to deliver large macromolecules with

pinpoint accuracy. These technologies should help overcome the

poor drug distributions observed in several recent high-profile

clinical trials involving direct delivery of neurotrophic factors [6,7]

or gene therapy vectors for the treatment of Parkinson’s disease

[8,9] and of immunotoxins [10,11] or chemotherapies [12] for

treating brain tumors.

By co-infusing Gadolinium as a MRI-visible surrogate tracer,

clinicians can evaluate the drug distribution in real-time and make

informed decisions regarding when to terminate the infusion or to

adjust the position of the infusion cannula to optimize target

coverage. Gadolinium produces high intensity signals on T1-

weighted images. However, manual segmentation of these images

is tedious and affected by window settings, image interpolation,

variation in MRI contrast, MRI noise, and subjective interpreta-

tions of the sloped edge of the infusion. Reported ratios between

the distribution volume (Vd) measured in the MRI images and the

infusion volume reported by the pump (Vi) have previously ranged

from as low as 1.5 [13] to greater than 5 [14,15,16]. Unfortu-

nately, it is difficult to ascertain whether these differences result

from true variability between infusions (for example, due to the

leakage of infusate) or whether the differences result from operator

bias in the image segmentation. Hence, a computational-based

approach to delineate infusion volumes would be preferable to

increase efficiency and reduce variability in segmentation in

upcoming clinical trials.

The goal of this study was to develop an autosegmentation

technique that identified similar volumes to expert operators,

reduced the inter-operator variability, ran quickly and was robust

to variables such as noise, windowing, or resolution. The

technique was based on a Gaussian Mixture Model pixel

classification [17] that modeled the pixel distribution as containing

two distinct functions: a high intensity function of infused pixels

and a low intensity function of non-infused pixels. The technique

was built as a plug-in for OsiriXH, a widely distributed imaging

platform available from the NIH. The technique was retrospec-

tively validated using T1-weighted images of Gadolinium infusions

into the brain of non-human primates (NHP).
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Methods

Semi-Automated Infusion Segmentation by Gaussian
Mixture Model
The segmentation was written in Objective-C (Cocoa) and

implemented as an OsiriXH plugin for easy usability (OsiriXH
Medical Image Software, v3.9.1; Geneva, Switzerland). The

system architecture and implementation is shown in Figure 1.

DICOM (Digitial Imaging and Communications in Medicine)

formatted MRI images were pushed from the MRI workstation, to

the department PACS (Pictures Archiving and Communication

System), to a local computer running OsirixH. Segmentation using

the plug-in was done on the local computer (MacBook Pro, Mac

OS X Version 10.7.5, Processor: 2.8 GHz Intel Core i7, Memory:

4GB 1333 MHz DDR3, Graphics: Intel HD Graphics 3000

384 MB). The pixels in each three-dimensional image volume

were normalized to the range of values in the scan prior to

classification:

Inormalized~ I{min Ið Þð Þ= max Ið Þ{min Ið Þð Þ ð1Þ

and each pixel was classified as belonging to either the class of

infused pixels (foreground) or non-infused pixels (background).

The classes were modeled as having additive Gaussian noise,

producing Normal distribution functions (N) parameterized by the

mean background value (m0), mean foreground value (m1), standard
deviation of background noise (s0), and standard deviation of

foreground noise (s1):

Foreground~N m0,s0ð Þ~ 1ffiffiffiffiffiffiffiffiffiffi
2ps20

q e
{

x{m0ð Þ2
2s2

0

Background~N m1,s1ð Þ~ 1ffiffiffiffiffiffiffiffiffiffi
2ps21

q e
{

x{m1ð Þ2
2s2

1

ð2Þ

Assuming the likelihood that each pixel drawn from the

foreground was a, the joint probability density function of pixel

intensities was modeled as (2):

Pixeli*aN m0,s0ð Þz 1{að ÞN m1,s1ð Þ ð3Þ

This combination of Gaussian distributions is called a Gaussian

Mixture Model (GMM), where a is referred to as the mixing

parameter.

The Expectation Maximization (EM) algorithm [18,19,20] was

used to determine the five parameters of the model: a, m0, s0, m1,
and s1. EM is an efficient, iterative algorithm to estimate model

parameters from data with missing values. In this case, the missing

data was the class membership of each pixel. EM finds the best

solution by alternating between estimating the values of the

missing data using their expected valu and computing the

maximum likelihood values of the model parameters with those

estimated values. The algorithm iterates until the change in the fit

drops below a predefined tolerance level. Model fit was calculated

using the negative log-likelihood:

{ ln L a,m0,s0,m1,s1ð Þð Þ~

{
Xn
i~1

ln aN m0,s0ð Þz 1{að ÞN m1,s1ð Þð Þ
ð4Þ

Starting values for the parameters were m0= .2, s0= .2, m1= .8,

s1= .2 and a= 0.5. The algorithm was iterated until the effect of

modifying parameters dropped below a threshold 0.1%. Each

pixel was then classified by calculating whether there was a higher

probability that it belonged to the foreground or background class.

Three-dimensional morphological closing and opening with

spheroidal elements 5 by 5 by 3 pixels wide were used to correct

scattered pixels causing holes in the infusion volume or isolated

pixels in the background. Infusions produce large contiguous

volumes, so geometrically disconnected pixels were assumed to

have been erroneously classified due to noise or image artifacts

such as zipper artifacts from radiofrequency interference or flow

artifacts from the carotid arteries.

Data Acquisition
CED infusions of saline doped with Gadoteridol (1.0 mM Gd-

DTPA, Prohance: Bracco Diagnostics, Princeton, NJ) were

conducted in fourteen NHP targeting either the putamen

Figure 1. System architecture and implementation. MRI DICOM volumes were acquired every 5 minutes. (A) New DICOM volumes were
automatically pushed to the department PACS for archiving by the GE DICOM Sender. (B) The operator manually pulled and anonymized DICOM
images on a local laptop using the Osirix PACS Query/Retrieve tool. (C) The operator recorded the location of a three-dimensional box on the infusion
target region in one image volume. (D) The user used the segmentation plug-in to automatically segment the infusion in volume. The segmentation
was many times faster (,1 second) than the MRI data acquisition (,5 minutes) and data transfer (,1 minute).
doi:10.1371/journal.pone.0064452.g001
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(N= 10, Vi = 50.466.5 mL) or thalamus (N= 4,

Vi = 240.2670.7 mL). The infusate also contained 2.3e12 vg/ml

of the gene therapy vector AAV2-GDNF, which was being

evaluated pre-clinically as a treatment for Parkinson’s disease

[21,22]. The experiments were performed according to National

Institutes of Health guidelines and to protocols approved by the

Institutional Animal Care and Use Committee at University of

California San Francisco (San Francisco, CA). Animals were

housed in a temperature and humidity controlled environment

with a 12 hour light/dark cycle. Primate chow and water were

available at all times. Enrichment was provided by providing chew

and play toys in the cages and offering a variety of fruit and

vegetables. Animals were monitored at least twice daily for the

duration of the study, in addition to periodic behavioral

assessments. The use of NHP was deemed necessary because

NHP provided the closest comparable to humans for the surgery,

imaging and drug delivery. To minimize suffering, the animals

were sedated with ketamine (Ketaset, 7 mg/kg, intramuscular) and

xylazine (Rompum, 3 mg/kg, intramuscular) during the surgery

and with 1–3% inhaled isoflurane during the infusion.

The infusion protocol and image-guided infusion platform has

been previously described [2]. Briefly, the infusion cannula were

inserted into the target under image guidance by passing the

cannula through a small burr-hole in the skull. The infusion was

ramped up by 0.5 mL/min every 5 min up to a rate of 5 mL/min.

Serial T1-weighted fast low angle shot (FLASH) images were

acquired every 5 min to visualize the infusion (4.49 ms TE, 17 ms

TR, 40u flip angle, 2 repetitions, 0.7 mm in-plane resolution, 180

mm field of view, 1 mm slices).

Semi-Blinded Comparison of Segmented Volumes
Four operators independently completed manual segmentation

and automated segmentation of the 14 anonymized datasets. The

operators were experienced with manually segmenting Gadoter-

idol infusion on T1 images in OsiriXH and were given instructions

and training in operating the autosegmentation plug-in tool. The

operators were first asked to perform manual segmentation on all

infusions. They were then asked to draw a three-dimensional

bounding box around the infusion volumes to run the GMM

classification. The corners of the bounding box were used to

restrict the GMM classification to pixels inside the box. The

bounding box was used to speed up processing, to differentiate

between multiple infusions on the same scan and to eliminate

bright structures in the background, such as fat. Once the bounded

region was selected, the GMM classification was run and the

resulting segmentation results were recorded.

Statistics
Inter-operator variability was measured using the coefficient of

variance (CoV). CoV was calculated as the ratio of the standard

deviation between operators to the mean of the operators.

Statistical significance was evaluated using Pearson’s correlation

coefficient.

Results and Discussion

The semi-automated tool provided more consistent segmenta-

tions than manual segmentations and had similar volumes to the

manual segmentations (Figure 2A). Use of the autosegmentation

tool significantly reduced inter-operator variability between the

four operators from 2969% to 1066% (p,1.8E-7)(Figure 2B).

Variability was improved in all tests cases (Figure 2C), with an

average improvement of 67618%. The average autosegmentation

volumes for each study were closely correlated to the average

manually segmented volumes (R2 = 0.957), making the Vd/Vi

Figure 2. Comparison of manually segmented infusion volumes to autosegmented infusion volumes. (A) Autosegmentation (open
dots) by the four operators produced consistent volumes to manual segmentation (black dots) in all fourteen test subjects. (B) Autosegmentation
significantly reduced the interoperator variability (Mean 6 StDev). (C) Autosegmentation variability for all studies was smaller than manual
segmentation variability, so all values fell below the unity line. (D) Autosegmentation produced consistent Vd/Vi ratios to manual segmentation with
lower standard deviation (Mean 6 StDev).
doi:10.1371/journal.pone.0064452.g002
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ratios more consistent between operators and across individual

animals (Figure 2D).

The examples in Figure 3 demonstrated the improved

consistency of autosegmentation. The inter-operator CoV of

manual segmentations was 25% in the putamen example

(Figure 3A) and 19% in the thalamus example (Figure 3B). The

autosegmentation tool reduced the inter-operator CoVs to 2% and

6%, respectively. The pixel intensity plot shown in (Figure 3C)

demonstrated the intensity slope at the edge of the hyperintense

infusate region. Operator bias in deciding where to place the edge

of the segmentation on this slope led to the high variability in

manual segmentations.

The tool reduced but did not entirely eliminate the inter-

operator CoV (Figure 2B–C). The residual variability in the

autosegmentation volumes was weakly correlated with the volume

of the operator-defined box (R2= 0.31; Figure 4), suggesting that

either the number or intensity values of the background pixels

influenced the pixel classification. The mixture model was

imperfect in its assumption that the background and foreground

each had one homogeneous value, when in fact, the background

contained brain structures that varied in their signal characteristics

and the foreground contained a range of values influenced by the

local concentration of Gadoteridol (Figure 3C). The correlation

was not strong enough to lead to significant statistical differences in

autosegmentation volumes between operators, despite significant

differences in box sizes. For example, the first operator drew boxes

twice as large as the second operator (averaging 4227 and 2229

mm3, respectively; p,1.3E-4), but their autosegmentation vol-

umes differed by less than 8% (338uL and 315 mm3, not

significant).

Figure 3. Representative manual (yellow) and automated (green) segmentations of the T1-weighted FLASH images. The automated
segmentations were more consistent in both a (A) a 50 mL infusion in the putamen (manual: 177/226/131/232 mL; automated: 156/154/161/154 mL)
and (B) a 160 mL infusion in the thalamus (manual: 425/505/364/564 ml; automated: 402/454/522/497 mL). (C) A cross-section of the thalamus infusion
along the dotted line demonstrated that the inconsistently classified pixels (gray, starred) were on the shoulder of the infusion.
doi:10.1371/journal.pone.0064452.g003
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Theoretically, subtracting a pre-infusion image from the post-

infusion image would remove the background structures and also

eliminate the need for the operator-defined box. Subtracting

images may be particularly beneficial for autosegmenting T2-

weighted images, which have been proposed as an alternative that

eliminates the need to co-infuse a Gadolinium-based contrast

agent [15,23,24]. Without subtraction, hyperintensities on T2-

weighted MRI images resulting from disease pathology such as

pre-existing peritumoral edema could be mistaken for infusate

[23].

However, subtracting a pre-infusion image adds a level of

complexity that might be clinically impractical in protocols that

only acquire a post-infusion image or move the patient between

scans, requiring image alignment that could seriously contaminate

the image subtraction and correction of edge- or through-plane

artifacts. A preferable strategy might be to autosegment and

remove the confounding structures or to run a brain-extraction

algorithm prior to using the semi-automated tool.

Future studies should adapt the algorithm for FLAIR MR

imaging, which has recently been applied to detect Gadolinium-

labeled compounds in the CSF [25,26], as well as to other imaging

modalities used to track distributions such as CT [27] and SPECT

[4]. These applications may require adjusting the starting values

and threshold applied in this study. Studies comparing the output

of the segmentation tool to post-mortem histology should validate

the edge on the shoulder of the infusion (Figure 3C) and address

whether free Gadolinium reasonably approximates the distribu-

tion of large drugs [25,26], despite the discrepancy in molecule

size, or whether the distributions are different [28] and necessitate

using larger contrast agents like liposomal Gadolinium-DTPA [29]

or Gadolinium-bound albumin [25].

This tool is applicable to numerous upcoming CED trials using

adeno-associated virus serotype 2 to deliver aromatic l-amino acid

decarboxylase (AAV2-AADC) to treat Parkinon’s disease

[30,31,32], glial-derived neurotrophic factor (AAV2-GDNF) to

treat Parkinson’s disease [21,22], a retrovirus to deliver cytosine

deaminase for treating brain tumors [33,34] and liposomal toxins

for treating brain tumors [13,35,36,37].

In conclusion, this study has validated the performance of an

efficient algorithm to segment infusions by constructing models of

infusion pixels and background pixels. The semi-automated tool

produced similar volumes to manual segmentation by experienced

operators, but significantly reduced inter-operator variability.
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