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Abstract

Bronchitis and pneumonia are the common respiratory diseases, of which pneumonia is the

leading cause of mortality in pediatric patients worldwide and impose intense pressure on

health care systems. This study aims to classify bronchitis and pneumonia in children by

analyzing cough sounds. We propose a Classification Framework based on Cough Sounds

(CFCS) to identify bronchitis and pneumonia in children. Our dataset includes cough sounds

from 173 outpatients at the West China Second University Hospital, Sichuan University,

Chengdu, China. We adopt aggregation operation to obtain patients’ disease features

because some cough chunks carry the disease information while others do not. In the stage

of classification in our framework, we adopt Support Vector Machine (SVM) to classify the

diseases due to the small scale of our dataset. Furthermore, we apply data augmentation to

our dataset to enlarge the number of samples and then adopt Long Short-Term Memory

Network (LSTM) to classify. After 45 random tests on RAW dataset, SVM achieves the best

classification accuracy of 86.04% and standard deviation of 4.7%. The precision of bronchi-

tis and pneumonia is 93.75% and 87.5%, and their recall is 88.24% and 93.33%. The AUC

of SVM and LSTM classification models on the dataset with pitch-shifting data augmentation

reach 0.92 and 0.93, respectively. Extensive experimental results show that CFCS can

effectively classify children into bronchitis and pneumonia.

Introduction

Each year, childhood respiratory infections significantly burden our healthcare system regard-

ing staffing and resource utilization [1,2]. Statistics from one of the largest children’s hospitals

in China showed that bronchitis and pneumonia are the leading respiratory diseases in outpa-

tient during the decade [3], of which pneumonia has been the leading cause of death under 5
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years old worldwide for the past three decades. It is estimated that 1.2 million children under

the age of five die of pneumonia yearly [4]. COVID-19 is one kind of pneumonia, but we only

discuss ordinary pneumonia in this paper. Bronchitis is the primary infection of the lower

respiratory tract in children under two [5–7]. Pneumonia and bronchitis present highly similar

symptoms, such as persistent cough, fever, and rapid breathing rate. Highly similar symptoms

make it difficult to diagnose the two diseases [8].

Furthermore, the number of outpatients is increasing, which has led to overcrowding in the

outpatient clinic [9]. Numerous computer-aided diagnostic systems have been developed to

help diagnose diseases [10,11]. Doctors can use the results of the computer-aided system as a

reference, saving patients’ waiting time and reducing doctors’ misdiagnosis rate.

The goal of this paper is to classify patients with bronchitis and pneumonia. From the view

of the pathology, cough sounds are generated from the lungs and respiratory tract, carrying

information about abnormalities in the lungs and respiratory tract. By analyzing cough

sounds, we can learn the types and severity of respiratory diseases [12]. Moreover, pneumonia

and bronchial patients’ cough are more easily observed than other symptoms. So we use cough

sounds to classify bronchitis and pneumonia.

The process of cough sound recognition is similar to speech recognition [13]. Firstly, pre-

process the cough signals before extracting the features of the diseases, and then the extracted

features are input into the trained classification model to obtain the classification results.

We term the recorded audios of patients (children) with respiratory problems during

clinic visits as patient audios. As the patient audios are collected in the hospital, noise

and human speaking voices are inevitably in them, so we cannot directly extract the dis-

ease feature from the patient audios. Therefore, we segment them into several chunks

based on the energy threshold. We term those chunks only containing the cough sounds

signal as cough chunks. This study will extract features from the cough chunks as input

to the model.

However, designing such a cough sounds classification model involves two complex chal-

lenges. (1) Disease labels do not correspond to the cough chunks’ features. It is because some

cough chunks carry the disease information while others do not. However, what we have are

patient audios and patient disease labels. (2) The dataset collected from the hospital is small.

Patients are concerned about their privacy. It is difficult to collect large amounts of cough

sound data because it is a kind of private data. The small scale of a dataset may lead to a low

classification accuracy of the diseases.

In this paper, we propose a Classification Framework based on Cough Sounds (CFCS) for

identifying bronchitis and pneumonia in children. Overview of the CFCS as shown in Fig 1. It

segments patient audios into multiple cough chunks because they contain unrelated speech

voices. And then, it aggregates several cough chunks’ features. The aggregated results, which

represent the feature of the patient audio, are used as the model’s input to classify. In summary,

our main contributions are as follows:

1. We proposed a feature aggregation operation to obtain patients’ disease features to classify

the diseases.

2. We proposed two strategies to solve the problem of the small scale of a medical dataset.

One is to use SVM on the small-scale dataset; the other is to adopt data augmentation

before using LSTM classification.

3. We have collected a cough sounds dataset, and our comparative experiments on the real-

world dataset show that CFCS can achieve a good classification effect.
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Methods

Overview of construction of classification models

We first state the process of construction of classification models for diagnosing patients with

bronchitis and pneumonia, then introduce the details of collecting patient audios, and finally

show the statistics of the patient audios. Table 1 shows the notations used in this paper.

The process of construction of classification models

We use the training set to learn a cough sound classification model and then use the model to

predict the test data. We formalize the problem of disease classification. Let T = {(x1, y1), (x2,

y2),� � �,(xN, yN)} denote the training set, where (xi, yi) is a sample, i = 1,2,� � �, N. Let xi denote

the features that the model used for classification. Let yi denote the diagnostic result of xi, i.e.,

yi = {-1,+1}. yi = -1 if xi is the negative case (bronchitis) and yi = +1 otherwise.

In the learning process, the learning system uses the training set T to learn a classification

decision function. The classification decision function is denoted by Y = f(X), which describes

the mapping between inputs and outputs.

In the prediction process, for an input xN + 1 in the given test set, the prediction system out-

puts a classification result ŷNþ1 by the model.

Fig 1. Overview of the Classification Framework based on Cough Sounds (CFCS).

https://doi.org/10.1371/journal.pone.0275479.g001

Table 1. Notations.

Notation Interpretation

T Training set

N Number of the training sample

(xi, yi) A sample (feature, label)

Y = f(X) Mapping between features and labels

xki Feature matrix of the ith cough chunk of the patient k

xðtÞki
The ith feature vector of xki

xk Feature matrix of the patient k
w, b Normal vector, intercept of the hyperplane

z, C Relaxation variable, regularization parameter

https://doi.org/10.1371/journal.pone.0275479.t001
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Collection of patient audio

The patient audios used in this work are collected from the West China Second University

Hospital, Sichuan University, Chengdu, China. The Ethics Committees of West China Second

University Hospital approved the study and the verbal consent procedures. Verbal informed

consent was obtained from the legal guardians of all participants and recorded with the

recorder. We collect 173 audios from 91 bronchitis (51 male, 40 female; 1 acute asthmatic

bronchitis, 13 acute bronchiolitis,76 acute bronchitis) and 82 pneumonia patients (43 male, 39

female; 1 lobar pneumonia, 81 bronchopneumonia) (ages from 0 years to 11 years). Bronchitis

and pneumonia were diagnosed according to Zhu Futang Practice of Pediatrics (8th Edition)

[14]. Fig 2 shows the age distributions of bronchitis, pneumonia, and all patients. The propor-

tion of age represents the ratio of the patients in each age group to the number of patients. As

shown in Fig 3, patient audios are collected in a consulting room of pediatrics as MP3 files.

The distance between the recorder and the patient’s mouth varies from 20 to 40 cm. The aver-

age duration of the audio for each patient is 3.92s. In addition, children are usually accompa-

nied by their families, who can make some extra noise for the audios.

Statistics of the dataset

Table 2 shows the detailed statistics of the patient audios, and each disease accounts for about

half of the dataset. Intuitively, the statistical data approximately follows a power-law distribu-

tion, and the proportion of children under the age of one accounts for more than 50%.

Structure of the feature aggregation framework

The core of the framework is aggregation operation, which can obtain the patient’s features.

Fig 4 shows the structure of the feature aggregation framework. We first take a recording of

patients, followed by noise reduction and normalization. Then, we segment the patient audios

into several cough chunks. In addition, we apply three data augmentation technologies to the

cough chunks. Later, we extract MFCC features from the cough chunks. Finally, we train a

classifier to classify pneumonia and bronchitis.

Fig 2. Age distributions of bronchitis, pneumonia, and all patients.

https://doi.org/10.1371/journal.pone.0275479.g002
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Data pre-processing. We will start by improving the signal-to-noise ratio (SNR) of the

patient audios. We first convert patient audios into WAV format at 44.1kHz sampling fre-

quency with 16 bits per sample. Fig 5A shows the waveform of the original patient audio. We

adopt Log-MMSE [15], a frequently used speech enhancement algorithm [16], to improve the

SNR. It minimizes the mean square error of the log-spectral, resulting in a much lower residual

noise level without further affecting the patient audio itself. In addition, we normalize the

amplitude value of the patient audios by limiting the peak amplitude to -0.1dB. Fig 5B shows

the waveform after speech enhancement and normalization.

Patient audios segmentation. After data pre-processing, patient audios still contain peo-

ple’s speaking voices. So we further need to segment patient audios into cough chunks. There

are many audio segmentation algorithms. A widely adopted algorithm for audio segmentation

is based on the Bayesian Information Criterion (BIC), applied within a sliding variable-size

analysis window and some smoothing rules. The sliding variable-size analysis window can

classify each one-second window into different audio classes by audio signals features. The

smoothing rules of an audio sequence can segment an audio stream into speech, music, envi-

ronment sound and silence [17,18].

Auditok is fast and works well for audio streams with low background noise (e.g., few peo-

ple talking) [19]. Auditok uses a signal energy threshold to obtain valid audio events, where

the valid audio events are those signal energy equal to or above this threshold. Moreover, the

energy of the audio signal is the log energy, which is computed as: 20lg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N �
XN

i¼1
ai

2

q

, where

ai is the ith audio sample and N is the number of audio samples in data. Meanwhile, our dataset

is collected in a quiet environment with few people, so we use a toolkit called auditok to seg-

ment the patient audios.

Fig 3. Recording setup in the hospital. We collected patient audios in a pediatrics consulting room of the West China

Second University Hospital, Sichuan University, Chengdu, China.

https://doi.org/10.1371/journal.pone.0275479.g003
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In the data collection process, the distance between the recorder and the patient’s mouth is

no more than 40cm. Statistical analysis shows us an energy threshold value to discard speaking

voice from cough sounds. Therefore, we used this energy threshold to segment cough sounds.

Fig 5C shows the waveform after patient audios segmentation according to the threshold.

Cough chunks are retained and speaking voices are discarded. In the future, we can use a slid-

ing variable-size analysis window to perform segmentation in the scene of a complex

environment.

Data augmentation. As medical data is a kind of private data, it is expensive to collect

such private data. Furthermore, deep learning relies on a large-scale dataset. Data augmenta-

tion aims to increase the number and diversity of training data to improve the robustness of

Table 2. Detailed statistics of patient audios collected in the hospital.

# last(s) class # percentage(%) last(s) category # percentage(%) last(s)

173 3.92 Bronchitis 91 52.6 3.4 Bronchitis 80 46.2 2.37

Asthmatic bronchitis 5 2.9 4.85

Bronchiolitis 6 3.5 15.96

Pneumonia 82 47.4 4.49 Pneumonia 55 31.8 2.94

Bronchopneumonia 23 13.3 7.71

Lobular pneumonia 4 2.3 7.22

This table shows total audio statistics, statistics for the two categories, and more granular disease category statistics for the two categories. Note that the “#” column

shows the number of each category, the “percentage” column reflects the percentage of the total for each category, and the “last” column shows the average duration of

each category of patient audios collected.

https://doi.org/10.1371/journal.pone.0275479.t002

Fig 4. Structure of CFCS for classifying bronchitis and pneumonia in children.

https://doi.org/10.1371/journal.pone.0275479.g004
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deep learning models. We term the cough sounds collected in the hospital as the RAW dataset.

We have adopted three data augmentation technologies: time shifting [20], pitch shifting [21]

and adding noise [22] to the RAW dataset. Fig 6 shows the waveforms of the cough chunks

through the three data augmentation methods, where the cough chunks are derived from the

above selection.

Time shifting. We adopt time shifting to increase the number of samples of the RAW data-

set. This operation can be seen as deleting a small portion of cough sound information to

obtain new samples. Time shifting deletes the information at the beginning or end of the

cough chunks, where the period ranges from 0 to 0.1s, and fills fixed frequency to keep the

duration unchanged.

Pitch shifting. We also adopt pitch shifting to increase the number of samples of the RAW

dataset. Raise the pitch of the cough chunks within five half-tones. That is, turn up the fre-

quency. The higher the pitch, the higher the frequency. We can obtain new cough sounds

through raw cough chunks by conducting pitch shifting.

Fig 5. Example of preprocessing and patient audio segmentation waveforms. (A) Waveform of the original patient audio; (B) Waveform after

noise reduction and normalization; (C) Waveform after patient audios segmentation according to the energy threshold.

https://doi.org/10.1371/journal.pone.0275479.g005
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Noise adding (white/pink noise). To increase the diversity of samples of the RAW dataset,

we mix noise with the original sounds. This operation can be seen as changing the SNR distri-

bution of each cough chunk. Mix each cough chunk with white noise or pink noise. White

noise contains various characteristics of noise. Pink noise is the most common noise in nature,

and traffic sound can be simulated by pink noise. So we mix the white and pink noise to the

cough chunks to obtain new cough sounds.

Feature extraction. In speech recognition, there are many feature extraction methods

[23–25]. We extracted the Mel frequency cepstral coefficients (MFCC) [26] from the cough

chunks using a non-parametric FFT-based approach. MFCC describes the energy distribution

of a signal in the frequency domain. The dimension of MFCC depends on the front part num-

ber of dimensions taken from the data after discrete cosine transform (DCT). Because a lot of

the signal data will be transformed in the low-frequency region after DCT, it is only necessary

to take the front part after DCT and discard the redundant data. MFCC is frequently used as

an acoustic feature to assess pathological voice quality [27,28]. This study uses a 20-dimen-

sional feature vector consisting of log energy and 19-dimensional Mel frequency cepstral

coefficients.

The process of computing MFCC involves four steps: (1) Divide the audio stream into over-

lapping frames. (2) Perform an FFT for each frame to obtain the frequency spectrum. (3)

Then, take the logarithm on the spectrum and convert the log spectrum to the Mel spectrum.

(4) Finally, take the Discrete Cosine Transform (DCT) on the Mel spectrum

Aggregation operation. Some cough chunks carry information about the disease, while

others are not. In reality, we do not know the label of cough chunks in the dataset. We only

have the patient audios and disease labels. Thus we want to analyze all the cough chunks

comprehensively.

We first intuitively concatenate the cough chunks on the time sequence. E.g., starting from

0s, if the first cough chunk lasts t1s, then the second cough chunk starts from t1s, following the

first cough chunk, and so on. We obtained the experimental results of SVM [29], XGBoost

[30], RF [31], LSTM [32], RNN [33], and GRU [34] classification accuracy in 45 random test

on the RAW dataset, 69.79%, 64.38%, 67.5%, 66.46%, 62.5%, and 66.25%, respectively. From

the above results, there seems to be much room for improvement in classification accuracy.

So, we further take into account the interconnection of each cough chunk.

As we all know, the binary classification result is determined by the distribution of features.

For example, as shown in the third part of Fig 1, the features of cough chunks are all distrib-

uted in the same feature space, and the hyperplane divides these features into two classes. If

multiple cough chunks of one patient audio are mapped in the same class and are far from the

Fig 6. Waveforms of the cough chunks under three data augmentation methods.

https://doi.org/10.1371/journal.pone.0275479.g006
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hyperplane, the patient is more likely to belong to this class. Furthermore, the mean value of

all cough chunks (i.e., the center value in Fig 1) can comprehensively represent all cough

chunks.

Then, we utilize the mean value of the features of all cough chunks in one patient audio as

the patient’s disease feature. Formally, the feature extracted from the ith cough chunk of the

patient k can be defined as xki ¼ xð1Þki ; x
ð2Þ

ki ; � � � ; x
ð20Þ

ki

� �T
, which is a 20-dimensional feature vec-

tor, where xðtÞki is the tth feature of the xki. From the above, we set the feature of the patient k as

follows:

xk ¼
1

n

Xn

i¼1

xð1Þki ;
Xn

i¼1

xð2Þki ; � � � ;
Xn

i¼1

xð20Þ

ki

 !T

Classification. Support vector machine (SVM) [29] is a powerful data mining technique

for classifying data. SVM classifies data by constructing a linear or non-linear separating

hyperplane from the training set. SVM separates the two classes while maximizing the margin

between this hyperplane and the two classes. When the data is linearly in-separated in low

dimensions, it needs to transform the original data into a higher-dimensional space. SVM can

use kernel function, a mathematical trick that avoids the overhead of data computation in high

dimensions. Moreover, there are three frequently used kernel functions: linear kernel function,

Gaussian kernel function, and radial basis function.

In general, training sets may still not be linearly separable in feature space. SVM adopts a

relaxation variable to solve this problem. Mathematically, the optimization problem is formu-

lated as:

min
w;b;x

1

2
kwk

2
þ C

XN

i¼1

xi

s:t: yiðw � xiÞ þ b⩾ 1 � xi; i ¼ 1; 2; � � � ;N

xi ⩾ 0; i ¼ 1; 2; � � � ;N

where w and b denote normal vector and intercept of the separating hyperplane, respectively, z

denotes relaxation variable, C denotes regularization parameter, and N denotes the number of

samples. Consider relaxation variables as costs, which can be adjusted by regularization

parameter C. The higher the value of C, the greater the penalty for misclassification; otherwise,

the smaller the penalty.

We expect to make the classification margin as large as possible and the number of misclas-

sified samples as little as possible. We can calculate an optimal solution w� and b� for the objec-

tive function, and obtain the separating hyperplane: w� � x + b� = 0. And the classification

decision function can be represented by f(x) = sign(w� � x + b�).
Long Short-Term Memory Network (LSTM) [32] is a recurrent neural network variant that

can effectively process sequence information. As shown in Fig 7, we adopt this LSTM sequence

model to classify the diseases. The core of LSTM is to adopt the gate structure, including input

gate, output gate and forget gate (i.e., retain the important information and discard the unim-

portant information), so it can effectively solve the problems of the gradient disappearance

and the long-term dependence.

Given an input sequence X = {x1, x2, � � �, xN}, where xk is a 20-dimensional feature vector,

k = 1,2, � � �, N. The batch size refers to the number of samples input during training. The time

step refers to the number of cycles of the LSTM cell. The LSTM utilizes the previous and
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current information based on the gate structure to generate output vectors. We include a fully-

connected layer after the LSTM, which reduces the network’s output to 2D. Moreover, we uti-

lize a softmax function to constrain the outputs to sum to 1. Each output corresponds to the

confidence of bronchitis and pneumonia.

Results

Implementation details

Datasets. In the experiments, we adopt six datasets for performance comparison. Table 3

shows the statistics of the datasets. After time shifting, pitch shifting, and noise adding data

augmentation, the AR, BR, CR, DR and ER datasets are obtained. The five datasets all include

the cough chunks from the RAW dataset. In addition, AR, BR and CR datasets include cough

chunks after time shifting, pitch shifting, and noise adding, respectively. DR dataset includes

cough chunks from BR and CR datasets. ER dataset includes cough chunks from AR and DR

datasets. Each dataset is divided into two non-overlapping groups: training and test data.

Metrics. We compare the classification performance on the accuracy, precision, recall,

F1-score, and AUC. Accuracy is defined as the ratio of the number of samples correctly classi-

fied by the classifier to the total number of samples for the given test data. Precision, also called

positive predictive value, indicates how many of those predicted as bronchitis/pneumonia

Fig 7. Structure of the LSTM classifier.

https://doi.org/10.1371/journal.pone.0275479.g007
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patients by the algorithm are bronchitis/pneumonia patients. Recall indicates how many of

those who are bronchitis/pneumonia patients are predicted by the algorithm. Sometimes, pre-

cision and recall are very different, so a comprehensive evaluation metric, a harmonic average

of precision and recall, called F1-score, is needed. The higher the F1-score, the better the classi-

fication performance. Moreover, the AUC indicates which model has a higher classified ability.

Experimented setting. We take XGBoost [30], RF [31], RNN [33] and GRU [34] as com-

parison methods. The LSTM, RNN, and GRU networks use the same parameter settings: 32

hidden layers, the learning rate is 0.001, the batch size is 32, the time step is 50, and the Adam

optimizer is used to optimize the cross-entropy cost function.

Accuracy, precision, recall and F1-score test of the predictive model

We first perform experiments on the RAW dataset. As shown in Table 4, we have counted the

results of 45 random test experiments and obtained the mean and standard deviation of classi-

fication accuracy. In addition to the SVM and LSTM, we compared XGBoost, RF, RNN and

GRU to classify. Comparing these classifiers with our model, we see that the classification

accuracy is the highest when adopting the SVM classifier, which is 86.04% and the standard

deviation is 4.7%. The precision of bronchitis and pneumonia are 93.75% and 87.5%, and recall

of them are 88.24% and 93.33%, F1-score are 90.91% and 90.32%. It shows that SVM performs

well on disease classification.

As the number of support vectors is small, a tiny scale of training data can train SVM. How-

ever, other classifiers have a relatively higher number of parameters and need more samples to

update the parameters. Because only support vectors determine the separating hyperplane of

the SVM, other samples do not. Moving support vectors will affect the result. However, the

Table 3. Statistics of the six datasets.

RAW time shifting pitch shifting noise adding #chunks

RAW
p

× × × 410

AR
p p

× × 820

BR
p

×
p

× 820

CR
p

× ×
p

820

DR
p

×
p p

1230

ER
p p p p

1,640

https://doi.org/10.1371/journal.pone.0275479.t003

Table 4. Accuracy, precision, recall and F1-score comparison between SVM and contrast models on the RAW dataset.

Accuracy(%) Class Precision(%) Recall(%) F1-score(%)

SVM 86.04±4.7 B 93.75 88.24 90.91

P 87.5 93.33 90.32

XGBoost 76.25±5.26 B 82.35 82.35 82.35

P 80 80 80

RF 73.54±4.85 B 75 88.24 81.08

P 83.33 66.67 74.07

LSTM 73.75±3.88 B 75 88.24 81.08

P 83.33 66.67 74.07

RNN 66.67±5.98 B 72.22 76.47 74.07

P 71.43 66.67 68.97

GRU 71.46±4.4 B 73.68 82.35 77.77

P 76.92 66.67 71.43

https://doi.org/10.1371/journal.pone.0275479.t004
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result will not be influenced if other samples move beyond the margin boundary. Next, to

solve the problem of the small scale of the dataset, we made additional data augmentation.

Data augmentation

We have adopted data augmentation to increase the number of data to classify bronchitis and

pneumonia patients in children. To observe the effect of data augmentation on disease classifi-

cation, we compared the classification accuracy of six classifiers on six datasets. As shown in

Fig 8, in all datasets, the accuracy of SVM is higher than the XGBoost and RF. However, after

adding samples, the accuracy of SVM declines since the support vectors are replaced, changing

the separating hyperplane.

Besides, compared with the RAW dataset, the accuracy of LSTM is improved on the aug-

mented datasets. The classification accuracy of LSTM on the BR dataset is close to 90%, reach-

ing the best result. Moreover, the classification performance of GRU and LSTM is better than

that of RNN. This is because data augmentation increases the number of samples and expands

the scale of the dataset. Moreover, GRU and LSTM use gate structures and selectively retain or

discard the information.

Different hyper-parameters

We mainly discuss how different hyper-parameters will impact the accuracy of the CFCS on

the RAW dataset. As shown in Fig 9, the value of the regularization parameter C does not affect

the result when using a linear kernel. While using the RBF, the accuracy reaches more than

90% when the gamma parameter is 10−6 and the regularization parameter C is 104.

This result indicates that bronchitis and pneumonia have similar characteristics, are diffi-

cult to classify in linear feature space, and are easier to classify in high-dimensional feature

space. Different gamma parameters can affect the classification accuracy when using RBF,

with fixed regularization parameter C. When the gamma parameter is 10−5, the Gaussian dis-

tribution in the new feature space is long and thin, and the classification accuracy of unlabeled

samples is terrible. The model classification performance is best when the gamma parameter is

appropriately reduced to 10−6. When we continue to reduce the gamma parameter to 10−7, the

Gaussian distribution will be too smooth, affecting the classification performance.

Fig 8. Accuracy comparison of LSTM and contrast models using different datasets.

https://doi.org/10.1371/journal.pone.0275479.g008
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ROC curves

To further quantify the classification performance of SVM and LSTM under different thresh-

olds, we scan the threshold values of the classifiers and draw the ROC curves on the five aug-

mented datasets. As shown in Fig 10, for both SVM and LSTM classifiers, the AUC on the BR

dataset is the highest, 0.92 and 0.93, respectively. The AUC on DR dataset is lower than that on

the BR dataset, possibly because of the addition of noise data, which affects classification per-

formance. In addition, it may be that some vital information will be lost after time-shifting, so

the AUC on ER dataset is not good as that on the DR dataset.

MFCC feature representation

Fig 11 shows the MFCC representation: (A) and (B) show the MFCC representations of the

two cough chunks in one patient audio, and (C) shows the aggregated feature matrix of the

Fig 9. Accuracy of the SVM model using different hyper-parameters.

https://doi.org/10.1371/journal.pone.0275479.g009

Fig 10. ROC curves comparison of SVM and LSTM results under different augmentation datasets. (A) SVM; (B) LSTM.

https://doi.org/10.1371/journal.pone.0275479.g010
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patient audio. The experimental results show that it is effective to classify bronchitis and pneu-

monia using the aggregated results, which represent the features of the patient audios.

Confusion matrices

Fig 12 is a quantitative comparison of the proposed framework under SVM and LSTM classifi-

ers using the RAW and BR datasets. The RAW test set includes 17 bronchitis and 15 pneumo-

nia patients. From Fig 12A and 12B, both SVM and LSTM misclassify two bronchitis patients

as pneumonia. SVM misclassified only one case when classifying pneumonia, while LSTM

Fig 11. MFCC features on the heat map. (A) and (B) show the MFCC representations of the two cough chunks in one patient audio, and (C) shows the aggregated feature

matrix of the patient audio. (A) Chunk a; (B) Chunk b; (C) Aggregated features A&B.

https://doi.org/10.1371/journal.pone.0275479.g011

Fig 12. Confusion matrices of the SVM and LSTM classification results on the RAW and BR datasets. (A) Results on

the RAW dataset: SVM; (B) Results on the RAW dataset: LSTM; (C) Results on the BR dataset: SVM; (D) Results on the

BR dataset: LSTM.

https://doi.org/10.1371/journal.pone.0275479.g012
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misclassified 5 cases. The SVM classifier can achieve a better classification effect in a small

dataset. As shown in Fig 12C and 12D, the number of LSTM misclassification in the BR dataset

is less than that of SVM misclassification. Data augmentation can increase the number of sam-

ples in the dataset, improving the LSTM classifier’s classification effect.

Discussion

In this study, the classification accuracy of SVM on the RAW dataset is 86.04% and the stan-

dard deviation is 4.7%. The precision of bronchitis and pneumonia are 93.75% and 87.5%, and

recall of bronchitis and pneumonia are 88.24% and 93.33%, which verify CFCS is effective and

performs well in the classification of bronchitis and pneumonia patients in children. This

result suggests that it is feasible to take the feature of aggregation in each cough chunk as the

feature of the diseases. The CFCS can overcome the problem of the influence of useless cough

chunks and avoid doctors spending a significant amount of time on labeling. Furthermore,

our CFCS can be used as pre-triage to save patients time and improve diagnostic efficiency.

Many researches use SVM, RF, XGBoost and LSTM to classify pneumonia by analyzing

cough sounds. Feng K et al. [35] extract features from the audio signal and then use machine

learning and deep learning models, like SVM, KNN, and RNN, to diagnose COVID-19 from

audio recordings. Rahman D et al. [36] trying several modelling techniques to classify

COVID-19 using cough sounds. Compared with XGBoost, SVM can achieve the best result

when combined with NMF-Spectrogram feature and undersampling method. Vrindavanam J

et al. [37] demonstrate three machine learning classification models SVM, RF and Logistic

Regression to identify COVID-19 patients by analyzing cough audio samples. Pahar M et al.

[38] use seven machine learning classifiers including SVM and LSTM to discriminate

COVID-19 positive coughs from both COVID-19 negative and healthy coughs recorded on a

smartphone.

The above paper does not compare LSTM with deep neural networks that process sequence

data. Like LSTM, RNN (Recurrent Neural Network) and GRU (Gate Recurrent Unit) are neu-

ral networks used to process sequence data. GRU structure is similar to LSTM. As the hidden

unit of RNN, GRU has fewer parameters than LSTM and is more difficult to overfit [39].

In order to test the effect of SVM machine learning classification, we also used RF and

XGBoost as comparison. In order to test the effect of LSTM deep learning classification, we

take GRU and RNN as comparison methods to conduct experiments.

Data augmentation aims to improve the classification effect of the LSTM method. LSTM is

a deep learning method that relies on a large-scale dataset. Our experimental results show that

the classification accuracy of the LSTM method is indeed improved after data augmentation.

However, we can also see that data augmentation has little effect on the improvement of the

SVM method. This is because the SVM is not deep learning but a method based on statistical

learning. Therefore, we conclude that data augmentation can improve the LSTM method

based on deep learning, not the SVM method based on statistical learning.

Conclusion

In this paper, we propose a novel framework named CFCS for classifying pediatric patients

with bronchitis and pneumonia. The proposed framework not only addresses the influence of

useless cough chunks but also acquires strong capability in recognizing patient audios. The

results of extensive experiments demonstrate the proposed method’s high accuracy. We will

improve CFCS and apply it to more application scenarios in the upcoming work.
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