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Abstract

Background: Drug-induced liver injury (DILI) is a well-recognized adverse event of anti tuberculosis drugs (ATD)
possibly associated with genetic variations. The objective of this study was to perform genome-wide association study
(GWAS) to identify genetic variants associated with the risk for ATD induced liver toxicity in Ethiopian patients.

Result: Treatment-naïve newly diagnosed tuberculosis patients (n = 646) were enrolled prospectively and treated
with rifampicin based short course anti-tuberculosis therapy. Whole genome genotyping was done using Illumina
Omni Express Exome Bead Chip genotyping array with 951,117 single nucleotide polymorphisms (SNPs) on 48 DILI
cases and 354 ATD tolerants. Replication study was carried out for 50 SNPs with the lowest P-values (top SNPs) using
an independent cohort consisting of 27 DILI cases and 217 ATD tolerants. In the combined analysis, the top SNP
identified was rs10946737 (P = 4.4 × 10−6, OR = 3.4, 95 % confidence interval = 2.2–5.3) in the intron of FAM65B in
chromosome 6. In addition, we identified a cluster of SNPs with suggestive genome-wide significance in the intron of
ATP/GTP binding protein-like 4 (AGBL4).

Conclusion: We identified genetic variants that are potentially associated with ATD induced liver toxicity. Further
studies with larger sample sizes are essential to confirm the findings.

Keywords: Anti-tuberculosis, Drug induced liver injury, Ethiopian, FAM65B, C6ORF32, GWAS, AGBL4, Hepatotoxicity,
Africa, Tuberculosis

Background
Liver toxicity associated with drug treatment, known as
drug-induced liver injury (DILI) is implicated in most
cases of acute liver failure [1]. It can limit patient access
to drugs that might otherwise be beneficial [2]. DILI is a
major adverse event that leads to termination of clinical

drug development programs and regulatory measures on
approved drugs [3]. The largest population-based study
reported on the incidence of DILI was from Iceland with
a crude incidence rate of 19.1 cases per 100,000 inhabitants
per year [4]. Although the causes of DILI can be various,
studies have shown that genetic variations in genes in-
volved in drug disposition, cellular stress, and immune re-
sponse may contribute to DILI susceptibility [5, 6].
Anti-tuberculosis drugs (ATD) are among the most

reported anti-microbial drugs incriminated to be potential
causes of DILI [7]. ATD induced liver injury (ATDILI) is
one of the most prevalent hepatotoxicities reported in
many countries [8]. A previous study in Ethiopian tuber-
culosis (TB) patients showed 17.3 % incidence of ATDILI
[9]. Incidence of treatment induced liver toxicity varies
between populations. Higher incidence of concomitant
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ATD and antiretroviral (ARV) drugs induced liver toxicity
in Ethiopian (30 %) compared to Tanzanian (10 %) TB
and human immunodeficiency virus (HIV) coinfected
patients has been reported [10, 11] Among the first line
ATD, isoniazid, rifampicin, and pyrazinamide are known
to cause DILI [8]. Genetic variations contribute to inter-
individual ATDIL susceptibility [12]. Polymorphisms in
drug metabolizing genes such as N-acetyltransferase 2
(NAT2), cytochrome P450 family 2 subfamily E polypep-
tide 1 (CYP2E1), glutathione S-transferase mu 1 (GSTM1),
uridinediphosphate-glucuronosyltransferase1 family poly-
peptide A1 (UGT1A1) [8, 13], human leukocyte antigen
(HLA) region [5, 8] and superoxide dismutase-2 mito-
chondrial (SOD2) gene [8, 14, 15] have been suggested to
play roles in ATDILI.
Sub-Saharan Africa is disproportionally affected by

high burden of TB and HIV. According to the latest
WHO report, Ethiopia is listed among the top ten high-
TB burden countries globally and one of the high multi-
drug resistant TB (MDR-TB) burden countries [16].
DILI is one of the important adverse events of anti-TB
drugs, particularly during the intensive phase of TB
therapy [17]. Treatment has to be discontinued in those
patients who developed severe ATD induced liver toxicity,
and treatment interruption may increase the risk for
emergence of multidrug-resistant TB. Increased risk of
developing MDR-TB in Ethiopian TB patients who
encountered adverse events during the first course of TB
treatment is reported recently [18]. Thus identification of
genetic markers that predispose patients for ATD induced
liver toxicity using GWAS in high TB burden sub-Saharan
African countries, such as Ethiopia is imperative.
Using candidate gene approach, we previously identi-

fied genetic variation in NAT2, CYP2B6, and ABCB1
genes as risk factors for ATD and antiretroviral (ARV)
drugs co-treatment induced liver toxicity in TB-HIV
co-infected patients [10, 11, 19]. Although candidate gene
studies contribute to the discovery of genetic risk variants
associated with ATDILI, the discovered genetic factors
may account only for a proportion of the genetic varia-
tions, and some of the studies led to inconsistent results
[20–22]. Therefore, we aimed to identify additional
genetic variants through genome-wide association study
(GWAS) for ATDILI in Ethiopian TB patients.

Results
A total of 646 TB patients participated in this study and
75 (11.6 %) of them met the criteria for DILI diagnosis
while on ATD treatment. Whole genome genotyping
was done using genomic DNA from 48 DILI cases and
354 ATD tolerants. Replication study for 50 SNPs with
lowest P-values (top SNPs) was done using genomic
DNA from an independent cohort consisting of 27 DILI
cases and 217ATD tolerants. The difference between the

GWAS and the replication cohorts was based on time of
first presentation. The first groups of patients were used
for the GWAS, and the subsequent group of patients
used for the replication study. The study area, TB diag-
nostic methods, case definitions, inclusion and exclusion
criteria, and ATD treatment regimens used were all the
same. The demographics and clinical characteristics of
the study participants are presented in Table 1. There
were statistically significant differences (P < 0.05) in HIV
status and liver function test values between cases and
treatment tolerants in both the GWAS and replication
cohorts. There were statistically significant differences in
sex, CD4 count and viral load between cases and treat-
ment tolerants in the GWAS cohort but not in the repli-
cation study, which may be attributed to the smaller
sample size of the replication cohort. More than one-
third of the cases in our study had cholestatic pattern of
DILI, and the rest had hepatocellular or mixed pattern.
The Quantile-quantile (QQ) plot for the observed

versus expected P-values, and Manhattan plot for the
regression analysis are shown in Figs. 1 and 2, respec-
tively. The top SNP in the GWAS after adjustment for
sex, HIV status, CD4 count and HIV viral load was
rs10946739 (P = 4.1 × 10−6, odds ratio (OR) = 3.4, 95 %
CI = 2.0–5.6) located in the intron region of family with
sequence similarity 65 member B (FAM65B), which is
also named as chromosome 6 open reading frame 32
(C6ORF32) (Additional file 1: Table S1). The top SNP in
the replication study after adjustment for covariates was
rs319952 (P = 1.0 × 10−2, OR = 2.3, 95 % CI = 1.2–4.4)
located in the intron of ATP/GTP binding protein-like 4
(AGBL4) in chromosome 1 (Additional file 1: Table S2).
In the combined analysis, the top SNP after adjustment
for covariates was rs10946737 (P = 4.4 × 10−6, OR = 3.4,
95 % CI = 2.2–5.3) located in the intron region of FAM65B
(Table 2). In addition, four of the top SNPs (rs320035,
rs393994, rs319952 and rs320003) were clustered in the
intron of AGBL4.
For the sub-group analysis based on the pattern of liver

injury, the top SNPs for cholestatic, hepatocellular and
mixed patterns of DILI were rs10182566 (P = 4.1 × 10−6,
OR = 6.0, 95 % CI = 2.8–12.8) in 3′-untranslated region
of chromosome 2 open reading frame 71 (C2orf71),
rs1990046 (P = 3.7 × 10−6, OR = 28.4, 95 % CI = 6.9–117.3)
in the intron of semaphorin3A (SEMA3A) in chromosome
7, and rs12603186 (P = 8.1 × 10−6, OR = 7.2, 95 % CI =
3.0–17.2) in shisa family member 6 (SHISA6) in chromo-
some 17, respectively (Additional file 1: Table S3).

Discussion
In this study, we carried out GWAS and replication
analysis on a total of 646 patients treated with ATD
to identify novel genetic variants associated with DILI.
Previously we investigated pharmacogenetic markers for
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concomitant ARV and ATD co-treatment induced DILI in
TB-HIV co-infected patients (n = 353) using candidate
gene approach [10]. As a continuation, we conducted a
large prospective cohort study in 1060 patients, where we
evaluated the patterns of ATD and/or ARV drugs induced
liver toxicities [23]. In the present study, we investigated

for possible genetic markers for ATD induced liver
toxicity using genome wide association approach in 646
selected study participants from the recent large prospec-
tive cohort study by considering DILI cases developed
during anti-TB treatment only. Identifying the risk vari-
ants could help developing clinical tests to prevent DILI,

Fig. 1 Quantile-quantile (QQ) plot for the observed versus expected P-values in trend test (λGC = 1.00007)

Table 1 Demographics and clinical variables of the study participants

Variables GWAS Replication study

DILI Cases Treatment tolerants P DILI cases Treatment tolerants P

No. of patients 48 354 - 27 217 -

Sex (M, F) 19, 29 203, 151 0.02 12, 15 85, 132 0.60

Age (yr), M (SD) 35.6 (10.4) 35.7 (11.5) 0.93 32.0 (7.4) 33.4 (10.3) 0.48

BMI (kg/m2), M (SD) 19.0 (3.2) 19.3 (3.0) 0.55 17.5 (3.0) 18.9 (3.0) 0.02

HIV positive, N (%) 44 (91.7) 225 (63.6) <0.01 25 (92.6) 158 (72.8) 0.03

CD4 count, M (SD) 96.6 (78.5) 129.3 (120.8) 0.03 116.8 (98.3) 138.2 (121.0) 0.33

Viral load, log M (SD) 5.3 (0.9) 4.9 (0.9) 0.03 5.0 (0.8) 4.9 (0.9) 0.54

ALT (U/L), M (SD) 69.7 (37.2) 30.4 (14.4) <0.01 67.2 (42.1) 30.7 (14.1) <0.01

AST (U/L), M (SD) 101.2 (52.7) 40.5 (16.2) <0.01 103.6 (71.9) 38.7 (13.6) <0.01

ALP (U/L), M (SD) 187.7 (72.2) 121.1 (51.7) <0.01 225.8 (139.9) 114.0 (63.1) <0.01

T Bil (mg/dL), M (SD) 1.2 (1.0) 0.6 (0.4) <0.01 1.1 (0.7) 0.5 (0.3) <0.01

DILI pattern, N (%)

Cholestatic 19 (39.6) 15 (55.6)

Hepatocellular 10 (20.8) 5 (18.5)

Mixed 19 (39.6) 7 (25.9)

ALP Alkaline phosphatase, ALT Alanine aminotransferase, AST aspartate aminotransferase, BMI Body mass index, DILI Drug induced liver injury, GWAS Genome wide
association study, HIV Human immunodeficiency virus, M (SD) Mean (standard deviation), N Number, P - P values, T Bil Total bilirubin
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Fig. 2 −Log10P values of logistic regression across chromosomes in the GWAS

Table 2 Top SNPs in the combined analysis of the GWAS and the replication study

SNP Chr (loci) Alleles (RA) Study Cases/controls MAF P_min P_adj OR (95 % CI) Nearest gene

rs10946737 6 (24967240) A/G (A) GWAS 48/354 0.10 2.0 × 10−5 9.7 × 10−6 4.3 (2.5–7.4) FAM65B

Rep 27/216 0.10 3.8 × 10−2 8.6 × 10−2 2.2 (0.9–5.4)

Comb 75/570 0.10 6.3 × 10−7 4.4 × 10−6 3.4 (2.2–5.3)

rs320035 1 (49089197) A/G (G) GWAS 48/354 0.48 3.5 × 10−6 1.3 × 10−4 2.4 (1.5–3.8) AGBL4

Rep 27/216 0.50 4.2 × 10−3 1.2 × 10−2 2.2 (1.9–3.9)

Comb 75/570 0.49 8.2 × 10−7 5.1 × 10−6 2.3 (1.6–3.3)

rs10946739 6 (24993127) A/G (A) GWAS 48/354 0.19 9.6 × 10−6 4.1 × 10−6 3.4 (2.0–5.6) FAM65B

Rep 25/209 0.18 1.1 × 10−1 1.8 × 10−1 1.7 (0.8–3.6)

Comb 73/563 0.19 4.7 × 10−6 5.1 × 10−6 2.7 (1.8–4.1)

rs393994 1 (49108745) T/C (C) GWAS 48/354 0.48 6.1 × 10−6 1.7 × 10−4 2.4 (1.5–3.7) AGBL4

Rep 27/216 0.50 7.9 × 10−3 1.4 × 10−2 2.1 (1.2–4.0)

Comb 75/570 0.49 1.9 × 10−6 7.6 × 10−6 2.3 (1.6–3.3)

rs320003 1 (49126778) A/G (A) GWAS 48/354 0.48 1.7 × 10−5 2.3 × 10−4 2.3 (1.5–3.7) AGBL4

Rep 23/208 0.50 1.9 × 10−2 1.2 × 10−2 2.3 (1.2–4.5)

Comb 71/562 0.49 4.6 × 10−6 8.3 × 10−6 2.3 (1.6–3.4)

rs319952 1 (49113622) A/G (G) GWAS 48/354 0.48 1.1 × 10−5 2.8 × 10−4 2.3 (1.5–3.6) AGBL4

Rep 26/216 0.50 1.2 × 10−2 1.0 × 10−2 2.3 (1.2–4.4)

Comb 74/570 0.49 2.5 × 10−6 8.5 × 10−6 2.3 (1.6–3.3)

rs7958375 1 (2 111640017) A/G (A) GWAS 48/354 0.02 8.8 × 10−5 1.2 × 10−5 11.3 (3.8–33.5) CUX2

Rep 27/216 0.02 1.0 × 10+0 7.4 × 10−1 1.5 (0.2–13.1)

Comb 75/570 0.02 1.7 × 10−4 4.6 × 10−5 7.6 (2.9–20.0)

Chr (loci) Chromosome, and chromosomal loci based on NCBI built 37, CI Confidence Interval, Comb Combined analysis using inverse variance method, GWAS
Genome wide association study, MAF Minor allele frequency, OR Odds ratio, P_adj Logistic P-value after adjustment for sex, HIV status, CD4 count and HIV viral
load; P_min Minimum P-value among allelic, dominant and recessive models of Fisher’s exact test, and P-value of inverse variance combined analysis; RA Risk
allele, Rep Replication study, SNP Single nucleotide polymorphism
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and to match the patients with alternative, effective and
safe medications. To our knowledge, this is the first
GWAS for ATDILI in an African population.
The top SNP in the GWAS analysis after adjustment

for covariates was in the intron of FAM65B. This gene
encodes a cytoplasmic protein that plays a role in myo-
blast differentiation, and it is transiently up-regulated
during early stage of the process [24]. Alternative splicing
of this gene results in multiple transcript variants. Inhi-
bition of expression of this gene in myoblasts causes
marked decrease in myogenin expression with consequent
lack of myoblast fusion; and its over-expression induces
formations of cellular protrusions [25]. It is suggested that
FAM65B may possibly play a role in myoblast migration,
and mutations could affect muscle development and
human muscle diseases; however, its exact role is still
largely unknown [25]. According to the human Protein
Atlas data, FAM65B is also a mitochondrial protein
expressed in the liver hepatocytes, gall bladder and bile
duct [26]. Recent studies indicate that FAM65B plays a
role in cancer and liver inflammation [27]. Further
analysis is necessary to explain functional importance of
FAM65B gene in ATDILI.
Strong association with ATDILI was identified by a clus-

ter of four SNPs with P-values suggestive of genome-wide
association significance in the intron of AGBL4 (CCP6).
This gene encodes an enzyme that catalyzes deglutamy-
lation of polyglutamate side chains generated by post-
translational modification of target proteins like tubulins
in microtubules [28]. Further analysis is required to explain
the role of AGBL4 gene and its contribution to individual
differences for susceptibility to ATDILI. The identified
genetic risk variants in our study if replicated in larger
sample sizes and in other populations, they may serve as
genetic biomarkers for ATDILI.
It is increasingly evident that genetic variants can deter-

mine an individual’s susceptibility to develop a particular
pattern of liver injury [29]. Therefore, we performed
sub-group GWAS analysis based on the pattern of DILI.
The SNP (rs1990046) with the smallest P-value after
adjustment for covariates (P = 3.7 × 10−6) was identified
in the hepatocellular type of DILI. This SNP is located
in the intron region of SEMA3A, a member of the sema-
phorin family. This gene encodes a protein with an
immunoglobulin-like domain and sema domain, which is
vital for normal neuronal pattern development [30], and
also plays a role in the pathogenesis of allergic conditions
such as allergic rhinitis [31]. However, further studies are
required to elucidate the role of SEMA3A gene in hepato-
cellular pattern of ATDILI.
In our previous candidate gene study [10], genetic

variants in genes involved in drug metabolism of ATD
like NAT2 were associated with DILI. Variants in other
drug metabolizing genes [8, 13], HLA region [5, 8], and

in genes related to oxidative stress [32] and autoimmune
diseases [2] were also reported to have association with
susceptibility to ATDILI. In our GWAS, we did not find
genetic variants that passed genome-wide significance in
these genes, which may be related to the limited sample
sizes used for the study. But we found possible association
SNPs rs12969241 (P = 1.1 × 10−5) located in the intron
region of protein tyrosine phosphatase non-receptor type
2 (PTPN2), rs2842997 (P = 5.1 × 10−3) in the vicinity of
SOD2, and rs12543818 (P = 1.9 × 10−3) near NAT2 for
genes related to autoimmune diseases, oxidative stress and
pharmacokinetics, respectively (Additional file 1: Table S4).
The SNP rs12969241 in the PTPN2 gene was also among
the top in the GWAS of cholestatic pattern of DILI
(P = 6.8 × 10−6) (Additional file 1: Table S3). The protein
encoded by the PTPN2 gene is an intracellular tyrosine-
specific phosphatase, which is expressed in epithelial
cells, fibroblasts or endothelial cells [33]. This protein was
shown to play an important role in the protection of
epithelial barrier function during inflammation by acting as
negative regulator of pro-inflammatory cytokine interferon-
γ [34]. This finding may indicate the implication of an
immune related mechanism in ATDILI. The product of
SOD2 gene, which was identified for genes related to oxi-
dative stress, detoxifies highly reactive superoxide radicals
generated by mitochondrial respiration [35]. This finding is
in line with a previous study [15], which reported common
polymorphisms in SOD2 as predictor of ATDILI. We
speculate that ATDILI may be related to the combined
effect of the new variants identified, pharmacokinetic, oxi-
dative stress, and immune-related gene variants.
Sub-Saharan African population is the most geneti-

cally heterogeneous population globally, characterized
by extensive population substructure, and less linkage
disequilibrium (LD) among loci compared to non-African
populations.[36]. Although GWAS in populations of
African ancestry is challenging due to less degree of LD;
the high level of genetic diversity and weak LD with neigh-
boring SNPs in Africans ancestry is considered as a
powerful tool for fine mapping causal variants that under-
lie common diseases or complex traits found globally
[37]. The advantage of conducting GWAS in African an-
cestry populations in the context of addressing existing
and emerging global health conditions is reported recently
[37]. The present study exploring ATDILI risk variants
through GWAS in Ethiopia, the second most densely
populated country in Africa, will not only provide national
genomic information for personalized medicine but also
may contribute to the advancement of pharmacogenomics
in Africa.
There were some limitations for this study. First, as

the DILI cases are rare and were difficult to collect (four
years were required to identify 75 ATDILI cases), this
resulted in small number of case samples particularly for
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sub-group analysis based on the pattern of DILI. Second,
populations of African ancestry, as in case of our study
population, have greater genetic diversity and lower levels
of linkage disequilibrium (LD) among chromosomal loci
[38]. The low levels of LD are disadvantageous when
screening the genome for disease associations using the
current SNP-genotyping approaches that essentially rely
on the principle of LD mapping. Therefore, additional
studies with higher density SNP array or next generation
sequencing may be required to discover susceptibility
variants in such population. Ethiopian population display
distinct pharmacogenetic variations compared to other
black African population [39–42], and thus results from
this study may not be directly extrapolated to other
sub-Saharan African population. However, our exploratory
study using homogenous well-characterized clinical sam-
ples for the discovery and replication of new DILI bio-
markers, represents an important first step in applying
GWAS to identify genetic variants for ATDILI. The third
limitation is that the current protocol of TB treatment
consists of combinations of drugs, thus we cannot affirm
that the risk variants identified corresponds only to a
single drug or multiple drugs in the treatment regimen.

Conclusion
Using genome-wide wide associations study, we identi-
fied potential genetic variants associated with ATDILI.
The results provide evidence that in addition to genetic
variants identified by candidate gene studies, other vari-
ants also influence the risk of developing DILI by ATD.
Further replication studies are essential to confirm the
findings.

Methods
Study participants and treatment
The participants for the present GWAS were selected
from a recent prospective cohort study where patterns
of antiretroviral therapy (ART) and/or anti-TB treatment
induced liver toxicity was investigated [23]. In brief
newly diagnosed treatment naïve patients enrolled into
one of the following study arms were considered for the
present study:

1) TB infected patients (with out HIV co-infection)
treated with rifampicin based ATD only.

2) TB-HIV co-infected patients with baseline CD4 count
>200 cells/mm3 (not eligible for ART, following the
national and WHO treatment guideline valid during
the study period) and treated with rifampicin based
ATD only.

3) TB-HIV co-infected patients with baseline CD4 count
<200 cells/mm3 and (eligible for ART co-treatment)
and rifampicin based ATD was initiated first followed
by efavirenz based ART (delayed up to 8 weeks after

starting ATD). Patients who developed DILI while on
ATD treatment only (before starting ARV therapy)
were included in the current GWAS, but patients
who developed DILI after initiating ARV co-
treatments were excluded from this study.

Patients were recruited from three health institutions:
Kazanchis and Beletshachew health centers and Black
Lion specialized referral and teaching university hospital
in Addis Ababa, Ethiopia [23]. Diagnosis of TB was based
on sputum smear, fine needle aspirate, clinical and radio-
logical evidences. The eligibility criteria were TB con-
firmed men and non-pregnant women, age ≥18 years and
receiving no other known hepatotoxic drugs concurrently.
Patients who had abnormal liver enzyme biochemistry at
baseline, positive serological test for either hepatitis B
virus surface antigen or anti-hepatitis C virus antibody
or known liver injury prior to starting treatment were ex-
cluded.. Written informed consent was obtained from all
the study participants prior to study enrolment. The study
protocol was approved by the Institutional Review Board
of College of Health Sciences, Addis Ababa University,
Ethiopia; Ethical Review Board of Karolinska Institutet,
Sweden; and Ethical Review Committee of RIKEN, Japan.
Drug treatment was initiated according to World Health

Organization (WHO) and Ethiopian National TB Treat-
ment Guidelines as described previously [23]. All patients
received short-course ATD treatment consisting of rifam-
picin (150 mg), isoniazid (75 mg), pyrazinamide (400 mg)
and ethambutol (275 mg) for the first two months in fixed
dose combinations given daily under direct observed ther-
apy during the intensive phase, followed by rifampicin
(150 mg) and isoniazid (75 mg) for the next four
months in fixed dose combinations given daily. The
treatment dosage was based on the weight of the patient:
20–29 kg (1½ tablets), 30–37 kg (2 tablets), 38–54 kg
(3 tablets) and ≥55 kg (4 tablets). Liver function tests
were carried out at baseline and on the 1st, 2nd, 4th, 8th,
12th and 24th weeks after initiation of treatment.

Case definitions
For DILI case definitions, the criteria set by the Inter-
national DILI expert working group were used [43]. The
upper limit of normal (ULN) for liver biochemical para-
meters used for the study population were alanine amino-
transferase (ALT 33 U/L, male; 29 U/L, female), aspartate
aminotransferase (AST, 41 U/L), alkaline phosphatase
(ALP, 128 U/L), and 1.0 mg/dL for total bilirubin [23].
All cases recruited met at least one of the following
criteria: − (1) ALT ≥5xULN, (2) ALP ≥2xULN, or (3) ALT
≥3xULN along with total bilirubin ≥2xULN. All cases had
a minimum score of three (‘possible’) in Roussel Uclaf
Causality Assessment Method (RUCAM) scoring system
for DILI. The pattern of liver injury was defined using
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R-values where, R = (ALT/ULN)/(ALP/ULN). Cases were
categorized as having hepatocellular (R ≥ 5), cholestatic
(R ≤ 2), or mixed (2 < R < 5) pattern of DILI [43]. Treat-
ment tolerants for the study were defined as individuals
who were also on short course ATD treatment but did not
fulfill the case definitions for DILI, and had not presented
clinical signs and symptoms consistent with DILI in the
follow up period [23].

Whole genome genotyping and quality control
Genomic DNA was isolated from whole blood samples
using QIAamp DNA Maxi Kit (QIAGEN GmbH, Hilden,
Germany). Genotyping was conducted in RIKEN Center
for Integrative Medical Sciences, Yokohama, Japan. Whole
genome genotyping was done using Illumina Omni
Express Exome Bead Chip genotyping array (Illumina Inc.,
San Diego, CA, USA) according to the manufacturer’s
protocol. This array captures 951,117 single nucleotide
polymorphisms (SNPs). To further validate the results of
the GWAS analysis, replication study was then carried out
for 50 SNPs with the lowest P-values (top SNPs) using an
independent cohort. Genotyping for the replication study
was done using multiplex polymerase chain reaction
(PCR) based Invader assay [44] with ABI PRISM 7900HT
Sequence Detection System (Applied Biosystems, Foster
City, CA, USA).
For data cleaning, systematic stepwise quality filtering of

raw genotyping data was done using PLINK [45]. From an
initial full set, those SNPs not mapped on autosomal chro-
mosomes were filtered out. In addition, SNPs with a call
rate less than 99 %, minor allele frequency less than 0.01,
or deviated from expected Hardy-Weinberg equilibrium
(P < 1.0 × 10−6) were removed. A total of 660, 206 SNPs
that passed the quality filter were used for further analysis.
Individuals were checked for gender concordance between
recorded clinical data and genotype determined sex. Sam-
ples with genotyping call rate greater than 99 % were
included in the analysis. Quantile-quantile plot comparing
the expected and observed P-values was performed in
R-statistical environment, and genomic control inflation
factor (λGC) was computed to detect population stratifi-
cation [46].

Statistical analysis
After the quality filter, the tests of associations were done
using PLINK v1.07 [45]. For each SNP, Fisher’s exact test
using the three genetic inheritance models (dominant,
recessive, allele frequency) were carried out to compare
allele and genotype frequencies between DILI cases and
treatment tolerants. SNPs were rank-ordered according to
the minimum P-value in the genetic models. The thres-
hold for genome-wide significance for associated SNPs was
determined using Bonferroni correction (P < 7.6 × 10−8).
SNPs with P-values below 10−5 were considered suggestive

of genome-wide significance. Logistic regression analysis
adjusted for sex, HIV status, CD4 count and HIV viral load
as covariates was performed. These variables were asso-
ciated with DILI as described previously [9, 10]. Combined
analysis of GWAS and replication study was conducted
using inverse-variance method [47]. Manhattan plot was
generated using Haploview software to visualize the results
[48]. We also performed sub-group GWAS analysis based
on the pattern of liver injury.
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